Using the GNU Compiler Collection

For ccc version 4.7.3

(crosstool-NG linaro-1.13.1-4.7-2013.04-20130415 - Linaro GCC 2013.04)

Richard M. Stallman and the Gcc Developer Community

Published by:

GNU Press Website: www.gnupress.org
a division of the General: press@gnu.org
Free Software Foundation Orders: sales@gnu.org

51 Franklin Street, Fifth Floor Tel 617-542-5942

Boston, MA 02110-1301 USA Fax 617-542-2652

Last printed October 2003 for GCC 3.3.1.
Printed copies are available for $45 each.

Copyright (©) 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.3 or any later version published by the
Free Software Foundation; with the Invariant Sections being “Funding Free Software”, the
Front-Cover Texts being (a) (see below), and with the Back-Cover Texts being (b) (see
below). A copy of the license is included in the section entitled “GNU Free Documentation
License”.

(a) The FSF’s Front-Cover Text is:

A GNU Manual

(b) The FSF’s Back-Cover Text is:

You have freedom to copy and modify this GNU Manual, like GNU software. Copies
published by the Free Software Foundation raise funds for GNU development.

Short Contents

Introduction e 1
1 Programming Languages Supported by GCC............... 3
2 Language Standards Supported by GCC)
3 GCC Command Optionsvvtteni e 9
4 C Implementation-defined behavior..................... 303
5 C++ Implementation-defined behavior.................. 311
6 Extensions to the C Language Family................... 313
7 Extensions to the C++ Language 627
8 GNU Objective-C features 639
9 Binary Compatibility 655
10 gcov—a Test Coverage Program 659
11 Known Causes of Trouble with GCC.................... 667
12 Reporting Bugs......... .o, 683
13 How To Get Help with GCC 685
14 Contributing to GCC Development 687
Funding Free Software i 689
The GNU Project and GNU/Linux.t 691
GNU General Public License. 693
GNU Free Documentation License 705
Contributors to GCC 713
Option Index 729

Keyword Index AT

Table of Contents

Introduction 1

1 Programming Languages Supported by GCC

... 3

2 Language Standards Supported by GCC 5
2.1 O langUAZE . « o ettt e 5
2.2 CH4 languageo 6
2.3 Objective-C and Objective-C++ languages 7
24 GO langGuUAZEt 8
2.5 References for other languages.............., 8
3 GCC Command Options....................... 9
3.1 Option SUMMATYttt 9
3.2 Options Controlling the Kind of Output....................... 23
3.3 Compiling C+4 Programscooouiiiiiiiiiiieannn.. 29
3.4 Options Controlling C Dialect............. ..., 29
3.5 Options Controlling C+4 Dialect, 35
3.6 Options Controlling Objective-C and Objective-C++ Dialects.. 45
3.7 Options to Control Diagnostic Messages Formatting 48
3.8 Options to Request or Suppress Warnings 49
3.9 Options for Debugging Your Program or GCC................. 72
3.10 Options That Control Optimization 92
3.11 Options Controlling the Preprocessor........................ 143
3.12 Passing Options to the Assembler........................... 154
3.13 Options for Linking......... ... o i i i 154
3.14 Options for Directory Search..........., 158
3.15 Specifying subprocesses and the switches to pass to them.... 160
3.16 Specifying Target Machine and Compiler Version............ 167
3.17 Hardware Models and Configurations 167
3.17.1 Adapteva Epiphany Options 167
3.17.2 AArch64 Optionsoviiti e 169
3.17.2.1 ‘-march’ and ‘-mcpu’ feature modifiers............. 171
3173 ARM Options.o.oiinii e 171
3174 AVR Optionsot 177
3.17.4.1 EIND and Devices with more than 128 Ki Bytes of Flash
.. 180

3.17.4.2 Handling of the RAMPD, RAMPX, RAMPY and RAMPZ Special
Function Registers........ ... i i i 182

3.17.4.3 AVR Built-in Macros. ..., 182
3.17.5 Blackfin Options.............ooiiiiiiia. 184

3.17.6 COX Options. . ..ot 187

iii

iv

Using the GNU Compiler Collection (GCC)

3.17.7 CRIS Options.voiiii i 187
3.17.8 CRI6 OPtions .. ovvvreit e 189
3.17.9 Darwin Options.c.oiiiiiiiii ... 190
3.17.10 DEC Alpha Optionsoeiiiiiiiiiiiean.. 193
3.17.11 DEC Alpha/VMS Optionscoovevuiiiiiin.. 198
3.17.12 FR30 Optionsc.vvrii e 198
3.17.13 FRV Options 198
3.17.14 GNU/Linux Options.........c.ooviiiiiiiiiiiiiiiinan.. 202
3.17.15 H8/300 Options.vueneiriiii i, 203
3.17.16 HPPA Options.ottt 203
3.17.17 Intel 386 and AMD x86-64 Options 206
3.17.18 1386 and x86-64 Windows Options 220
31719 TA-64 Options . ..ot e 221
3.17.20 TA-64/VMS Optionsouvuiiiiiiiiniiinan... 224
31721 LM32 Options . .o ovve it 224
3.17.22 M32C Options . ..o oveei e 225
3.17.23 M32R/D Options.......c.ouiuiuiuiiiiiiiiinnann.. 225
3.17.24 M680X0 OPtions . ..ottt 227
3.17.25 MCore Optionsc.vviiiiii i 232
3.17.26 MeP Options ..o 233
3.17.27 MicroBlaze Options...........c.ooiiiiiiiiiieiiiina.n, 234
3.17.28 MIPS Optionsot 236
3.17.29 MMIX Optionsviii e 247
3.17.30 MN10300 Optionsovviiriiiiiiiii .. 248
3.17.31 PDP-11 Optionsvoutii e 249
3.17.32 picoChip Optionscooviiiiiiiiiiii ... 250
3.17.33 PowerPC Options........ ..o, 250
3.17.34 RL78 Options. . ..ottt 251
3.17.35 IBM RS/6000 and PowerPC Options.................. 251
3.17.36 RX Options ... 265
3.17.37 S/390 and zSeries Optionscocovvininininin.. 267
3.17.38 Score Options.oiii e 270
3.17.39 SH Optionsoouuuiiini e 271
3.17.40 Solaris 2 Optionscovviiiiiiii i 276
3.17.41 SPARC Optionsoviiiiiiiiii i 277
3.17.42 SPU OpPtions . ..ot 281
3.17.43 Options for System V........ ... i, 283
3.17.44 TILE-Gx Options.......ccouiuiiiiiiiiiiii .. 284
3.17.45 TILEPro Options.cooutiiii i, 284
3.17.46 V850 Options.oouuri e 284
3.17.47 VAX Options .. ovveeei e 285
3.17.48 VxWorks Options. ..., 286
3.17.49 x86-64 OPtionsouuriniii i 286
3.17.50 Xstormyl6 Optionsccoviiiiiiiiiinia... 286
3.17.51 Xtensa Options........ouiiiiiiieiiiii i, 286
3.17.52 zSeries Optionst 288
3.18 Options for Code Generation Conventions................... 288

3.19 Environment Variables Affecting GCC 296

3.20 Using Precompiled Headerst 299

C Implementation-defined behavior 303
4.1 Translationo 303
4.2 Environment............ i 303
4.3 Identifiers.o 303
4.4 CharaCters. ... e e 304
4.5 Inbegers. ... 304
4.6 Floating point i 305
4.7 Arrays and pointers........ 306
4.8 HintS ..ot 307
4.9 Structures, unions, enumerations, and bit-fields............... 307
410 Qualifiers.o 308
411 Declaratorsoooirii 308
412 Statementsooiiiii i e 308
4.13 Preprocessing directives......... ..o 308
4.14 Library functions 309
4.15 Architecture 309
4.16 Locale-specific behavior............ i 309

C++ Implementation-defined behavior 311

5.1 Conditionally-supported behavior 311
5.2 Exception handling o 311
Extensions to the C Language Family...... 313
6.1 Statements and Declarations in Expressions 313
6.2 Locally Declared Labels........ ... i it 314
6.3 Labels as Values ... 315
6.4 Nested Functionso 316
6.5 Constructing Function Calls.................. ..., 318
6.6 Referring to a Type with typeoft 320
6.7 Conditionals with Omitted Operands......................... 321
6.8 128-bits INtegersouti i 322
6.9 Double-Word Integers. ... 322
6.10 Complex NUmbersoouiiieii e, 322
6.11 Additional Floating Types........cooiiiiiiiiiiiii .. 323
6.12 Half-Precision Floating Point 323
6.13 Decimal Floating Types........coooiiiiiiiii .. 324
6.14 Hex Floats. e 324
6.15 Fixed-Point Types..... ..o 325
6.16 Named Address Spacescovuiiiiiiiie ... 326
6.16.1 AVR Named Address Spaces..........c.coovieeiieaan... 326
6.16.2 M32C Named Address Spaces...........cooovieenne ... 328
6.16.3 RL78 Named Address Spaces............ccoviiieannn.. 328
6.16.4 SPU Named Address Spacesccoviiiieiinn... 328
6.17 Arrays of Length Zero o i 328

6.18 Structures With No Members 330

vi

Using the GNU Compiler Collection (GCC)

6.19 Arrays of Variable Length................................... 330
6.20 Macros with a Variable Number of Arguments............... 331
6.21 Slightly Looser Rules for Escaped Newlines.................. 331
6.22 Non-Lvalue Arrays May Have Subscripts.................... 332
6.23 Arithmetic on void- and Function-Pointers.................. 332
6.24 Non-Constant Initializers, 332
6.25 Compound Literalso i 332
6.26 Designated Initializers i i 333
6.27 Case Ranges. 335
6.28 Cast toa Union Type... ..o 335
6.29 Mixed Declarations and Code.................coiiiiion... 336
6.30 Declaring Attributes of Functions.............. 336
6.31 Attribute Syntax 365
6.32 Prototypes and Old-Style Function Definitions 368
6.33 C++ Style Commentsc.ooviiiiiiiii .. 369
6.34 Dollar Signs in Identifier Names.......... 369
6.35 The Character ESC in Constants............................ 369
6.36 Specifying Attributes of Variables................ 369
6.36.1 AVR Variable Attributes..........., 374
6.36.2 Blackfin Variable Attributes............... 374
6.36.3 M32R/D Variable Attributes........................... 375
6.36.4 MeP Variable Attributes........... 375
6.36.5 1386 Variable Attributes........... L. 376
6.36.6 PowerPC Variable Attributes........................... 378
6.36.7 SPU Variable Attributes........... 378
6.36.8 Xstormyl6 Variable Attributes................ 378
6.37 Specifying Attributes of Types...........oooiiiiiiiiiiL. 378
6.37.1 ARM Type Attributes, 382
6.37.2 MeP Type Attributes ..., 383
6.37.3 1386 Type Attributes. ...t 383
6.37.4 PowerPC Type Attributes............. 383
6.37.5 SPU Type Attributes, 384
6.38 Inquiring on Alignment of Types or Variables 384
6.39 An Inline Function is As Fast As a Macro................... 384
6.40 When is a Volatile Object Accessed? 386
6.41 Assembler Instructions with C Expression Operands......... 387
6.41.1 Sizeof an @asm...........oouiiiiiiiiiiii 393
6.41.2 1386 floating point asm operands 393
6.42 Constraints for asm Operands............. ..., 394
6.42.1 Simple Constraints....................iiiiiiineo.... 394
6.42.2 Multiple Alternative Constraints 397
6.42.3 Constraint Modifier Characters......................... 397
6.42.4 Constraints for Particular Machines 398
6.43 Controlling Names Used in Assembler Code................. 422
6.44 Variables in Specified Registers............. 423
6.44.1 Defining Global Register Variables 423
6.44.2 Specifying Registers for Local Variables 424

6.45 Alternate Keywords. ... 425

6.46 Incomplete enum Typescooviiiiiiiiiiiiiiiiiea... 426
6.47 Function Names as Strings. ..., 426
6.48 Getting the Return or Frame Address of a Function......... 427
6.49 Using vector instructions through built-in functions 428
6.50 Offsetof. 430
6.51 Legacy __sync built-in functions for atomic memory access. .. 430
6.52 Built-in functions for memory model aware atomic operations
.. 432
6.53 Object Size Checking Builtins............. 436
6.54 Other built-in functions provided by GCC................... 438
6.55 Built-in Functions Specific to Particular Target Machines. ... 447
6.55.1 Alpha Built-in Functions................, 447
6.55.2 ARM iWMMX¢t Built-in Functions..................... 448
6.55.3 ARM NEON Intrinsics.........cooeeiiiiiiiniane.... 450
6.55.3.1 Addition..........cooiiiiiii 451
6.55.3.2 Multiplication........... ... i 454
6.55.3.3 Multiply-accumulatel 456
6.55.3.4 Multiply-subtract 457
6.55.3.5 Subtraction.......... i 458
6.55.3.6 Comparison (equal-to) 462
6.55.3.7 Comparison (greater-than-or-equal-to)............. 462
6.55.3.8 Comparison (less-than-or-equal-to) 463
6.55.3.9 Comparison (greater-than) 464
6.55.3.10 Comparison (less-than)........................... 464
6.55.3.11 Comparison (absolute greater-than-or-equal-to)... 465
6.55.3.12 Comparison (absolute less-than-or-equal-to) 465
6.55.3.13 Comparison (absolute greater-than) 465
6.55.3.14 Comparison (absolute less-than).................. 466
6.55.3.15 Test bits.o 466
6.55.3.16 Absolute difference..............l 466
6.55.3.17 Absolute difference and accumulate............... 467
6.55.3.18 Maximum.t 468
6.55.3.19 Minimumo 469
6.55.3.20 Pairwise add......... .. i 470
6.55.3.21 Pairwise add, single_opcode widen and accumulate
.. 471
6.55.3.22 Folding maximum............... 471
6.55.3.23 Folding minimum oo 472
6.55.3.24 Reciprocal step ... 472
6.55.3.25 Vector shift left, 472
6.55.3.26 Vector shift left by constant...................... 475
6.55.3.27 Vector shift right by constant 478
6.55.3.28 Vector shift right by constant and accumulate 481
6.55.3.29 Vector shift right and insert...................... 482
6.55.3.30 Vector shift left and insert 483
6.55.3.31 Absolute value.......... 484
6.55.3.32 Negation...........oooiiiiiiiiiiii i, 485

6.55.3.33 Bitwise not i 485

vii

viii Using the GNU Compiler Collection (GCC)

6.55.3.34 Count leading sign bits........................... 486
6.55.3.35 Count leading zeros ..., 486
6.55.3.36 Count number of set bits......................... 487
6.55.3.37 Reciprocal estimate 487
6.55.3.38 Reciprocal square-root estimate 488
6.55.3.39 Get lanes from a vector 488
6.55.3.40 Set lanes in a vector, 489
6.55.3.41 Create vector from literal bit pattern............. 490
6.55.3.42 Set all lanes to the same value.................... 490
6.55.3.43 Combining vectorscooiiiiiiiiii.. 493
6.55.3.44 Splitting vectorsooeiiiiiiiiiiia. 494
6.55.3.45 CONVETSIONS . . o\ttt it e 494
6.55.3.46 Move, single_opcode narrowing................... 495
6.55.3.47 Move, single_opcode long......................... 496
6.55.3.48 Table lookup.........cooviiiiiiii .. 496
6.55.3.49 Extended table lookup 497
6.55.3.50 Multiply, lane......... ... 497
6.55.3.51 Long multiply, lane, 498
6.55.3.52 Saturating doubling long multiply, lane........... 498
6.55.3.53 Saturating doubling multiply high, lane 498
6.55.3.54 Multiply-accumulate, lane........................ 499
6.55.3.55 Multiply-subtract, lane................ 500
6.55.3.56 Vector multiply by scalar......................... 500
6.55.3.57 Vector long multiply by scalar.................... 501
6.55.3.58 Vector saturating doubling long multiply by scalar
.. 501
6.55.3.59 Vector saturating doubling multiply high by scalar
.. 501
6.55.3.60 Vector multiply-accumulate by scalar............. 502
6.55.3.61 Vector multiply-subtract by scalar................ 502
6.55.3.62 Vector extracto i 503
6.55.3.63 Reverse elements..................... L 504
6.55.3.64 Bit selectiono 506
6.55.3.65 Transpose elements, 508
6.55.3.66 Zipelements............. . . i 509
6.55.3.67 Unzip elements, 509
6.55.3.68 Element/structure loads, VLD1 variants.......... 510
6.55.3.69 Element/structure stores, VST1 variants 514
6.55.3.70 Element/structure loads, VLD2 variants.......... 516
6.55.3.71 Element/structure stores, VST2 variants 518
6.55.3.72 Element /structure loads, VLD3 variants.......... 520
6.55.3.73 Element/structure stores, VST3 variants 522
6.55.3.74 Element/structure loads, VLD4 variants.......... 524
6.55.3.75 Element/structure stores, VST4 variants 526
6.55.3.76 Logical operations (AND)........................ 527
6.55.3.77 Logical operations (OR).......................... 528
6.55.3.78 Logical operations (exclusive OR)................ 529
6.55.3.79 Logical operations (AND-NOT) 530

6.55.3.80 Logical operations (OR-NOT).................... 531

6.55.3.81 Reinterpret casts.......... ... 531
6.55.4 AVR Built-in Functions, 537
6.55.5 Blackfin Built-in Functions.............., 538
6.55.6 FR-V Built-in Functions 538

6.55.6.1 Argument Types.........cooiiiiiiiiiiiiiiii... 538

6.55.6.2 Directly-mapped Integer Functions................ 539

6.55.6.3 Directly-mapped Media Functions................. 539

6.55.6.4 Raw read/write Functions......................... 541

6.55.6.5 Other Built-in Functions, 541
6.55.7 X86 Built-in Functions............ 542
6.55.8 MIPS DSP Built-in Functions.......................... 562
6.55.9 MIPS Paired-Single Support ..., 566
6.55.10 MIPS Loongson Built-in Functions.................... 566

6.55.10.1 Paired-Single Arithmetic......................... 568

6.55.10.2 Paired-Single Built-in Functions.................. 569

6.55.10.3 MIPS-3D Built-in Functions...................... 570
6.55.11 picoChip Built-in Functions........................... 572
6.55.12 Other MIPS Built-in Functions........................ 573
6.55.13 PowerPC AltiVec Built-in Functions................... 573
6.55.14 RX Built-in Functions, 608
6.55.15 SPARC VIS Built-in Functions........................ 610
6.55.16 SPU Built-in Functions, 612
6.55.17 TI C6X Built-in Functions................... 612
6.55.18 TILE-Gx Built-in Functions................... 613
6.55.19 TILEPro Built-in Functions........................... 613

6.56 Format Checks Specific to Particular Target Machines....... 614
6.56.1 Solaris Format Checks 614
6.56.2 Darwin Format Checks.............. e, 614

6.57 Pragmas Accepted by GCC...... i, 614
6.57.1 ARM Pragmas. ... 614
6.57.2 M32C Pragmasouuutiniti i 615
6.57.3 MeP Pragmas..........coooiiiiiiiiiiiiii i 615
6.57.4 RS/6000 and PowerPC Pragmas 616
6.57.5 Darwin Pragmas............ .. o i 616
6.57.6 Solaris Pragmas. ... 617
6.57.7 Symbol-Renaming Pragmas.............. 617
6.57.8 Structure-Packing Pragmas 618
6.57.9 Weak Pragmas...........ccoiiiiiiiiii i, 618
6.57.10 Diagnostic Pragmas.............. L. 618
6.57.11 Visibility Pragmas............. oL 620
6.57.12 Push/Pop Macro Pragmascoooou... 620
6.57.13 Function Specific Option Pragmas..................... 620

6.58 Unnamed struct/union fields within structs/unions.......... 621

6.59 Thread-Local Storage.............co i 622
6.59.1 ISO/IEC 9899:1999 Edits for Thread-Local Storage..... 623

6.59.2 ISO/IEC 14882:1998 Edits for Thread-Local Storage.... 623
6.60 Binary constants using the ‘Ob’ prefix 625

X Using the GNU Compiler Collection (GCC)

7 Extensions to the C++4 Language 627
7.1 When is a Volatile C++ Object Accessed? 627
7.2 Restricting Pointer Aliasing...........o .. 627
7.3 Vague Linkageo 628
7.4 #pragma interface and implementation....................... 629
7.5 Where’s the Template?......... .. i, 630
7.6 Extracting the function pointer from a bound pointer to member

functiono 633
7.7 C++-Specific Variable, Function, and Type Attributes 633
7.8 Namespace Association ..., 634
7.9 Type Traits. ... e 634
7.10 Java Exceptionso 636
7.11 Deprecated Features......... ..., 637
7.12 Backwards Compatibilitycoiiiiiii ... 638

8 GNU Objective-C features.................. 639

8.1 GNU Objective-C runtime APL........ 639
8.1.1 Modern GNU Objective-C runtime API 639
8.1.2 Traditional GNU Objective-C runtime APT.............. 640

8.2 +load: Executing code before main 640
8.2.1 What you can and what you cannot do in +load......... 641

8.3 Typeencoding.......coouuuiiiiiiiiiiii i 642
8.3.1 Legacy type encodingc.ooiiiiiiiiiiiiieaann. 644
8.3.2 @encode. ... 644
8.3.3 Method signatureso i 645

8.4 Garbage Collection. 645

8.5 Constant string objects i 646

8.6 compatibility_alias......... ... i 647

8.7 EXCEPIONS. ..o 647

8.8 Synchronization........... 649

8.9 Fast enumeration i 649
8.9.1 Using fast enumeration..........., 649
8.9.2 ¢99-like fast enumeration syntax......................... 649
8.9.3 Fast enumeration details o 650
8.9.4 Fast enumeration protocol............... 651

8.10 Messaging with the GNU Objective-C runtime 652
8.10.1 Dynamically registering methods....................... 652
8.10.2 Forwarding hook........ i 652

9 Binary Compatibility 655

10 gcov—a Test Coverage Program........... 659
10.1 Introduction to gcov......... ..o 659
10.2 Invoking Cov ...ttt 659
10.3 Using gcov with GCC Optimization......................... 665
10.4 Brief description of gcov data files.......... L. 666

10.5 Data file relocation to support cross-profiling................ 666

11 Known Causes of Trouble with GCC...... 667
11.1 Actual Bugs We Haven’t Fixed Yet 667
11.2 Cross-Compiler Problemso i, 667
11.3 Interoperationooiiiiiiiiiiii . 667
11.4 Incompatibilities of GCC....... i ... 669
11.5 Fixed Header Files........ ..o, 672
11.6 Standard Libraries............ .o i 672
11.7 Disappointments and Misunderstandings 673
11.8 Common Misunderstandings with GNU C4++ 674

11.8.1 Declare and Define Static Members 674
11.8.2 Name lookup, templates, and accessing members of base

ClaSSES . o ot 675

11.8.3 Temporaries May Vanish Before You Expect............ 676

11.8.4 TImplicit Copy-Assignment for Virtual Bases............ 677

11.9 Certain Changes We Don’t Want to Make................... 678

11.10 Warning Messages and Error Messages..................... 681

12 Reporting Bugs............................. 683
12.1 Have You Found a Bug? L 683
12.2 How and where to Report Bugs.................. 683

13 How To Get Help with GCC 685

14 Contributing to GCC Development 687

Funding Free Software........................... 689

The GNU Project and GNU/Linux............ 691

GNU General Public License 693

GNU Free Documentation License 705
ADDENDUM: How to use this License for your documents 712

Contributors to GCC............................ 713

Option Index, 729

Keyword Index................cooiiiiiiiiii... 747

xi

Introduction 1

Introduction

This manual documents how to use the GNU compilers, as well as their features and in-
compatibilities, and how to report bugs. It corresponds to the compilers (crosstool-NG
linaro-1.13.1-4.7-2013.04-20130415 - Linaro GCC 2013.04) version 4.7.3. The internals of
the GNU compilers, including how to port them to new targets and some information
about how to write front ends for new languages, are documented in a separate manual.
See Section “Introduction” in GNU Compiler Collection (GCC) Internals.

Chapter 1: Programming Languages Supported by GCC 3

1 Programming Languages Supported by GCC

GCC stands for “GNU Compiler Collection”. GCC is an integrated distribution of compil-
ers for several major programming languages. These languages currently include C, C++,
Objective-C, Objective-C++, Java, Fortran, Ada, and Go.

The abbreviation GCC has multiple meanings in common use. The current official mean-
ing is “GNU Compiler Collection”, which refers generically to the complete suite of tools.
The name historically stood for “GNU C Compiler”, and this usage is still common when
the emphasis is on compiling C programs. Finally, the name is also used when speaking
of the language-independent component of GCC: code shared among the compilers for all
supported languages.

The language-independent component of GCC includes the majority of the optimizers,
as well as the “back ends” that generate machine code for various processors.

The part of a compiler that is specific to a particular language is called the “front end”.
In addition to the front ends that are integrated components of GCC, there are several
other front ends that are maintained separately. These support languages such as Pascal,
Mercury, and COBOL. To use these, they must be built together with GCC proper.

Most of the compilers for languages other than C have their own names. The C++ compiler
is G++, the Ada compiler is GNAT, and so on. When we talk about compiling one of those
languages, we might refer to that compiler by its own name, or as GCC. Either is correct.

Historically, compilers for many languages, including C++ and Fortran, have been im-
plemented as “preprocessors” which emit another high level language such as C. None of
the compilers included in GCC are implemented this way; they all generate machine code
directly. This sort of preprocessor should not be confused with the C preprocessor, which
is an integral feature of the C, C++, Objective-C and Objective-C++ languages.

Chapter 2: Language Standards Supported by GCC 5

2 Language Standards Supported by GCC

For each language compiled by GCC for which there is a standard, GCC attempts to follow
one or more versions of that standard, possibly with some exceptions, and possibly with
some extensions.

2.1 C language

GCC supports three versions of the C standard, although support for the most recent version
is not yet complete.

The original ANSI C standard (X3.159-1989) was ratified in 1989 and published in 1990.
This standard was ratified as an ISO standard (ISO/IEC 9899:1990) later in 1990. There
were no technical differences between these publications, although the sections of the ANSI
standard were renumbered and became clauses in the ISO standard. This standard, in
both its forms, is commonly known as C89, or occasionally as C90, from the dates of
ratification. The ANSI standard, but not the ISO standard, also came with a Rationale
document. To select this standard in GCC, use one of the options ‘-ansi’, ‘-std=c90’ or
‘-std=1509899:1990’; to obtain all the diagnostics required by the standard, you should
also specify ‘-pedantic’ (or ‘-pedantic-errors’ if you want them to be errors rather than
warnings). See Section 3.4 [Options Controlling C Dialect], page 29.

Errors in the 1990 ISO C standard were corrected in two Technical Corrigenda published
in 1994 and 1996. GCC does not support the uncorrected version.

An amendment to the 1990 standard was published in 1995. This amendment added
digraphs and __STDC_VERSION__ to the language, but otherwise concerned the library. This
amendment is commonly known as AMDI; the amended standard is sometimes known as
C94 or C95. To select this standard in GCC, use the option ‘~std=1s09899:199409’ (with,
as for other standard versions, ‘-pedantic’ to receive all required diagnostics).

A new edition of the ISO C standard was published in 1999 as ISO/IEC 9899:1999, and
is commonly known as C99. GCC has incomplete support for this standard version; see
http://gcc.gnu.org/gcc-4.7/c99status.html for details. To select this standard, use
‘~std=c99’ or ‘-std=1s509899:1999’. (While in development, drafts of this standard version
were referred to as C9X.)

Errors in the 1999 ISO C standard were corrected in three Technical Corrigenda published
in 2001, 2004 and 2007. GCC does not support the uncorrected version.

A fourth version of the C standard, known as C11, was published in 2011 as ISO/IEC
9899:2011. GCC has limited incomplete support for parts of this standard, enabled with
‘~std=c11’ or ‘-std=is09899:2011’. (While in development, drafts of this standard version
were referred to as C1X.)

By default, GCC provides some extensions to the C language that on rare occasions con-
flict with the C standard. See Chapter 6 [Extensions to the C Language Family], page 313.
Use of the ‘-std’ options listed above will disable these extensions where they conflict with
the C standard version selected. You may also select an extended version of the C lan-
guage explicitly with ‘-std=gnu90’ (for C90 with GNU extensions), ‘~std=gnu99’ (for C99
with GNU extensions) or ‘-std=gnull’ (for C11 with GNU extensions). The default, if
no C language dialect options are given, is ‘~std=gnu90’; this will change to ‘-std=gnu99’

¢

or ‘-std=gnull’ in some future release when the C99 or C11 support is complete. Some

http://gcc.gnu.org/gcc-4.7/c99status.html

6 Using the GNU Compiler Collection (GCC)

features that are part of the C99 standard are accepted as extensions in C90 mode, and
some features that are part of the C11 standard are accepted as extensions in C90 and C99
modes.

The ISO C standard defines (in clause 4) two classes of conforming implementation. A
conforming hosted implementation supports the whole standard including all the library fa-
cilities; a conforming freestanding implementation is only required to provide certain library
facilities: those in <float.h>, <limits.h>, <stdarg.h>, and <stddef.h>; since AMDI,
also those in <is0646.h>; since C99, also those in <stdbool.h> and <stdint.h>; and since
C11, also those in <stdalign.h> and <stdnoreturn.h>. In addition, complex types, added
in C99, are not required for freestanding implementations. The standard also defines two
environments for programs, a freestanding environment, required of all implementations and
which may not have library facilities beyond those required of freestanding implementations,
where the handling of program startup and termination are implementation-defined, and a
hosted environment, which is not required, in which all the library facilities are provided
and startup is through a function int main (void) or int main (int, char *[]). An OS
kernel would be a freestanding environment; a program using the facilities of an operating
system would normally be in a hosted implementation.

GCC aims towards being usable as a conforming freestanding implementation, or as the
compiler for a conforming hosted implementation. By default, it will act as the compiler for a
hosted implementation, defining __STDC_HOSTED__ as 1 and presuming that when the names
of ISO C functions are used, they have the semantics defined in the standard. To make it act
as a conforming freestanding implementation for a freestanding environment, use the option
‘~ffreestanding’; it will then define __STDC_HOSTED__ to O and not make assumptions
about the meanings of function names from the standard library, with exceptions noted
below. To build an OS kernel, you may well still need to make your own arrangements for
linking and startup. See Section 3.4 [Options Controlling C Dialect], page 29.

GCC does not provide the library facilities required only of hosted implementations, nor
yet all the facilities required by C99 of freestanding implementations; to use the facilities
of a hosted environment, you will need to find them elsewhere (for example, in the GNU C
library). See Section 11.6 [Standard Libraries|, page 672.

Most of the compiler support routines used by GCC are present in ‘libgcc’, but there
are a few exceptions. GCC requires the freestanding environment provide memcpy, memmove,
memset and memcmp. Finally, if __builtin_trap is used, and the target does not implement
the trap pattern, then GCC will emit a call to abort.

For references to Technical Corrigenda, Rationale documents and information concerning
the history of C that is available online, see http://gcc.gnu.org/readings.html

2.2 C++ language

GCC supports the original ISO C++ standard (1998) and contains experimental support for
the second ISO C++ standard (2011).

The original ISO C++ standard was published as the ISO standard (ISO/IEC 14882:1998)
and amended by a Technical Corrigenda published in 2003 (ISO/IEC 14882:2003). These
standards are referred to as C++98 and C++03, respectively. GCC implements the majority
of C++98 (export is a notable exception) and most of the changes in C++03. To select
this standard in GCC, use one of the options ‘-ansi’, ‘-std=c++98’, or ‘-std=c++03’; to

http://gcc.gnu.org/readings.html

Chapter 2: Language Standards Supported by GCC 7

obtain all the diagnostics required by the standard, you should also specify ‘-pedantic’ (or
‘-pedantic-errors’ if you want them to be errors rather than warnings).

A revised ISO C++ standard was published in 2011 as ISO/IEC 14882:2011, and is re-
ferred to as C++11; before its publication it was commonly referred to as C++0x. C++11
contains several changes to the C++ language, most of which have been implemented in an
experimental C++11 mode in GCC. For information regarding the C++11 features avail-
able in the experimental C++11 mode, see http://gcc.gnu.org/projects/cxx0x.html.
To select this standard in GCC, use the option ‘-std=c++11’; to obtain all the diagnostics
required by the standard, you should also specify ‘-pedantic’ (or ‘-pedantic-errors’ if
you want them to be errors rather than warnings).

More information about the C++ standards is available on the ISO C++ committee’s web
site at http://www.open-std.org/jtcl/sc22/wg21/.

By default, GCC provides some extensions to the C++ language; See Section 3.5 [C++
Dialect Options], page 35. Use of the ‘-std’ option listed above will disable these extensions.
You may also select an extended version of the C++ language explicitly with ‘-std=gnu++98’
(for C++98 with GNU extensions) or ‘-std=gnu++11’ (for C++11 with GNU extensions). The
default, if no C++ language dialect options are given, is ‘~std=gnu++98’.

2.3 Objective-C and Objective-C++ languages

GCC supports “traditional” Objective-C (also known as “Objective-C 1.0”) and contains
support for the Objective-C exception and synchronization syntax. It has also support for
a number of “Objective-C 2.0” language extensions, including properties, fast enumeration
(only for Objective-C), method attributes and the @optional and @required keywords in
protocols. GCC supports Objective-C++ and features available in Objective-C are also
available in Objective-C++.

GCC by default uses the GNU Objective-C runtime library, which is part of GCC and
is not the same as the Apple/NeXT Objective-C runtime library used on Apple systems.
There are a number of differences documented in this manual. The options ‘-fgnu-runtime’
and ‘-fnext-runtime’ allow you to switch between producing output that works with the
GNU Objective-C runtime library and output that works with the Apple/NeXT Objective-
C runtime library.

There is no formal written standard for Objective-C or Objective-C++. The authori-
tative manual on traditional Objective-C (1.0) is “Object-Oriented Programming and the
Objective-C Language”, available at a number of web sites:

e http://www.gnustep.org/resources/documentation/ObjectivCBook.pdf 1is the
original NeXTstep document;

e http://objc.toodarkpark.net is the same document in another format;

e http://developer.apple.com/mac/library/documentation/Cocoa/Conceptual/
ObjectiveC/ has an updated version but make sure you search for “Object Oriented
Programming and the Objective-C Programming Language 1.0”, not documentation
on the newer “Objective-C 2.0” language

The Objective-C exception and synchronization syntax (that is, the keywords @try,
@throw, @catch, @finally and @synchronized) is supported by GCC and is enabled with the

http://gcc.gnu.org/projects/cxx0x.html
http://www.open-std.org/jtc1/sc22/wg21/
http://www.gnustep.org/resources/documentation/ObjectivCBook.pdf
http://objc.toodarkpark.net
http://developer.apple.com/mac/library/documentation/Cocoa/Conceptual/ObjectiveC/
http://developer.apple.com/mac/library/documentation/Cocoa/Conceptual/ObjectiveC/

8 Using the GNU Compiler Collection (GCC)

option ‘~fobjc-exceptions’. The syntax is briefly documented in this manual and in the
Objective-C 2.0 manuals from Apple.

The Objective-C 2.0 language extensions and features are automatically enabled; they
include properties (via the @property, @synthesize and @dynamic keywords), fast enumera-
tion (not available in Objective-C++), attributes for methods (such as deprecated, noreturn,
sentinel, format), the unused attribute for method arguments, the @package keyword for in-
stance variables and the @optional and @required keywords in protocols. You can disable
all these Objective-C 2.0 language extensions with the option ‘-fobjc-std=objcl’, which
causes the compiler to recognize the same Objective-C language syntax recognized by GCC
4.0, and to produce an error if one of the new features is used.

GCC has currently no support for non-fragile instance variables.

The authoritative manual on Objective-C 2.0 is available from Apple:

e http://developer.apple.com/mac/library/documentation/Cocoa/Conceptual/
ObjectiveC/

For more information concerning the history of Objective-C that is available online, see
http://gcc.gnu.org/readings.html

2.4 Go language

The Go language continues to evolve as of this writing; see the current language specifi-
cations. At present there are no specific versions of Go, and there is no way to describe
the language supported by GCC in terms of a specific version. In general GCC tracks the
evolving specification closely, and any given release will support the language as of the date
that the release was frozen.

2.5 References for other languages
See Section “About This Guide” in GNAT Reference Manual, for information on standard
conformance and compatibility of the Ada compiler.

See Section “Standards” in The GNU Fortran Compiler, for details of standards sup-
ported by GNU Fortran.

See Section “Compatibility with the Java Platform” in GNU gcj, for details of compati-
bility between gcj and the Java Platform.

http://developer.apple.com/mac/library/documentation/Cocoa/Conceptual/ObjectiveC/
http://developer.apple.com/mac/library/documentation/Cocoa/Conceptual/ObjectiveC/
http://gcc.gnu.org/readings.html
http://golang.org/doc/go_spec.html
http://golang.org/doc/go_spec.html

Chapter 3: GCC Command Options 9

3 GCC Command Options

When you invoke GCC, it normally does preprocessing, compilation, assembly and linking.
The “overall options” allow you to stop this process at an intermediate stage. For example,
the ‘=c’ option says not to run the linker. Then the output consists of object files output
by the assembler.

Other options are passed on to one stage of processing. Some options control the prepro-
cessor and others the compiler itself. Yet other options control the assembler and linker;
most of these are not documented here, since you rarely need to use any of them.

Most of the command-line options that you can use with GCC are useful for C programs;
when an option is only useful with another language (usually C++), the explanation says
so explicitly. If the description for a particular option does not mention a source language,
you can use that option with all supported languages.

See Section 3.3 [Compiling C++ Programs|, page 29, for a summary of special options for
compiling C++ programs.

The gcc program accepts options and file names as operands. Many options have multi-
letter names; therefore multiple single-letter options may not be grouped: ‘-dv’ is very
different from ‘-4 -v’.

You can mix options and other arguments. For the most part, the order you use doesn’t
matter. Order does matter when you use several options of the same kind; for example, if
you specify ‘=L’ more than once, the directories are searched in the order specified. Also,
the placement of the ‘-1’ option is significant.

Many options have long names starting with ‘-f’ or with ‘-W—for example,
‘-fmove-loop-invariants’, ‘-Wformat’ and so on. Most of these have both positive and
negative forms; the negative form of ‘~ffoo’ would be ‘~fno-foo’. This manual documents
only one of these two forms, whichever one is not the default.

See [Option Index|, page 729, for an index to GCC’s options.

3.1 Option Summary

Here is a summary of all the options, grouped by type. Explanations are in the following
sections.

Overall Options
See Section 3.2 [Options Controlling the Kind of Output], page 23.

-c -S -E -o file -no-canonical-prefixes

-pipe -pass-exit-codes

-x language -v -### --help[=class|,...|] ——target-help
--version -wrapper Qfile -fplugin=file -fplugin-arg-name=arg
-fdump-ada-spec[-slim| -fdump-go-spec=file

C' Language Options
See Section 3.4 [Options Controlling C Dialect], page 29.

-ansi -std=standard -fgnu89-inline

-aux-info filename -fallow-parameterless-variadic-functions
-fno-asm -fno-builtin -fno-builtin-function

-fhosted -ffreestanding -fopenmp -fms-extensions -fplan9-extensions
-trigraphs -no-integrated-cpp -traditional -traditional-cpp

10 Using the GNU Compiler Collection (GCC)

-fallow-single-precision -fcond-mismatch -flax-vector-conversions
-fsigned-bitfields -fsigned-char
-funsigned-bitfields -funsigned-char

C++ Language Options
See Section 3.5 [Options Controlling C++ Dialect|, page 35.

-fabi-version=n -fno-access-control -fcheck-new
-fconserve-space -fconstexpr-depth=n -ffriend-injection
-fno-elide-constructors

-fno-enforce-eh-specs

-ffor-scope -fno-for-scope -fno-gnu-keywords
-fno-implicit-templates

-fno-implicit-inline-templates

-fno-implement-inlines -fms-extensions
-fno-nonansi-builtins -fnothrow-opt -fno-operator-names
-fno-optional-diags -fpermissive

-fno-pretty-templates

-frepo -fno-rtti -fstats -ftemplate-depth=n
-fno-threadsafe-statics -fuse-cxa-atexit -fno-weak -nostdinc++
-fno-default-inline -fvisibility-inlines-hidden
-fvisibility-ms-compat

-Wabi -Wconversion-null -Wctor-dtor-privacy
-Wdelete-non-virtual-dtor -Wnarrowing -Wnoexcept
-Wnon-virtual-dtor -Wreorder

-Weffc++ -Wstrict-null-sentinel
-Wno-non-template-friend -Wold-style-cast
-Woverloaded-virtual -Wno-pmf-conversions

-Wsign-promo

Objective-C and Objective-C++ Language Options
See Section 3.6 [Options Controlling Objective-C and Objective-C++ Dialects],
page 45.

-fconstant-string-class=class—name
-fgnu-runtime -fnext-runtime
-fno-nil-receivers
-fobjc-abi-version=n
-fobjc-call-cxx-cdtors
-fobjc-direct-dispatch
-fobjc-exceptions

-fobjc-gc

-fobjc-nilcheck
-fobjc-std=objcl
-freplace-objc-classes
-fzero-link

-gen-decls
-Wassign-intercept
-Wno-protocol -Wselector
-Wstrict-selector-match
-Wundeclared-selector

Language Independent Options
See Section 3.7 [Options to Control Diagnostic Messages Formatting|, page 48.
-fmessage-length=n
-fdiagnostics-show-location=[once|every-line]
-fno-diagnostics-show-option
Warning Options
See Section 3.8 [Options to Request or Suppress Warnings|, page 49.

Chapter 3: GCC Command Options 11

-fsyntax-only -fmax-errors=n -pedantic

-pedantic-errors

-w -Wextra -Wall -Waddress -Waggregate-return -Warray-bounds

-Wno-attributes -Wno-builtin-macro-redefined

-Wc++-compat -Wc++1ll-compat -Wcast-align -Wcast-qual

-Wchar-subscripts -Wclobbered -Wcomment

-Wconversion -Wcoverage-mismatch -Wno-cpp -Wno-deprecated

-Wno-deprecated-declarations -Wdisabled-optimization

-Wno-div-by-zero -Wdouble-promotion -Wempty-body -Wenum-compare

-Wno-endif-labels -Werror -Werror=*

-Wfatal-errors -Wfloat-equal -Wformat -Wformat=2

-Wno-format-contains-nul -Wno-format-extra-args -Wformat-nonliteral

-Wformat-security -Wformat-y2k

-Wframe-larger-than=len -Wno-free-nonheap-object -Wjump-misses-init

-Wignored-qualifiers

-Wimplicit -Wimplicit-function-declaration -Wimplicit-int

-Winit-self -Winline -Wmaybe-uninitialized

-Wno-int-to-pointer-cast -Wno-invalid-offsetof

-Winvalid-pch -Wlarger-than=len -Wunsafe-loop-optimizations

-Wlogical-op -Wlong-long

-Wmain -Wmaybe-uninitialized -Wmissing-braces -Wmissing-field-initializers [}

-Wmissing-format-attribute -Wmissing-include-dirs

-Wno-mudflap

-Wno-multichar -Wnonnull -Wno-overflow

-Woverlength-strings -Wpacked -Wpacked-bitfield-compat -Wpadded

-Wparentheses -Wpedantic-ms-format -Wno-pedantic-ms-format

-Wpointer-arith -Wno-pointer-to-int-cast

-Wredundant-decls

-Wreturn-type -Wsequence-point -Wshadow

-Wsign-compare -Wsign-conversion -Wstack-protector

-Wstack-usage=len -Wstrict-aliasing -Wstrict-aliasing=n

-Wstrict-overflow -Wstrict-overflow=n

-Wsuggest-attribute=[pure|const |noreturn]

-Wswitch -Wswitch-default -Wswitch-enum -Wsync-nand

-Wsystem-headers -Wtrampolines -Wtrigraphs -Wtype-limits -Wundef

-Wuninitialized -Wunknown-pragmas -Wno-pragmas

-Wunsuffixed-float-constants -Wunused -Wunused-function

-Wunused-label -Wunused-local-typedefs -Wunused-parameter

-Wno-unused-result -Wunused-value

-Wunused-variable

-Wunused-but-set-parameter -Wunused-but-set-variable

-Wvariadic-macros -Wvector-operation-performance -Wvla -Wvolatile-register-Jj
var -Wwrite-strings -Wzero-as-null-pointer-constant

C and Objective-C-only Warning Options
-Wbad-function-cast -Wmissing-declarations
-Wmissing-parameter-type -Wmissing-prototypes -Wnested-externs
-Wold-style-declaration -Wold-style-definition
-Wstrict-prototypes -Wtraditional -Wtraditional-conversion
-Wdeclaration-after-statement -Wpointer-sign

Debugging Options
See Section 3.9 [Options for Debugging Your Program or GCC], page 72.
-dletters -dumpspecs -dumpmachine -dumpversion
-fdbg-cnt-list -fdbg-cnt=counter-value-list
-fdisable-ipa-pass_name
-fdisable-rtl-pass_name
-fdisable-rtl-pass-name=range-list
-fdisable-tree-pass_name

12 Using the GNU Compiler Collection (GCC)

-fdisable-tree-pass-name=range-list

-fdump-noaddr -fdump-unnumbered -fdump-unnumbered-links
-fdump-translation-unit|-n]

-fdump-class-hierarchy[-n]

-fdump-ipa-all -fdump-ipa-cgraph -fdump-ipa-inline
-fdump-passes

-fdump-statistics

-fdump-tree-all

-fdump-tree-original[-n]|

-fdump-tree-optimized|-n]|

-fdump-tree-cfg -fdump-tree-vcg -fdump-tree-alias
-fdump-tree-ch

-fdump-tree-ssal-n] -fdump-tree-pre[-n]

-fdump-tree-ccp[-n] -fdump-tree-dce[-n]
-fdump-tree-gimple[-raw|] -fdump-tree-mudflap|-n]
-fdump-tree-dom[-n]

-fdump-tree-dse[-n]

-fdump-tree-phiprop[-n]

-fdump-tree-phiopt|-n]

-fdump-tree-forwprop|-n]

-fdump-tree-copyrename[-n]

-fdump-tree-nrv -fdump-tree-vect

-fdump-tree-sink

-fdump-tree-sra[-n]

-fdump-tree-forwprop|-n|

-fdump-tree-fre[-n]

-fdump-tree-vrp[-n]

-ftree-vectorizer-verbose=n

-fdump-tree-storeccp|-n]

-fdump-final-insns=file

-fcompare-debug[=opts]| -fcompare-debug-second
-feliminate-dwarf2-dups -feliminate-unused-debug-types
-feliminate-unused-debug-symbols -femit-class-debug-always
-fenable-kind-pass

-fenable-kind-pass=range-list

-fdebug-types-section

-fmem-report -fpre-ipa-mem-report -fpost-ipa-mem-report -fprofile-arcs
-frandom-seed=string -fsched-verbose=n
-fsel-sched-verbose -fsel-sched-dump-cfg -fsel-sched-pipelining-verbose
-fstack-usage -ftest-coverage -ftime-report -fvar-tracking
-fvar-tracking-assignments -fvar-tracking-assignments-toggle
-g —glevel -gtoggle -gcoff -gdwarf-version

-ggdb -grecord-gcc-switches -gno-record-gcc-switches
-gstabs -gstabs+ -gstrict-dwarf -gno-strict-dwarf

-gvms -gxcoff -gxcoff+

-fno-merge-debug-strings -fno-dwarf2-cfi-asm
-fdebug-prefix-map=old=new

-femit-struct-debug-baseonly -femit-struct-debug-reduced
-femit-struct-debug-detailed|[=spec-1list]

-p -pg -print-file-name=Ilibrary -print-libgcc-file-name
-print-multi-directory -print-multi-lib -print-multi-os-directory
-print-prog-name=program -print-search-dirs -Q
-print-sysroot -print-sysroot-headers-suffix

-save-temps -save-temps=cwd -save-temps=obj -time[=file|

Optimization Options
See Section 3.10 [Options that Control Optimization], page 92.

Chapter 3: GCC Command Options 13

-falign-functions[=n] -falign-jumps[=n]

-falign-labels[=n] -falign-loops[=n] -fassociative-math
-fauto-inc-dec -fbranch-probabilities -fbranch-target-load-optimize
-fbranch-target-load-optimize2 -fbtr-bb-exclusive -fcaller-saves
-fcheck-data-deps -fcombine-stack-adjustments -fconserve-stack
-fcompare-elim -fcprop-registers -fcrossjumping

-fcse-follow-jumps -fcse-skip-blocks -fcx-fortran-rules
-fcx-limited-range

-fdata-sections -fdce -fdelayed-branch

-fdelete-null-pointer-checks -fdevirtualize -fdse

-fearly-inlining -fipa-sra -fexpensive-optimizations -ffat-lto-objects
-ffast-math -ffinite-math-only -ffloat-store -fexcess-precision=style
-fforward-propagate -ffp-contract=style -ffunction-sections

-fgcse -fgcse-after-reload -fgcse-las -fgcse-1lm -fgraphite-identity
-fgcse-sm -fif-conversion -fif-conversion2 -findirect-inlining
-finline-functions -finline-functions-called-once -finline-limit=n
-finline-small-functions -fipa-cp -fipa-cp-clone -fipa-matrix-reorg
-fipa-pta -fipa-profile -fipa-pure-const -fipa-reference
-fira-algorithm=algorithm

-fira-region=region

-fira-loop-pressure -fno-ira-share-save-slots
-fno-ira-share-spill-slots -fira-verbose=n

-fivopts -fkeep-inline-functions -fkeep-static-consts

-floop-block -floop-flatten -floop-interchange -floop-strip-mine
-floop-parallelize-all -flto -flto-compression-level
-flto-partition=alg -flto-report -fmerge-all-constants
-fmerge-constants -fmodulo-sched -fmodulo-sched-allow-regmoves
-fmove-loop-invariants fmudflap -fmudflapir -fmudflapth -fno-branch-count-
reg

-fno-default-inline

-fno-defer-pop -fno-function-cse -fno-guess-branch-probability
-fno-inline -fno-math-errno -fno-peephole -fno-peephole2
-fno-sched-interblock -fno-sched-spec -fno-signed-zeros
-fno-toplevel-reorder -fno-trapping-math -fno-zero-initialized-in-bss
-fomit-frame-pointer -foptimize-register-move -foptimize-sibling-calls
-fpartial-inlining -fpeel-loops -fpredictive-commoning
-fprefetch-loop-arrays

-fprofile-correction -fprofile-dir=path -fprofile-generate
-fprofile-generate=path

-fprofile-use -fprofile-use=path -fprofile-values

-freciprocal-math -free -fregmove -frename-registers -freorder-blocks
-freorder-blocks-and-partition -freorder-functions
-frerun-cse-after-loop -freschedule-modulo-scheduled-loops
-frounding-math -fsched2-use-superblocks -fsched-pressure
-fsched-spec-load -fsched-spec-load-dangerous
-fsched-stalled-insns-dep[=n] -fsched-stalled-insns[=n]
-fsched-group-heuristic -fsched-critical-path-heuristic
-fsched-spec-insn-heuristic -fsched-rank-heuristic
-fsched-last-insn-heuristic -fsched-dep-count-heuristic
-fschedule-insns -fschedule-insns2 -fsection-anchors
-fselective-scheduling -fselective-scheduling?

-fsel-sched-pipelining -fsel-sched-pipelining-outer-loops
-fshrink-wrap -fsignaling-nans -fsingle-precision-constant
-fsplit-ivs-in-unroller -fsplit-wide-types -fstack-protector
-fstack-protector-all -fstrict-aliasing -fstrict-overflow
-fthread-jumps -ftracer -ftree-bit-ccp

-ftree-builtin-call-dce -ftree-ccp -ftree-ch
-ftree-coalesce-inline-vars -ftree-coalesce-vars -ftree-copy-prop

14 Using the GNU Compiler Collection (GCC)

-ftree-copyrename -ftree-dce -ftree-dominator-opts -ftree-dse
-ftree-forwprop -ftree-fre -ftree-loop-if-convert
-ftree-loop-if-convert-stores -ftree-loop-im

-ftree-phiprop -ftree-loop-distribution -ftree-loop-distribute-patterns
-ftree-loop-ivcanon -ftree-loop-linear -ftree-loop-optimize
-ftree-parallelize-loops=n -ftree-pre -ftree-partial-pre -ftree-pta
-ftree-reassoc

-ftree-sink -ftree-sra -ftree-switch-conversion -ftree-tail-merge
-ftree-ter -ftree-vect-loop-version -ftree-vectorize -ftree-vrp
-funit-at-a-time -funroll-all-loops -funroll-loops
-funsafe-loop-optimizations -funsafe-math-optimizations -funswitch-loops
-fvariable-expansion-in-unroller -fvect-cost-model -fvpt -fweb
-fwhole-program -fwpa -fuse-linker-plugin

--param name=value -0 -00 -01 -02 -03 -0s -Ofast

Preprocessor Options
See Section 3.11 [Options Controlling the Preprocessor], page 143.

-Aquestion=answer
-A-question|=answer|

-C -dD -dI -dM -dN

-Dmacro[=defn] -E -H

-idirafter dir

-include file -imacros file
-iprefix file -iwithprefix dir
-iwithprefixbefore dir -isystem dir
-imultilib dir -isysroot dir

-M -MM -MF -MG -MP -MQ -MT -nostdinc
-P -fdebug-cpp -ftrack-macro-expansion -fworking-directory
-remap -trigraphs -undef -Umacro
-Wp,option -Xpreprocessor option

Assembler Option
See Section 3.12 [Passing Options to the Assembler|, page 154.

-Wa,option -Xassembler option

Linker Options
See Section 3.13 [Options for Linking], page 154.

object-file-name -llibrary
-nostartfiles -nodefaultlibs -nostdlib -pie -rdynamic
-s -static -static-libgcc -static-libstdc++ -shared
-shared-libgcc -symbolic
-T script -Wl,option -Xlinker option
-u symbol

Directory Options
See Section 3.14 [Options for Directory Search], page 158.
-Bprefix -Idir -iplugindir=dir
-iquotedir -Ldir -specs=file -I-
--sysroot=dir
Machine Dependent Options
See Section 3.17 [Hardware Models and Configurations], page 167.

AArch6/ Options
-mbig-endian -mlittle-endian
-mgeneral-regs-only
-mcmodel=tiny -mcmodel=small -mcmodel=large

Chapter 3: GCC Command Options 15

-mstrict-align

-momit-leaf-frame-pointer -mno-omit-leaf-frame-pointer
-mtls-dialect=desc -mtls-dialect=traditional
-march=name -mcpu=name -mtune=name

Adapteva Epiphany Options
-mhalf-reg-file -mprefer-short-insn-regs
-mbranch-cost=num -mcmove -mnops=num -msoft-cmpsf
-msplit-lohi -mpost-inc -mpost-modify -mstack-offset=num
-mround-nearest -mlong-calls -mshort-calls -msmallil6
-mfp-mode=mode -mvect-double -max-vect-align=num
-msplit-vecmove-early -mlreg-reg

ARM Options
-mapcs-frame -mno-apcs-frame
-mabi=name
-mapcs-stack-check -mno-apcs-stack-check
-mapcs-float -mno-apcs-float
-mapcs-reentrant -mno-apcs-reentrant
-msched-prolog -mno-sched-prolog
-mlittle-endian -mbig-endian -mwords-little-endian
-mfloat-abi=name -mfpe
-mfpl6-format=name -mthumb-interwork -mno-thumb-interwork
-mcpu=name -march=name -mfpu=name
-mstructure-size-boundary=n
-mabort-on-noreturn
-mlong-calls -mno-long-calls
-msingle-pic-base -mno-single-pic-base
-mpic-register=reg
-mnop-fun-dllimport
-mcirrus-fix-invalid-insns -mno-cirrus-fix-invalid-insns
-mpoke-function-name
-mthumb -marm
-mtpcs-frame -mtpcs-leaf-frame
-mcaller-super-interworking -mcallee-super-interworking
-mtp=name -mtls-dialect=dialect
-mword-relocations
-mfix-cortex-m3-ldrd
-munaligned-access
-mneon-for-64bits

AVR Options

-mmcu=mcu -maccumulate-args -mbranch-cost=cost
-mcall-prologues -mint8 -mno-interrupts -mrelax -mshort-calls
-mstrict-X -mtiny-stack

Blackfin Options
-mcpu=cpu[-sirevision]
-msim -momit-leaf-frame-pointer -mno-omit-leaf-frame-pointer
-mspecld-anomaly -mno-specld-anomaly -mcsync-anomaly -mno-csync-anomaly
-mlow-64k -mno-low64k -mstack-check-11 -mid-shared-library
-mno-id-shared-library -mshared-library-id=n
-mleaf-id-shared-library -mno-leaf-id-shared-library
-msep-data -mno-sep-data -mlong-calls -mno-long-calls
-mfast-fp -minline-plt -mmulticore -mcorea -mcoreb -msdram
-micplb

C6X Options

-mbig-endian -mlittle-endian -march=cpu
-msim -msdata=sdata-type

Using the GNU Compiler Collection (GCC)

CRIS Options
-mcpu=cpu -march=cpu -mtune=cpu
-mmax-stack-frame=n -melinux-stacksize=n
-metrax4 -metraxl100 -mpdebug -mcc-init -mno-side-effects
-mstack-align -mdata-align -mconst-align
-m32-bit -m16-bit -m8-bit -mno-prologue-epilogue -mno-gotplt
-melf -maout -melinux -mlinux -sim -sim2
-mmul-bug-workaround -mno-mul-bug-workaround

CR16 Options

-mmac
-mcri6cplus -mcri6ec
-msim -mint32 -mbit-ops -mdata-model=model

Darwin Options

-all_load -allowable_client -arch -arch_errors_fatal
-arch_only -bind_at_load -bundle -bundle_loader
-client_name -compatibility_version -current_version
-dead_strip

-dependency-file -dylib_file -dylinker_install_name
-dynamic -dynamiclib -exported_symbols_list

-filelist -flat_namespace -force_cpusubtype_ALL
-force_flat_namespace -headerpad_max_install_names
-iframework

-image_base -init -install_name -keep_private_externs
-multi_module -multiply_defined -multiply_defined_unused
-noall_load -no_dead_strip_inits_and_terms
-nofixprebinding -nomultidefs -noprebind -noseglinkedit
-pagezero_size -prebind -prebind_all_twolevel_modules
-private_bundle -read_only_relocs -sectalign
-sectobjectsymbols -whyload -segladdr

-sectcreate -sectobjectsymbols -sectorder

-segaddr -segs_read_only_addr -segs_read_write_addr
-seg_addr_table -seg_addr_table_filename -seglinkedit
-segprot -segs_read_only_addr -segs_read_write_addr
-single_module -static -sub_library -sub_umbrella
-twolevel_namespace -umbrella -undefined
-unexported_symbols_list -weak_reference_mismatches
-whatsloaded -F -gused -gfull -mmacosx-version-min=version
-mkernel -mone-byte-bool

DEC Alpha Options
-mno-fp-regs -msoft-float -malpha-as -mgas
-mieee -mieee-with-inexact -mieee-conformant
-mfp-trap-mode=mode -mfp-rounding-mode=mode
-mtrap-precision=mode -mbuild-constants
-mcpu=cpu-type -mtune=cpu-type
-mbwx -mmax -mfix -mcix
-mfloat-vax -mfloat-ieee
-mexplicit-relocs -msmall-data -mlarge-data
-msmall-text -mlarge-text
-mmemory-latency=time

DEC Alpha/VMS Options

-mvms-return-codes -mdebug-main=prefix -mmalloc64

FR30 Options

-msmall-model -mno-lsim

FRV Options

Chapter 3: GCC Command Options

-mgpr-32 -mgpr-64 -mfpr-32 -mfpr-64

-mhard-float -msoft-float

-malloc-cc -mfixed-cc -mdword -mno-dword

-mdouble -mno-double

-mmedia -mno-media -mmuladd -mno-muladd

-mfdpic -minline-plt -mgprel-ro -multilib-library-pic
-mlinked-fp -mlong-calls -malign-labels

-mlibrary-pic -macc-4 -macc-8

-mpack -mno-pack -mno-eflags -mcond-move -mno-cond-move
-moptimize-membar -mno-optimize-membar

-mscc -mno-scc -mcond-exec -mno-cond-exec

-mvliw-branch -mno-vliw-branch

-mmulti-cond-exec -mno-multi-cond-exec -mnested-cond-exec
-mno-nested-cond-exec -mtomcat-stats

-mTLS -mtls

-mcpu=cpu

GNU/Linuz Options

-mglibc -muclibc -mbionic -mandroid
-tno-android-cc -tno-android-1d

HS8/300 Options
-mrelax -mh -ms -mn -mint32 -malign-300
HPPA Options

-march=architecture-type

-mbig-switch -mdisable-fpregs -mdisable-indexing
-mfast-indirect-calls -mgas -mgnu-1ld -mhp-1d
-mfixed-range=register-range

-mjump-in-delay -mlinker-opt -mlong-calls
-mlong-load-store -mno-big-switch -mno-disable-fpregs
-mno-disable-indexing -mno-fast-indirect-calls -mno-gas
-mno-jump-in-delay -mno-long-load-store
-mno-portable-runtime -mno-soft-float

-mno-space-regs -msoft-float -mpa-risc-1-0
-mpa-risc-1-1 -mpa-risc-2-0 -mportable-runtime
-mschedule=cpu-type -mspace-regs -msio -mwsio
-munix=unix-std -nolibdld -static -threads

1386 and x86-64 Options
-mtune=cpu-type -march=cpu-type
-mfpmath=unit
-masm=dialect -mno-fancy-math-387
-mno-fp-ret-in-387 -msoft-float
-mno-wide-multiply -mrtd -malign-double
-mpreferred-stack-boundary=num
-mincoming-stack-boundary=num
-mcld -mcx16 -msahf -mmovbe -mcrc32
-mrecip -mrecip=opt
-mvzeroupper -mprefer-avx128
-mmmx -msse -msse2 -msse3 -mssse3 -msse4.l -msse4.2 -msse4 -mavx
-mavx2 -maes -mpclmul -mfsgsbase -mrdrnd -mfi6c -mfma
-msse4a -m3dnow -mpopcnt -mabm -mbmi -mtbm -mfma4 -mxop -mlzcnt
-mbmi2 -mlwp -mthreads -mno-align-stringops -minline-all-stringops
-minline-stringops-dynamically -mstringop-strategy=alg
-mpush-args -maccumulate-outgoing-args -m128bit-long-double
-m96bit-long-double -mregparm=num -msseregparm
-mveclibabi=type -mvect8-ret-in-mem
-mpc32 -mpc64 -mpc80 -mstackrealign
-momit-leaf-frame-pointer -mno-red-zone -mno-tls-direct-seg-refs

18

Using the GNU Compiler Collection (GCC)

-mcmodel=code-model -mabi=name

-m32 -m64 -mx32 -mlarge-data-threshold=num

-msse2avx -mfentry -m8bit-idiv
-mavx256-split-unaligned-load -mavx256-split-unaligned-store

1386 and x86-64 Windows Options

IA-64

-mconsole -mcygwin -mno-cygwin -mdll
-mnop-fun-dllimport -mthread
-municode -mwin32 -mwindows -fno-set-stack-executable

Options

-mbig-endian -mlittle-endian -mgnu-as -mgnu-ld -mno-pic
-mvolatile-asm-stop -mregister-names -msdata -mno-sdata

-mconstant-gp -mauto-pic -mfused-madd

-minline-float-divide-min-latency

-minline-float-divide-max-throughput

-mno-inline-float-divide

-minline-int-divide-min-latency

-minline-int-divide-max-throughput

-mno-inline-int-divide

-minline-sqrt-min-latency -minline-sqrt-max-throughput

-mno-inline-sqrt

-mdwarf2-asm -mearly-stop-bits

-mfixed-range=register-range -mtls-size=tls-size

-mtune=cpu-type -milp32 -mlp64

-msched-br-data-spec -msched-ar-data-spec -msched-control-spec
-msched-br-in-data-spec -msched-ar-in-data-spec -msched-in-control-spec
-msched-spec-1ldc -msched-spec-control-ldc
-msched-prefer-non-data-spec-insns -msched-prefer-non-control-spec-insns
-msched-stop-bits-after-every-cycle -msched-count-spec-in-critical-path
-msel-sched-dont-check-control-spec -msched-fp-mem-deps-zero-cost
-msched-max-memory-insns-hard-limit -msched-max-memory-insns=max-insns

IA-64/VMS Options

-mvms-return-codes -mdebug-main=prefix -mmalloc64

LM32 Options

-mbarrel-shift-enabled -mdivide-enabled -mmultiply-enabled
-msign-extend-enabled -muser-enabled

MS32R /D Options

-m32r2 -m32rx -m32r

-mdebug

-malign-loops -mno-align-loops
-missue-rate=number
-mbranch-cost=number
-mmodel=code-size-model-type
-msdata=sdata-type

-mno-flush-func -mflush-func=name
-mno-flush-trap -mflush-trap=number
-G num

M32C Options

-mcpu=cpu -msim -memregs=number

M680x0 Options

-march=arch -mcpu=cpu -mtune=tune -m68000 -m68020 -m68020-40 -m68020-60 -
m68030 -m68040

-m68060 -mcpul32 -m5200 -m5206e -m528x -m5307 -mb5407

-mcfvde -mbitfield -mno-bitfield -mc68000 -mc68020

Chapter 3: GCC Command Options

-mnobitfield -mrtd -mno-rtd -mdiv -mno-div -mshort
-mno-short -mhard-float -m68881 -msoft-float -mpcrel
-malign-int -mstrict-align -msep-data -mno-sep-data
-mshared-library-id=n -mid-shared-library -mno-id-shared-library
-mxgot -mno-xgot

MCore Options
-mhardlit -mno-hardlit -mdiv -mno-div -mrelax-immediates
-mno-relax-immediates -mwide-bitfields -mno-wide-bitfields
-m4byte-functions -mno-4byte-functions -mcallgraph-data
-mno-callgraph-data -mslow-bytes -mno-slow-bytes -mno-lsim
-mlittle-endian -mbig-endian -m210 -m340 -mstack-increment

MeP Options
-mabsdiff -mall-opts -maverage -mbased=n -mbitops
-mc=n -mclip -mconfig=name -mcop -mcop32 -mcop64 -mivc2
-mdc -mdiv -meb -mel -mio-volatile -ml -mleadz -mm -mminmax
-mmult -mno-opts -mrepeat -ms -msatur -msdram -msim -msimnovec -mtf
-mtiny=n

MicroBlaze Options

-msoft-float -mhard-float -msmall-divides -mcpu=cpu

-mmemcpy -mxl-soft-mul -mxl-soft-div -mxl-barrel-shift
-mxl-pattern-compare -mxl-stack-check -mxl-gp-opt -mno-clearbss
-mxl-multiply-high -mxl-float-convert -mxl-float-sqrt
-mxl-mode-app-model

MIPS Options

-EL -EB -march=arch -mtune=arch

-mipsl -mips2 -mips3 -mips4 -mips32 -mips32r2

-mips64 -mips64r2

-mips16 -mno-mips16 -mflip-mipsi6

-minterlink-mips16 -mno-interlink-mips16

-mabi=abi -mabicalls -mno-abicalls

-mshared -mno-shared -mplt -mno-plt -mxgot -mno-xgot
-mgp32 -mgp64 -mfp32 -mfp64 -mhard-float -msoft-float
-msingle-float -mdouble-float -mdsp -mno-dsp -mdspr2 -mno-dspr2
-mfpu=fpu-type

-msmartmips -mno-smartmips

-mpaired-single -mno-paired-single -mdmx -mno-mdmx
-mips3d -mno-mips3d -mmt -mno-mt -mllsc -mno-llsc
-mlong64 -mlong32 -msym32 -mno-sym32

-Gnum -mlocal-sdata -mno-local-sdata

-mextern-sdata -mno-extern-sdata -mgpopt -mno-gopt
-membedded-data -mno-embedded-data
-muninit-const-in-rodata -mno-uninit-const-in-rodata
-mcode-readable=setting

-msplit-addresses -mno-split-addresses
-mexplicit-relocs -mno-explicit-relocs
-mcheck-zero-division -mno-check-zero-division
-mdivide-traps -mdivide-breaks

-mmemcpy -mno-memcpy -mlong-calls -mno-long-calls
-mmad -mno-mad -mfused-madd -mno-fused-madd -nocpp
-mfix-24k -mno-fix-24k

-mfix-r4000 -mno-fix-r4000 -mfix-r4400 -mno-fix-r4400
-mfix-r10000 -mno-fix-r10000 -mfix-vr4120 -mno-fix-vr4120
-mfix-vr4130 -mno-fix-vr4130 -mfix-sbl -mno-fix-sbil
-mflush-func=func -mno-flush-func

-mbranch-cost=num -mbranch-likely -mno-branch-likely
-mfp-exceptions -mno-fp-exceptions

19

20

Using the GNU Compiler Collection (GCC)

-mvr4130-align -mno-vr4130-align -msynci -mno-synci
-mrelax-pic-calls -mno-relax-pic-calls -mmcount-ra-address

MMIX Options

-mlibfuncs -mno-libfuncs -mepsilon -mno-epsilon -mabi=gnu
-mabi=mmixware -mzero-extend -mknuthdiv -mtoplevel-symbols
-melf -mbranch-predict -mno-branch-predict -mbase-addresses
-mno-base-addresses -msingle-exit -mno-single-exit

MN10300 Options

-mmult-bug -mno-mult-bug
-mno-am33 -mam33 -mam33-2 -mam34
-mtune=cpu-type
-mreturn-pointer-on-do

-mno-crt0 -mrelax -mliw -msetlb

PDP-11 Options

-mfpu -msoft-float -macO -mno-acO -m40 -m45 -m10
-mbcopy -mbcopy-builtin -mint32 -mno-inti16
-mint16 -mno-int32 -mfloat32 -mno-float64
-mfloat64 -mno-float32 -mabshi -mno-abshi
-mbranch-expensive -mbranch-cheap

-munix-asm -mdec-asm

picoChip Options

-mae=ae_type -mvliw-lookahead=N
-msymbol-as-address -mno-inefficient-warnings

PowerPC Options See RS/6000 and PowerPC Options.
RL78 Options

-msim -mmul=none -mmul=gl3 -mmul=rl78

RS/6000 and PowerPC Options

-mcpu=cpu-type

-mtune=cpu-type

-mcmodel=code-model

-mpower -mno-power -mpower2 -mno-power2

-mpowerpc -mpowerpc64 -mno-powerpc

-maltivec -mno-altivec

-mpowerpc-gpopt -mno-powerpc-gpopt

-mpowerpc-gfxopt -mno-powerpc-gfxopt

-mmfcrf -mno-mfcrf -mpopcntb -mno-popcntb -mpopcntd -mno-popcntd
-mfprnd -mno-fprnd

-mcmpb -mno-cmpb -mmfpgpr -mno-mfpgpr -mhard-dfp -mno-hard-dfp
-mnew-mnemonics -mold-mnemonics

-mfull-toc -mminimal-toc -mno-fp-in-toc -mno-sum-in-toc
-m64 -m32 -mxl-compat -mno-xl-compat -mpe

-malign-power -malign-natural

-msoft-float -mhard-float -mmultiple -mno-multiple
-msingle-float -mdouble-float -msimple-fpu

-mstring -mno-string -mupdate -mno-update
-mavoid-indexed-addresses -mno-avoid-indexed-addresses
-mfused-madd -mno-fused-madd -mbit-align -mno-bit-align
-mstrict-align -mno-strict-align -mrelocatable
-mno-relocatable -mrelocatable-lib -mno-relocatable-1ib
-mtoc -mno-toc -mlittle -mlittle-endian -mbig -mbig-endian
-mdynamic-no-pic -maltivec -mswdiv -msingle-pic-base
-mprioritize-restricted-insns=priority
-msched-costly-dep=dependence_type

Chapter 3: GCC Command Options

-minsert-sched-nops=scheme

-mcall-sysv -mcall-netbsd
-maix-struct-return -msvr4-struct-return
-mabi=abi-type -msecure-plt -mbss-plt
-mblock-move-inline-limit=num

-misel -mno-isel

-misel=yes -misel=no

-mspe -mno-spe

-mspe=yes -mspe=no

-mpaired

-mgen-cell-microcode -mwarn-cell-microcode
-mvrsave -mno-vrsave

-mmulhw -mno-mulhw

-mdlmzb -mno-dlmzb

21

-mfloat-gprs=yes -mfloat-gprs=no -mfloat-gprs=single -mfloat-gprs=double

-mprototype -mno-prototype

-msim -mmvme -mads -myellowknife -memb -msdata

-msdata=opt -mvxworks -G num -pthread

-mrecip -mrecip=opt -mno-recip -mrecip-precision
-mno-recip-precision

-mveclibabi=type -mfriz -mno-friz
-mpointers-to-nested-functions -mno-pointers-to-nested-functions
-msave-toc-indirect -mno-save-toc-indirect

RX Options

S/390

-m64bit-doubles -m32bit-doubles -fpu -nofpu

-mcpu=

-mbig-endian-data -mlittle-endian-data

-msmall-data

-msim -mno-sim

-mas100-syntax -mno-as100-syntax

-mrelax

-mmax-constant-size=

-mint-register=

-mpid

-msave-acc-in-interrupts

and zSeries Options

-mtune=cpu-type -march=cpu-type

-mhard-float -msoft-float -mhard-dfp -mno-hard-dfp
-mlong-double-64 -mlong-double-128

-mbackchain -mno-backchain -mpacked-stack -mno-packed-stack
-msmall-exec -mno-small-exec -mmvcle -mno-mvcle

-m64 -m31 -mdebug -mno-debug -mesa -mzarch

-mtpf-trace -mno-tpf-trace -mfused-madd -mno-fused-madd
-mwvarn-framesize -mwarn-dynamicstack -mstack-size -mstack-guard

Score Options

-meb -mel

-mnhwloop

-muls

-mmac

-mscoreb -mscorebu -mscore7 -mscore7d

SH Options

-ml -m2 -m2e

-m2a-nofpu -m2a-single-only -m2a-single -m2a

-m3 -m3e

-m4-nofpu -m4-single-only -mé4-single -mé
-m4a-nofpu -mé4a-single-only -m4a-single -mda -m4al

22

Using the GNU Compiler Collection (GCC)

-mb-64media -m5-64media-nofpu

-m5-32media -m5-32media-nofpu

-mb-compact -mbS-compact-nofpu

-mb -ml -mdalign -mrelax

-mbigtable -mfmovd -mhitachi -mrenesas -mno-renesas -mnomacsave
-mieee -mno-ieee -mbitops -misize -minline-ic_invalidate -mpadstruct
-mspace -mprefergot -musermode -multcost=number -mdiv=strategy
-mdivsi3_libfunc=name -mfixed-range=register-range

-madjust-unroll -mindexed-addressing -mgettrcost=number -mpt-fixed
-maccumulate-outgoing-args -minvalid-symbols -msoft-atomic
-mbranch-cost=num -mcbranchdi -mcmpeqdi -mfused-madd -mpretend-cmove

Solaris 2 Options
-mimpure-text -mno-impure-text
-pthreads -pthread

SPARC Options
-mcpu=cpu-type
-mtune=cpu-type
-mcmodel=code-model
-mmemory-model=mem-model
-m32 -m64 -mapp-regs -mno-app-regs
-mfaster-structs -mno-faster-structs -mflat -mno-flat
-mfpu -mno-fpu -mhard-float -msoft-float
-mhard-quad-float -msoft-quad-float
-mstack-bias -mno-stack-bias
-munaligned-doubles -mno-unaligned-doubles
-mv8plus -mno-v8plus -mvis -mno-vis
-mvis2 -mno-vis2 -mvis3 -mno-vis3
-mfmaf -mno-fmaf -mpopc -mno-popc
-mfix-at697f

SPU Options

-mwarn-reloc -merror-reloc

-msafe-dma -munsafe-dma

-mbranch-hints

-msmall-mem -mlarge-mem -mstdmain
-mfixed-range=register-range

-mea32 -mea64

-maddress-space-conversion -mno-address-space-conversion
-mcache-size=cache-size

-matomic-updates -mno-atomic-updates

System V Options

-Qy -Qn -YP,paths -Ym,dir
TILE-Gx Options

-mcpu=cpu -m32 -m64
TILEPro Options

-mcpu=cpu -m32
V850 Options

-mlong-calls -mno-long-calls -mep -mno-ep
-mprolog-function -mno-prolog-function -mspace
-mtda=n -msda=n -mzda=n

-mapp-regs -mno-app-regs

-mdisable-callt -mno-disable-callt

-mv850e2v3

-mv850e2

Chapter 3: GCC Command Options 23

-mv850el -mv850es
-mv850e
-mv850 -mbig-switch

VAX Options
-mg -mgnu —munix
VaeWorks Options

-mrtp -non-static -Bstatic -Bdynamic
-Xbind-lazy -Xbind-now

286-64 Options See 1386 and x86-64 Options.
Xstormyl16 Options

—msim
Xtensa Options

-mconst1l6 -mno-constl16

-mfused-madd -mno-fused-madd

-mforce-no-pic

-mserialize-volatile -mno-serialize-volatile
-mtext-section-literals -mno-text-section-literals
-mtarget-align -mno-target-align

-mlongcalls -mno-longcalls

zSeries Options See S/390 and zSeries Options.

Code Generation Options
See Section 3.18 [Options for Code Generation Conventions|, page 288.

-fcall-saved-reg -fcall-used-reg

-ffixed-reg -fexceptions

-fnon-call-exceptions -funwind-tables
-fasynchronous-unwind-tables

-finhibit-size-directive -finstrument-functions
-finstrument-functions-exclude-function-list=sym,sym, ...
—finstrument-functions-exclude-file-list=file,file,...
-fno-common -fno-ident

-fpcc-struct-return -fpic -fPIC -fpie -fPIE
-fno-jump-tables

-frecord-gcc-switches

-freg-struct-return -fshort-enums

-fshort-double -fshort-wchar

-fverbose-asm -fpack-struct[=n] -fstack-check
-fstack-limit-register=reg -fstack-limit-symbol=sym
-fno-stack-limit -fsplit-stack

-fleading-underscore -ftls-model=model

-ftrapv -fwrapv -fbounds-check

-fvisibility -fstrict-volatile-bitfields

3.2 Options Controlling the Kind of Output

Compilation can involve up to four stages: preprocessing, compilation proper, assembly
and linking, always in that order. GCC is capable of preprocessing and compiling several
files either into several assembler input files, or into one assembler input file; then each
assembler input file produces an object file, and linking combines all the object files (those
newly compiled, and those specified as input) into an executable file.

For any given input file, the file name suffix determines what kind of compilation is done:

file.c C source code that must be preprocessed.

24

file.
file.
file.

file.

file.
file.

file.
file.

file.
file.
file.
-CpPpP
file.
file.
file.

file

file.
file.

file.

file.
file.
.hp
file.
file.
file.
file.
file.

file

file.
file.
file.

file.
file.
file.
file.
file.

ii

mi

mii

ccC

cp
CXX

CPP
cH++

mii

hh

hxx

hpp
HPP
h++

tcc

for
ftn

FOR
frp
FPP
FTN

Using the GNU Compiler Collection (GCC)

C source code that should not be preprocessed.
C++ source code that should not be preprocessed.

Objective-C source code. Note that you must link with the ‘1ibobjc’ library
to make an Objective-C program work.

Objective-C source code that should not be preprocessed.

Objective-C++ source code. Note that you must link with the ‘1ibobjc’ library
to make an Objective-C++ program work. Note that ‘.M refers to a literal
capital M.

Objective-C++ source code that should not be preprocessed.

C, C++, Objective-C or Objective-C++ header file to be turned into a precom-
piled header (default), or C, C++ header file to be turned into an Ada spec (via
the ‘~fdump-ada-spec’ switch).

C++ source code that must be preprocessed. Note that in ‘.cxx’, the last two
letters must both be literally ‘x’. Likewise, ‘.C’ refers to a literal capital C.

Objective-C++ source code that must be preprocessed.

Objective-C++ source code that should not be preprocessed.

C++ header file to be turned into a precompiled header or Ada spec.

Fixed form Fortran source code that should not be preprocessed.

Fixed form Fortran source code that must be preprocessed (with the traditional
preprocessor).

Chapter 3:

file.
file.
file.
file.

file.
file.
file.
file.

file.
file.

file.

file.

file.
file.

other

£90
£95
f£03
£08

F90
Fo5
FO3
FO8

go
ads

adb

S

S
sX

GCC Command Options 25

Free form Fortran source code that should not be preprocessed.

Free form Fortran source code that must be preprocessed (with the traditional
preprocessor).

Go source code.

Ada source code file that contains a library unit declaration (a declaration of a
package, subprogram, or generic, or a generic instantiation), or a library unit
renaming declaration (a package, generic, or subprogram renaming declaration).
Such files are also called specs.

Ada source code file containing a library unit body (a subprogram or package
body). Such files are also called bodies.

Assembler code.

Assembler code that must be preprocessed.

An object file to be fed straight into linking. Any file name with no recognized
suffix is treated this way.

You can specify the input language explicitly with the ‘-x’ option:

-x language

—X none

Specify explicitly the language for the following input files (rather than letting
the compiler choose a default based on the file name suffix). This option applies
to all following input files until the next ‘-x’ option. Possible values for language
are:

¢ c-header cpp-output

c++ c++-header c++-cpp-output

objective-c objective-c-header objective-c-cpp-output

objective-c++ objective-c++-header objective-c++-cpp-output

assembler assembler-with-cpp

ada

£77 £77-cpp-input £95 f95-cpp-input

go

java

Turn off any specification of a language, so that subsequent files are handled

according to their file name suffixes (as they are if ‘-x’ has not been used at
all).

-pass-exit-codes

Normally the gcc program will exit with the code of 1 if any phase of the
compiler returns a non-success return code. If you specify ‘-pass-exit-codes’,
the gcc program will instead return with numerically highest error produced by
any phase that returned an error indication. The C, C++, and Fortran frontends
return 4, if an internal compiler error is encountered.

26

Using the GNU Compiler Collection (GCC)

If you only want some of the stages of compilation, you can use ‘-x’ (or filename suffixes)

to tell gcc where to start, and one of the options

¢

-c’, *=8’, or ‘-E’ to say where gcc is to

stop. Note that some combinations (for example, ‘-x cpp-output -E’) instruct gcc to do
nothing at all.

-C

-o file

—###

-pipe

--help

Compile or assemble the source files, but do not link. The linking stage simply
is not done. The ultimate output is in the form of an object file for each source
file.

By default, the object file name for a source file is made by replacing the suffix

3 7 ¢ L 4

.c’y .17 fus’) ete., with fLo’.

Unrecognized input files, not requiring compilation or assembly, are ignored.

Stop after the stage of compilation proper; do not assemble. The output is in
the form of an assembler code file for each non-assembler input file specified.
By default, the assembler file name for a source file is made by replacing the

suffix <.¢’, ‘.17, etc., with ‘.s’.

Input files that don’t require compilation are ignored.

Stop after the preprocessing stage; do not run the compiler proper. The output
is in the form of preprocessed source code, which is sent to the standard output.

Input files that don’t require preprocessing are ignored.

Place output in file file. This applies regardless to whatever sort of output is
being produced, whether it be an executable file, an object file, an assembler
file or preprocessed C code.

If ‘=0’ is not specified, the default is to put an executable file in ‘a.out’, the
object file for ‘source.suffix’ in ‘source.o’, its assembler file in ‘source.s’, a
precompiled header file in ‘source.suffix.gch’, and all preprocessed C source
on standard output.

Print (on standard error output) the commands executed to run the stages of
compilation. Also print the version number of the compiler driver program and
of the preprocessor and the compiler proper.

Like ‘-v’ except the commands are not executed and arguments are quoted
unless they contain only alphanumeric characters or ./-_. This is useful for
shell scripts to capture the driver-generated command lines.

Use pipes rather than temporary files for communication between the various
stages of compilation. This fails to work on some systems where the assembler
is unable to read from a pipe; but the GNU assembler has no trouble.

Print (on the standard output) a description of the command-line options un-
derstood by gcc. If the ‘=v’ option is also specified then ‘--help’ will also be
passed on to the various processes invoked by gcc, so that they can display
the command-line options they accept. If the ‘-Wextra’ option has also been
specified (prior to the ‘-=help’ option), then command-line options that have
no documentation associated with them will also be displayed.

Chapter 3: GCC Command Options 27

-—target-help
Print (on the standard output) a description of target-specific command-line
options for each tool. For some targets extra target-specific information may
also be printed.

--help={class|["|qualifier}|,...]
Print (on the standard output) a description of the command-line options un-
derstood by the compiler that fit into all specified classes and qualifiers. These
are the supported classes:

‘optimizers’
This will display all of the optimization options supported by the
compiler.

‘warnings’
This will display all of the options controlling warning messages
produced by the compiler.

‘target’ This will display target-specific options. Unlike the
‘-—target-help’ option however, target-specific options of the
linker and assembler will not be displayed. This is because those
tools do not currently support the extended ‘--help=" syntax.

‘params’ This will display the values recognized by the ‘~-param’ option.

language This will display the options supported for language, where lan-
guage is the name of one of the languages supported in this version
of GCC.

‘common’ This will display the options that are common to all languages.
These are the supported qualifiers:

‘undocumented’
Display only those options that are undocumented.

‘joined’ Display options taking an argument that appears after an equal sign
in the same continuous piece of text, such as: ‘--help=target’.

‘separate’
Display options taking an argument that appears as a separate word
following the original option, such as: ‘-o output-file’.

Thus for example to display all the undocumented target-specific switches sup-
ported by the compiler the following can be used:

--help=target,undocumented

)

The sense of a qualifier can be inverted by prefixing it with the ‘*’ character,

so for example to display all binary warning options (i.e., ones that are either

on or off and that do not take an argument) that have a description, use:
--help=warnings,~joined, “undocumented

The argument to ‘--help="should not consist solely of inverted qualifiers.

Combining several classes is possible, although this usually restricts the output
by so much that there is nothing to display. One case where it does work

28

Using the GNU Compiler Collection (GCC)

however is when one of the classes is target. So for example to display all the
target-specific optimization options the following can be used:

--help=target,optimizers

The ‘--help=’ option can be repeated on the command line. Each successive
use will display its requested class of options, skipping those that have already
been displayed.

If the ‘-Q’ option appears on the command line before the ‘-~help=" option, then
the descriptive text displayed by ‘--help=’is changed. Instead of describing
the displayed options, an indication is given as to whether the option is enabled,
disabled or set to a specific value (assuming that the compiler knows this at the
point where the ‘-=help=" option is used).

Here is a truncated example from the ARM port of gee:
% gcc -Q -mabi=2 --help=target -c
The following options are target specific:

-mabi= 2
-mabort-on-noreturn [disabled]
-mapcs [disabled]

The output is sensitive to the effects of previous command-line options, so for
example it is possible to find out which optimizations are enabled at ‘-02’ by
using:

-Q -02 --help=optimizers
Alternatively you can discover which binary optimizations are enabled by ‘~03’
by using:

gcc —c¢ -Q -03 --help=optimizers > /tmp/03-opts

gcc -c¢ -Q -02 --help=optimizers > /tmp/02-opts

diff /tmp/02-opts /tmp/03-opts | grep enabled

-no-canonical-prefixes

—--version

-wrapper

Do not expand any symbolic links, resolve references to ‘/../” or ‘/./’, or make
the path absolute when generating a relative prefix.

Display the version number and copyrights of the invoked GCC.

Invoke all subcommands under a wrapper program. The name of the wrapper
program and its parameters are passed as a comma separated list.

gcc —-c¢ t.c -wrapper gdb,--args
This will invoke all subprograms of gcc under ‘gdb --args’, thus the invocation
of ccl will be ‘gdb -—args ccl ...".

-fplugin=name.so

Load the plugin code in file name.so, assumed to be a shared object to
be dlopen’d by the compiler. The base name of the shared object file
is used to identify the plugin for the purposes of argument parsing (See
‘~fplugin-arg-name-key=value’ below). Each plugin should define the
callback functions specified in the Plugins API.

-fplugin-arg-name-key=value

Define an argument called key with a value of value for the plugin called name.

Chapter 3: GCC Command Options 29

-fdump-ada-spec[-slim]
For C and C++ source and include files, generate corresponding Ada specs. See
Section “Generating Ada Bindings for C and C++ headers” in GNAT User’s
Guide, which provides detailed documentation on this feature.

-fdump-go-spec=file
For input files in any language, generate corresponding Go declarations in file.
This generates Go const, type, var, and func declarations which may be
a useful way to start writing a Go interface to code written in some other
language.

@file Read command-line options from file. The options read are inserted in place
of the original @file option. If file does not exist, or cannot be read, then the
option will be treated literally, and not removed.

Options in file are separated by whitespace. A whitespace character may be
included in an option by surrounding the entire option in either single or double
quotes. Any character (including a backslash) may be included by prefixing the
character to be included with a backslash. The file may itself contain additional
@file options; any such options will be processed recursively.

3.3 Compiling C++ Programs

)

C++ source files conventionally use one of the suffixes ‘.C’, ‘.cc’, ‘.cpp’, ‘.CPP’, ‘.c++’,
‘.cp’, or ‘.cxx’; C++ header files often use ‘.hh’, ‘.hpp’, ‘.H’, or (for shared template code)
‘.tcc’; and preprocessed C++ files use the suffix ‘.ii’. GCC recognizes files with these
names and compiles them as C++ programs even if you call the compiler the same way as
for compiling C programs (usually with the name gcc).

However, the use of gcc does not add the C++ library. g++ is a program that calls GCC
and treats ‘.c’, ‘.h’ and ‘.1’ files as C++ source files instead of C source files unless *
is used, and automatically specifies linking against the C++ library. This program is also
useful when precompiling a C header file with a ‘.h’ extension for use in C++ compilations.
On many systems, g++ is also installed with the name c++.

_X7

When you compile C++ programs, you may specify many of the same command-line
options that you use for compiling programs in any language; or command-line options
meaningful for C and related languages; or options that are meaningful only for C++ pro-
grams. See Section 3.4 [Options Controlling C Dialect|, page 29, for explanations of options
for languages related to C. See Section 3.5 [Options Controlling C++ Dialect], page 35, for
explanations of options that are meaningful only for C++ programs.

3.4 Options Controlling C Dialect

The following options control the dialect of C (or languages derived from C, such as C++,
Objective-C and Objective-C++) that the compiler accepts:

-ansi In C mode, this is equivalent to ‘-std=c90’. In C++ mode, it is equivalent to
‘-std=c++98’.
This turns off certain features of GCC that are incompatible with ISO C90

(when compiling C code), or of standard C++ (when compiling C++ code), such
as the asm and typeof keywords, and predefined macros such as unix and vax

30

-std=

Using the GNU Compiler Collection (GCC)

that identify the type of system you are using. It also enables the undesirable
and rarely used ISO trigraph feature. For the C compiler, it disables recognition
of C++ style ¢//’ comments as well as the inline keyword.

The alternate keywords __asm__, __extension__, __inline__ and __typeof_
_ continue to work despite ‘—~ansi’. You would not want to use them in an ISO
C program, of course, but it is useful to put them in header files that might be
included in compilations done with ‘-ansi’. Alternate predefined macros such
as __unix__ and __vax__ are also available, with or without ‘-~ansi’.

The ‘-ansi’ option does not cause non-ISO programs to be rejected gratu-
itously. For that, ‘-pedantic’ is required in addition to ‘~ansi’. See Section 3.8
[Warning Options]|, page 49.
The macro __STRICT_ANSI__ is predefined when the ‘-ansi’ option is used.
Some header files may notice this macro and refrain from declaring certain
functions or defining certain macros that the ISO standard doesn’t call for; this
is to avoid interfering with any programs that might use these names for other

things.

¢

Functions that would normally be built in but do not have semantics defined
by ISO C (such as alloca and ffs) are not built-in functions when ‘-ansi’ is
used. See Section 6.54 [Other built-in functions provided by GCC], page 438,
for details of the functions affected.

Determine the language standard. See Chapter 2 [Language Standards Sup-
ported by GCC], page 5, for details of these standard versions. This option is
currently only supported when compiling C or C++.

The compiler can accept several base standards, such as ‘c90’ or ‘c++98’, and
GNU dialects of those standards, such as ‘gnu90’ or ‘gnu++98’. By specifying a
base standard, the compiler will accept all programs following that standard and
those using GNU extensions that do not contradict it. For example, ‘-std=c90’
turns off certain features of GCC that are incompatible with ISO C90, such as
the asm and typeof keywords, but not other GNU extensions that do not have
a meaning in ISO C90, such as omitting the middle term of a 7: expression.
On the other hand, by specifying a GNU dialect of a standard, all features the
compiler support are enabled, even when those features change the meaning
of the base standard and some strict-conforming programs may be rejected.
The particular standard is used by ‘-pedantic’ to identify which features are
GNU extensions given that version of the standard. For example ‘~std=gnu90
-pedantic’ would warn about C++ style ‘//’ comments, while ‘-std=gnu99
-pedantic’ would not.

A value for this option must be provided; possible values are

‘c90’

‘c89’

‘1509899:1990’

Support all ISO C90 programs (certain GNU extensions that con-
flict with ISO C90 are disabled). Same as ‘-ansi’ for C code.

‘1809899:199409’
ISO C90 as modified in amendment 1.

Chapter 3: GCC Command Options 31

‘c99’
‘c9x

9y

‘1509899:1999’
‘1509899:199x’

‘cl1t’

‘clx’

ISO C99. Note that this standard is not yet fully supported;
see http://gcc.gnu.org/gcc-4.7/c99status.html for more in-
formation. The names ‘c9x’ and ‘is09899:199x’ are deprecated.

‘1509899:2011°

‘gnu90’
‘gnu89’

‘gnu99’
‘gnu9x’

‘gnull’

‘gnulx’

‘c++98’

‘gnu++98’

‘c++11’

‘gnu++11’

-fgnu89-inline

ISO C11, the 2011 revision of the ISO C standard. Support is
incomplete and experimental. The name ‘c1x’ is deprecated.

GNU dialect of ISO C90 (including some C99 features). This is the
default for C code.

GNU dialect of ISO C99. When ISO C99 is fully implemented in
GCC, this will become the default. The name ‘gnu9x’ is deprecated.

GNU dialect of ISO C11. Support is incomplete and experimental.
The name ‘gnulx’ is deprecated.

The 1998 ISO C++ standard plus amendments. Same as ‘—ansi’
for C++ code.

GNU dialect of ‘-std=c++98’. This is the default for C++ code.

The 2011 ISO C++ standard plus amendments. Support for C++11
is still experimental, and may change in incompatible ways in future
releases.

GNU dialect of ‘-std=c++11’. Support for C++11 is still experi-
mental, and may change in incompatible ways in future releases.

The option ‘~fgnu89-inline’ tells GCC to use the traditional GNU semantics
for inline functions when in C99 mode. See Section 6.39 [An Inline Function
is As Fast As a Macro], page 384. This option is accepted and ignored by
GCC versions 4.1.3 up to but not including 4.3. In GCC versions 4.3 and later
it changes the behavior of GCC in C99 mode. Using this option is roughly
equivalent to adding the gnu_inline function attribute to all inline functions
(see Section 6.30 [Function Attributes], page 336).

The option ‘~fno-gnu89-inline’ explicitly tells GCC to use the C99 semantics
for inline when in C99 or gnu99 mode (i.e., it specifies the default behavior).
This option was first supported in GCC 4.3. This option is not supported in
‘-std=c90’ or ‘-std=gnu90’ mode.

http://gcc.gnu.org/gcc-4.7/c99status.html

32

Using the GNU Compiler Collection (GCC)

The preprocessor macros __GNUC_GNU_INLINE__ and __GNUC_STDC_INLINE__
may be used to check which semantics are in effect for inline functions. See
Section “Common Predefined Macros” in The C Preprocessor.

—aux-info filename

Output to the given filename prototyped declarations for all functions declared
and/or defined in a translation unit, including those in header files. This option
is silently ignored in any language other than C.

Besides declarations, the file indicates, in comments, the origin of each declara-
tion (source file and line), whether the declaration was implicit, prototyped or
unprototyped (‘I’, ‘N’ for new or ‘0’ for old, respectively, in the first character
after the line number and the colon), and whether it came from a declaration
or a definition (‘C’ or ‘F’, respectively, in the following character). In the case
of function definitions, a K&R-style list of arguments followed by their decla-
rations is also provided, inside comments, after the declaration.

-fallow-parameterless-variadic-functions

-fno-asm

Accept variadic functions without named parameters.

Although it is possible to define such a function, this is not very useful as it
is not possible to read the arguments. This is only supported for C as this
construct is allowed by C++.

Do not recognize asm, inline or typeof as a keyword, so that code can use
these words as identifiers. You can use the keywords __asm__, __inline__ and
typeof__ instead. ‘~ansi’ implies ‘~fno-asm’.

In C++, this switch only affects the typeof keyword, since asm and inline
are standard keywords. You may want to use the ‘-fno-gnu-keywords’ flag
instead, which has the same effect. In C99 mode (‘-std=c99’ or ‘-std=gnu99’),
this switch only affects the asm and typeof keywords, since inline is a standard
keyword in ISO C99.

—-fno-builtin
—-fno-builtin-function

Don’t recognize built-in functions that do not begin with ‘__builtin_’ as prefix.
See Section 6.54 [Other built-in functions provided by GCC], page 438, for
details of the functions affected, including those which are not built-in functions
when ‘-ansi’ or ‘-std’ options for strict ISO C conformance are used because
they do not have an ISO standard meaning.

GCC normally generates special code to handle certain built-in functions more
efficiently; for instance, calls to alloca may become single instructions which
adjust the stack directly, and calls to memcpy may become inline copy loops.
The resulting code is often both smaller and faster, but since the function
calls no longer appear as such, you cannot set a breakpoint on those calls,
nor can you change the behavior of the functions by linking with a different
library. In addition, when a function is recognized as a built-in function, GCC
may use information about that function to warn about problems with calls to
that function, or to generate more efficient code, even if the resulting code still
contains calls to that function. For example, warnings are given with ‘~-Wformat’

Chapter 3: GCC Command Options 33

—-fhosted

for bad calls to printf, when printf is built in, and strlen is known not to
modify global memory.

With the ‘~fno-builtin-function’ option only the built-in function function
is disabled. function must not begin with ‘__builtin_’. If a function is named
that is not built-in in this version of GCC, this option is ignored. There is
no corresponding ‘~fbuiltin-function’ option; if you wish to enable built-in
functions selectively when using ‘~fno-builtin’ or ‘~-ffreestanding’, you may
define macros such as:

#define abs(n) __builtin_abs ((n))
#define strcpy(d, s) __builtin_strcpy ((d), (s))

Assert that compilation takes place in a hosted environment. This implies
‘~fbuiltin’. A hosted environment is one in which the entire standard library
is available, and in which main has a return type of int. Examples are nearly
everything except a kernel. This is equivalent to ‘-fno-freestanding’.

-ffreestanding

—-fopenmp

-fgnu-tm

Assert that compilation takes place in a freestanding environment. This implies
‘~fno-builtin’. A freestanding environment is one in which the standard
library may not exist, and program startup may not necessarily be at main. The
most obvious example is an OS kernel. This is equivalent to ‘~fno-hosted’.

See Chapter 2 [Language Standards Supported by GCC], page 5, for details of
freestanding and hosted environments.

Enable handling of OpenMP directives #pragma omp in C/C++ and !$omp
in Fortran. When ‘-fopenmp’ is specified, the compiler generates parallel
code according to the OpenMP Application Program Interface v3.0
http://www.openmp.org/. This option implies ‘-pthread’, and thus is only
supported on targets that have support for ‘-pthread’.

When the option ‘-fgnu-tm’ is specified, the compiler will generate code for
the Linux variant of Intel’s current Transactional Memory ABI specification
document (Revision 1.1, May 6 2009). This is an experimental feature whose
interface may change in future versions of GCC, as the official specification
changes. Please note that not all architectures are supported for this feature.

For more information on GCC’s support for transactional memory, See Section
“The GNU Transactional Memory Library” in GNU Transactional Memory
Library.

Note that the transactional memory feature is not supported with non-call
exceptions (‘-fnon-call-exceptions’).

-fms-extensions

Accept some non-standard constructs used in Microsoft header files.

In C++ code, this allows member names in structures to be similar to previous
types declarations.

typedef int UOW;
struct ABC {
Uow U0W;

http://www.openmp.org/

34

Using the GNU Compiler Collection (GCC)

};
Some cases of unnamed fields in structures and unions are only accepted
with this option. See Section 6.58 [Unnamed struct/union fields within
structs/unions|, page 621, for details.

-fplan9-extensions

-trigraphs

Accept some non-standard constructs used in Plan 9 code.

This enables ‘~fms-extensions’, permits passing pointers to structures with
anonymous fields to functions that expect pointers to elements of the type of
the field, and permits referring to anonymous fields declared using a typedef.
See Section 6.58 [Unnamed struct/union fields within structs/unions|, page 621,
for details. This is only supported for C, not C++.

Support ISO C trigraphs. The ‘-ansi’ option (and ‘-std’ options for strict ISO
C conformance) implies ‘~trigraphs’.

-no-integrated-cpp

Performs a compilation in two passes: preprocessing and compiling. This option
allows a user supplied "ccl", "cclplus", or "cclobj" via the ‘-B’ option. The
user supplied compilation step can then add in an additional preprocessing
step after normal preprocessing but before compiling. The default is to use the
integrated cpp (internal cpp)

The semantics of this option will change if "ccl", "cclplus", and "cclobj" are
merged.

-traditional
-traditional-cpp

Formerly, these options caused GCC to attempt to emulate a pre-standard C
compiler. They are now only supported with the ‘~E’ switch. The preprocessor
continues to support a pre-standard mode. See the GNU CPP manual for
details.

—-fcond-mismatch

Allow conditional expressions with mismatched types in the second and third
arguments. The value of such an expression is void. This option is not supported
for C++.

-flax-vector-conversions

Allow implicit conversions between vectors with differing numbers of elements
and/or incompatible element types. This option should not be used for new
code.

-funsigned-char

Let the type char be unsigned, like unsigned char.

Each kind of machine has a default for what char should be. It is either like
unsigned char by default or like signed char by default.

Ideally, a portable program should always use signed char or unsigned char
when it depends on the signedness of an object. But many programs have been
written to use plain char and expect it to be signed, or expect it to be unsigned,

Chapter 3: GCC Command Options 35

depending on the machines they were written for. This option, and its inverse,
let you make such a program work with the opposite default.

The type char is always a distinct type from each of signed char or unsigned
char, even though its behavior is always just like one of those two.

-fsigned-char
Let the type char be signed, like signed char.

Note that this is equivalent to ‘-fno-unsigned-char’, which is the negative
form of ‘~funsigned-char’. Likewise, the option ‘~fno-signed-char’ is equiv-
alent to ‘-funsigned-char’.

-fsigned-bitfields

-funsigned-bitfields

-fno-signed-bitfields

-fno-unsigned-bitfields
These options control whether a bit-field is signed or unsigned, when the dec-
laration does not use either signed or unsigned. By default, such a bit-field is
signed, because this is consistent: the basic integer types such as int are signed

types.

3.5 Options Controlling C++ Dialect

This section describes the command-line options that are only meaningful for C++ programs;
but you can also use most of the GNU compiler options regardless of what language your
program is in. For example, you might compile a file firstClass.C like this:

g+t+ -g -frepo -0 -c firstClass.C

In this example, only ‘~frepo’ is an option meant only for C++ programs; you can use the
other options with any language supported by GCC.

Here is a list of options that are only for compiling C++ programs:

-fabi-version=n
Use version n of the C++ ABI. Version 2 is the version of the C++ ABI that
first appeared in G++ 3.4. Version 1 is the version of the C++ ABI that first
appeared in G++ 3.2. Version 0 will always be the version that conforms most
closely to the C++ ABI specification. Therefore, the ABI obtained using version
0 will change as ABI bugs are fixed.

The default is version 2.

Version 3 corrects an error in mangling a constant address as a template argu-
ment.

Version 4, which first appeared in G++ 4.5, implements a standard mangling
for vector types.

Version 5, which first appeared in G++ 4.6, corrects the mangling of attribute
const/volatile on function pointer types, decltype of a plain decl, and use of a
function parameter in the declaration of another parameter.

Version 6, which first appeared in G++ 4.7, corrects the promotion behav-
ior of C++11 scoped enums and the mangling of template argument packs,

36 Using the GNU Compiler Collection (GCC)

const/static_cast, prefix ++ and —, and a class scope function used as a tem-
plate argument.

See also ‘-Wabi’.

-fno-access-control
Turn off all access checking. This switch is mainly useful for working around
bugs in the access control code.

—-fcheck-new

Check that the pointer returned by operator new is non-null before attempting
to modify the storage allocated. This check is normally unnecessary because
the C++ standard specifies that operator new will only return 0 if it is declared
‘throw()’, in which case the compiler will always check the return value even
without this option. In all other cases, when operator new has a non-empty
exception specification, memory exhaustion is signalled by throwing std: :bad_
alloc. See also ‘new (nothrow)’.

-fconserve-space
Put uninitialized or run-time-initialized global variables into the common seg-
ment, as C does. This saves space in the executable at the cost of not diagnosing
duplicate definitions. If you compile with this flag and your program mysteri-
ously crashes after main() has completed, you may have an object that is being
destroyed twice because two definitions were merged.

This option is no longer useful on most targets, now that support has been
added for putting variables into BSS without making them common.

-fconstexpr-depth=n
Set the maximum nested evaluation depth for C++11 constexpr functions to
n. A limit is needed to detect endless recursion during constant expression
evaluation. The minimum specified by the standard is 512.

-fdeduce-init-list
Enable deduction of a template type parameter as std::initializer_list from a
brace-enclosed initializer list, i.e.
template <class T> auto forward(T t) -> decltype (realfn (t))

{
return realfn (t);
}
void f()
{
forward({1,2}); // call forward<std::initializer_list<int>>
¥

This deduction was implemented as a possible extension to the originally pro-
posed semantics for the C++11 standard, but was not part of the final standard,
so it is disabled by default. This option is deprecated, and may be removed in
a future version of G++.

-ffriend-injection
Inject friend functions into the enclosing namespace, so that they are visible
outside the scope of the class in which they are declared. Friend functions were

Chapter 3: GCC Command Options 37

documented to work this way in the old Annotated C++ Reference Manual, and
versions of G++ before 4.1 always worked that way. However, in ISO C++ a
friend function that is not declared in an enclosing scope can only be found
using argument dependent lookup. This option causes friends to be injected as
they were in earlier releases.

This option is for compatibility, and may be removed in a future release of G++.

-fno-elide-constructors
The C++ standard allows an implementation to omit creating a temporary that
is only used to initialize another object of the same type. Specifying this option
disables that optimization, and forces G++ to call the copy constructor in all
cases.

-fno-enforce-eh-specs
Don’t generate code to check for violation of exception specifications at run
time. This option violates the C++ standard, but may be useful for reducing
code size in production builds, much like defining ‘NDEBUG’. This does not
give user code permission to throw exceptions in violation of the exception
specifications; the compiler will still optimize based on the specifications, so
throwing an unexpected exception will result in undefined behavior.

-ffor-scope

—-fno-for-scope
If ‘~ffor-scope’ is specified, the scope of variables declared in a for-init-
statement is limited to the ‘for’ loop itself, as specified by the C++ standard.
If ‘“~fno-for-scope’ is specified, the scope of variables declared in a for-init-
statement extends to the end of the enclosing scope, as was the case in old
versions of G++, and other (traditional) implementations of C++.

The default if neither flag is given to follow the standard, but to allow and give
a warning for old-style code that would otherwise be invalid, or have different
behavior.

—-fno-gnu-keywords
Do not recognize typeof as a keyword, so that code can use this word as
an identifier. You can use the keyword __typeof__ instead. ‘-ansi’ implies
‘~fno-gnu-keywords’.

-fno-implicit-templates
Never emit code for non-inline templates that are instantiated implicitly (i.e.
by use); only emit code for explicit instantiations. See Section 7.5 [Template
Instantiation], page 630, for more information.

-fno-implicit-inline-templates
Don’t emit code for implicit instantiations of inline templates, either. The
default is to handle inlines differently so that compiles with and without opti-
mization will need the same set of explicit instantiations.

-fno-implement-inlines
To save space, do not emit out-of-line copies of inline functions controlled by
‘#pragma implementation’. This will cause linker errors if these functions are
not inlined everywhere they are called.

38 Using the GNU Compiler Collection (GCC)

-fms-extensions
Disable pedantic warnings about constructs used in MFC, such as implicit int
and getting a pointer to member function via non-standard syntax.

-fno-nonansi-builtins
Disable built-in declarations of functions that are not mandated by ANSI/ISO
C. These include ffs, alloca, _exit, index, bzero, conjf, and other related
functions.

-fnothrow-opt

Treat a throw() exception specification as though it were a noexcept spec-
ification to reduce or eliminate the text size overhead relative to a function
with no exception specification. If the function has local variables of types
with non-trivial destructors, the exception specification will actually make the
function smaller because the EH cleanups for those variables can be optimized
away. The semantic effect is that an exception thrown out of a function with
such an exception specification will result in a call to terminate rather than
unexpected.

-fno-operator-names
Do not treat the operator name keywords and, bitand, bitor, compl, not, or
and xor as synonyms as keywords.

-fno-optional-diags
Disable diagnostics that the standard says a compiler does not need to issue.
Currently, the only such diagnostic issued by G++ is the one for a name having
multiple meanings within a class.

-fpermissive
Downgrade some diagnostics about nonconformant code from errors to warn-
ings. Thus, using ‘~fpermissive’ will allow some nonconforming code to com-
pile.

-fno-pretty-templates

When an error message refers to a specialization of a function template, the
compiler will normally print the signature of the template followed by the tem-
plate arguments and any typedefs or typenames in the signature (e.g. void £ (T)
[with T = int] rather than void f(int)) so that it’s clear which template is
involved. When an error message refers to a specialization of a class template,
the compiler will omit any template arguments that match the default template
arguments for that template. If either of these behaviors make it harder to un-
derstand the error message rather than easier, using ‘~fno-pretty-templates’
will disable them.

-frepo Enable automatic template instantiation at link time. This option also im-
plies ‘~fno-implicit-templates’. See Section 7.5 [Template Instantiation],
page 630, for more information.

-fno-rtti
Disable generation of information about every class with virtual functions
for use by the C++ run-time type identification features (‘dynamic_cast’

Chapter 3: GCC Command Options 39

-fstats

and ‘typeid’). If you don’t use those parts of the language, you can save
some space by using this flag. Note that exception handling uses the same
information, but it will generate it as needed. The ‘dynamic_cast’ operator
can still be used for casts that do not require run-time type information, i.e.
casts to void * or to unambiguous base classes.

Emit statistics about front-end processing at the end of the compilation. This
information is generally only useful to the G++ development team.

—-fstrict-enums

Allow the compiler to optimize using the assumption that a value of enumerated
type can only be one of the values of the enumeration (as defined in the C++
standard; basically, a value that can be represented in the minimum number
of bits needed to represent all the enumerators). This assumption may not be
valid if the program uses a cast to convert an arbitrary integer value to the
enumerated type.

-ftemplate-depth=n

Set the maximum instantiation depth for template classes to n. A limit on
the template instantiation depth is needed to detect endless recursions during
template class instantiation. ANSI/ISO C++ conforming programs must not
rely on a maximum depth greater than 17 (changed to 1024 in C++11). The
default value is 900, as the compiler can run out of stack space before hitting
1024 in some situations.

—-fno-threadsafe-statics

Do not emit the extra code to use the routines specified in the C++ ABI for
thread-safe initialization of local statics. You can use this option to reduce code
size slightly in code that doesn’t need to be thread-safe.

-fuse-cxa—-atexit

Register destructors for objects with static storage duration with the __cxa_
atexit function rather than the atexit function. This option is required for
fully standards-compliant handling of static destructors, but will only work if
your C library supports __cxa_atexit.

-fno-use-cxa-get-exception-ptr

Don’t use the __cxa_get_exception_ptr runtime routine. This will cause

std: :uncaught_exception to be incorrect, but is necessary if the runtime rou-
tine is not available.

-fvisibility-inlines-hidden

This switch declares that the user does not attempt to compare pointers to inline
functions or methods where the addresses of the two functions were taken in
different shared objects.

The effect of this is that GCC may, effectively, mark inline methods with __
attribute__ ((visibility ("hidden"))) so that they do not appear in the
export table of a DSO and do not require a PLT indirection when used within
the DSO. Enabling this option can have a dramatic effect on load and link
times of a DSO as it massively reduces the size of the dynamic export table
when the library makes heavy use of templates.

40

Using the GNU Compiler Collection (GCC)

The behavior of this switch is not quite the same as marking the methods as
hidden directly, because it does not affect static variables local to the function
or cause the compiler to deduce that the function is defined in only one shared
object.

You may mark a method as having a visibility explicitly to negate the effect of
the switch for that method. For example, if you do want to compare pointers
to a particular inline method, you might mark it as having default visibility.
Marking the enclosing class with explicit visibility will have no effect.

Explicitly instantiated inline methods are unaffected by this option as their link-
age might otherwise cross a shared library boundary. See Section 7.5 [Template
Instantiation], page 630.

-fvisibility-ms-compat

-fno-weak

This flag attempts to use visibility settings to make GCC’s C++ linkage model
compatible with that of Microsoft Visual Studio.

The flag makes these changes to GCC’s linkage model:
1. It sets the default visibility to hidden, like ‘~fvisibility=hidden’.
2. Types, but not their members, are not hidden by default.

3. The One Definition Rule is relaxed for types without explicit visibility
specifications that are defined in more than one different shared object:
those declarations are permitted if they would have been permitted when
this option was not used.

In new code it is better to use ‘~fvisibility=hidden’ and export those classes
that are intended to be externally visible. Unfortunately it is possible for code
to rely, perhaps accidentally, on the Visual Studio behavior.

Among the consequences of these changes are that static data members of the
same type with the same name but defined in different shared objects will
be different, so changing one will not change the other; and that pointers to
function members defined in different shared objects may not compare equal.
When this flag is given, it is a violation of the ODR to define types with the
same name differently.

Do not use weak symbol support, even if it is provided by the linker. By
default, G++ will use weak symbols if they are available. This option exists
only for testing, and should not be used by end-users; it will result in inferior

code and has no benefits. This option may be removed in a future release of
G++.

-nostdinc++

Do not search for header files in the standard directories specific to C++, but do
still search the other standard directories. (This option is used when building
the C++ library.)

In addition, these optimization, warning, and code generation options have meanings only
for C++ programs:

Chapter 3: GCC Command Options 41

-fno-default-inline
Do not assume ‘inline’ for functions defined inside a class scope. See
Section 3.10 [Options That Control Optimization], page 92. Note that these
functions will have linkage like inline functions; they just won’t be inlined by
default.

-Wabi (C, Objective-C, C++ and Objective-C++ only)
Warn when G++ generates code that is probably not compatible with the
vendor-neutral C++ ABI. Although an effort has been made to warn about
all such cases, there are probably some cases that are not warned about, even
though G++ is generating incompatible code. There may also be cases where
warnings are emitted even though the code that is generated will be compatible.

You should rewrite your code to avoid these warnings if you are concerned about
the fact that code generated by G++ may not be binary compatible with code
generated by other compilers.

The known incompatibilities in ‘~fabi-version=2’ (the default) include:

e A template with a non-type template parameter of reference type is man-
gled incorrectly:
extern int N;
template <int &> struct S {};
void n (S<N>) {2}
This is fixed in ‘~fabi-version=3’.
e SIMD vector types declared using __attribute ((vector_size)) are
mangled in a non-standard way that does not allow for overloading of
functions taking vectors of different sizes.

The mangling is changed in ‘~fabi-version=4’.
The known incompatibilities in ‘~fabi-version=1’ include:

e Incorrect handling of tail-padding for bit-fields. G++ may attempt to pack

data into the same byte as a base class. For example:

struct A { virtual void £(); int f1 : 1; };

struct B : public A { int £2 : 1; };
In this case, G++ will place B: : £2 into the same byte asA: :£1; other com-
pilers will not. You can avoid this problem by explicitly padding A so that
its size is a multiple of the byte size on your platform; that will cause G++
and other compilers to layout B identically.

e Incorrect handling of tail-padding for virtual bases. G++ does not use tail

padding when laying out virtual bases. For example:

struct A { virtual void f(); char cl; };

struct B { B(); char c2; };

struct C : public A, public virtual B {};
In this case, G++ will not place B into the tail-padding for A; other compilers
will. You can avoid this problem by explicitly padding A so that its size is
a multiple of its alignment (ignoring virtual base classes); that will cause
G++ and other compilers to layout C identically.

e Incorrect handling of bit-fields with declared widths greater than that of
their underlying types, when the bit-fields appear in a union. For example:

42 Using the GNU Compiler Collection (GCC)

union U { int i : 4096; };

Assuming that an int does not have 4096 bits, G++ will make the union
too small by the number of bits in an int.

e Empty classes can be placed at incorrect offsets. For example:
struct A {};

struct B {
A a;
virtual void f ();

};

struct C : public B, public A {};

G++ will place the A base class of C at a nonzero offset; it should be placed
at offset zero. G++ mistakenly believes that the A data member of B is
already at offset zero.

e Names of template functions whose types involve typename or template
template parameters can be mangled incorrectly.

template <typename Q>
void f(typename Q::X) {}

template <template <typename> class Q>
void f(typename Q<int>::X) {}

Instantiations of these templates may be mangled incorrectly.

It also warns psABI related changes. The known psABI changes at this point
include:

e For SYSV/x86-64, when passing union with long double, it is changed to
pass in memory as specified in psABI. For example:

union U {
long double 1d;
int i;

};
union U will always be passed in memory.

-Wector-dtor-privacy (C++ and Objective-C++ only)
Warn when a class seems unusable because all the constructors or destructors
in that class are private, and it has neither friends nor public static member
functions.

-Wdelete-non-virtual-dtor (C++ and Objective-C++ only)
Warn when ‘delete’ is used to destroy an instance of a class that has virtual
functions and non-virtual destructor. It is unsafe to delete an instance of a
derived class through a pointer to a base class if the base class does not have a
virtual destructor. This warning is enabled by ‘-Wall’.

-Wnarrowing (C++ and Objective-C++ only)
Warn when a narrowing conversion prohibited by C++11 occurs within ‘{ },
e.g.
int i = { 2.2 }; // error: narrowing from double to int

This flag is included in ‘-Wall’ and ‘-Wc++11-compat’.

Chapter 3: GCC Command Options 43

With -std=c++11, ‘-Wno-narrowing’ suppresses the diagnostic required by the
standard. Note that this does not affect the meaning of well-formed code;
narrowing conversions are still considered ill-formed in SFINAE context.

-Wnoexcept (C++ and Objective-C++ only)
Warn when a noexcept-expression evaluates to false because of a call to a func-
tion that does not have a non-throwing exception specification (i.e. ‘throw()’
or ‘noexcept’) but is known by the compiler to never throw an exception.

-Wnon-virtual-dtor (C++ and Objective-C++ only)
Warn when a class has virtual functions and accessible non-virtual destructor, in
which case it would be possible but unsafe to delete an instance of a derived class
through a pointer to the base class. This warning is also enabled if ‘~Weffc++’
is specified.

-Wreorder (C++ and Objective-C++ only)
Warn when the order of member initializers given in the code does not match
the order in which they must be executed. For instance:

struct A {

int i;

int j;

AQO: j (), i (1) {3
};

The compiler will rearrange the member initializers for ‘i’ and ‘j’ to match
the declaration order of the members, emitting a warning to that effect. This
warning is enabled by ‘-Wall’.

The following ‘-W. ..’ options are not affected by ‘-Wall’.

-Weffc++ (C++ and Objective-C++ only)
Warn about violations of the following style guidelines from Scott Meyers’ Ef-
fective C++, Second Edition book:

e Item 11: Define a copy constructor and an assignment operator for classes
with dynamically allocated memory.

e Item 12: Prefer initialization to assignment in constructors.

e Item 14: Make destructors virtual in base classes.

e [tem 15: Have operator= return a reference to *this.

e Item 23: Don’t try to return a reference when you must return an object.
Also warn about violations of the following style guidelines from Scott Meyers’
More Effective C++ book:

e Item 6: Distinguish between prefix and postfix forms of increment and
decrement operators.

e Item 7: Never overload &&, ||, or ,.

When selecting this option, be aware that the standard library headers do not
obey all of these guidelines; use ‘grep -v’ to filter out those warnings.

-Wstrict-null-sentinel (C++ and Objective-C++ only)
Warn also about the use of an uncasted NULL as sentinel. When compiling only
with GCC this is a valid sentinel, as NULL is defined to __null. Although it is

44 Using the GNU Compiler Collection (GCC)

a null pointer constant not a null pointer, it is guaranteed to be of the same
size as a pointer. But this use is not portable across different compilers.

-Wno-non-template-friend (C++ and Objective-C++ only)

Disable warnings when non-templatized friend functions are declared within a
template. Since the advent of explicit template specification support in G++,
if the name of the friend is an unqualified-id (i.e., ‘friend foo(int)’), the
C++ language specification demands that the friend declare or define an ordi-
nary, nontemplate function. (Section 14.5.3). Before G++ implemented explicit
specification, unqualified-ids could be interpreted as a particular specialization
of a templatized function. Because this non-conforming behavior is no longer
the default behavior for G++, ‘-Wnon-template-friend’ allows the compiler to
check existing code for potential trouble spots and is on by default. This new
compiler behavior can be turned off with ‘~-Wno-non-template-friend’, which
keeps the conformant compiler code but disables the helpful warning.

-Wold-style-cast (C++ and Objective-C++ only)
Warn if an old-style (C-style) cast to a mnon-void type is used within
a C++ program. The new-style casts (‘dynamic_cast’, ‘static_cast’,
‘reinterpret_cast’, and ‘const_cast’) are less vulnerable to unintended
effects and much easier to search for.

-Woverloaded-virtual (C++ and Objective-C++ only)
Warn when a function declaration hides virtual functions from a base class. For
example, in:
struct A {
virtual void f£();

};

struct B: public A {
void f(int);
};
the A class version of f is hidden in B, and code like:
B*x b;
b->f(0);

will fail to compile.

-Wno-pmf-conversions (C++ and Objective-C++ only)
Disable the diagnostic for converting a bound pointer to member function to a
plain pointer.

-Wsign-promo (C++ and Objective-C++ only)
Warn when overload resolution chooses a promotion from unsigned or enumer-
ated type to a signed type, over a conversion to an unsigned type of the same
size. Previous versions of G++ would try to preserve unsignedness, but the
standard mandates the current behavior.

struct A {

operator int ();

A& operator = (int);
};

main ()

Chapter 3: GCC Command Options 45

A a,b;
a =b;
}
In this example, G++ will synthesize a default ‘A& operator = (const A%);’,
while cfront will use the user-defined ‘operator =’.

3.6 Options Controlling Objective-C and Objective-C++
Dialects

(NOTE: This manual does not describe the Objective-C and Objective-C++ languages them-
selves. See Chapter 2 [Language Standards Supported by GCC], page 5, for references.)

This section describes the command-line options that are only meaningful for Objective-C
and Objective-C++ programs, but you can also use most of the language-independent GNU
compiler options. For example, you might compile a file some_class.m like this:

gcc -g —fgnu-runtime -0 -c some_class.m

In this example, ‘~fgnu-runtime’ is an option meant only for Objective-C and Objective-
C++ programs; you can use the other options with any language supported by GCC.

Note that since Objective-C is an extension of the C language, Objective-C compila-
tions may also use options specific to the C front-end (e.g., ‘-Wtraditional’). Similarly,
Objective-C++ compilations may use C++-specific options (e.g., ‘~Wabi’).

Here is a list of options that are only for compiling Objective-C and Objective-C++
programs:

-fconstant-string-class=class-name
Use class-name as the name of the class to instantiate for each literal string
specified with the syntax @"...". The default class name is NXConstantString
if the GNU runtime is being used, and NSConstantString if the NeXT runtime
is being used (see below). The ‘~fconstant-cfstrings’ option, if also present,
will override the ‘~-fconstant-string-class’ setting and cause @"..." literals
to be laid out as constant CoreFoundation strings.

-fgnu-runtime
Generate object code compatible with the standard GNU Objective-C runtime.
This is the default for most types of systems.

—-fnext-runtime
Generate output compatible with the NeXT runtime. This is the default for
NeXT-based systems, including Darwin and Mac OS X. The macro __NEXT_
RUNTIME__ is predefined if (and only if) this option is used.

-fno-nil-receivers
Assume that all Objective-C message dispatches ([receiver message:arg]) in
this translation unit ensure that the receiver is not nil. This allows for more
efficient entry points in the runtime to be used. This option is only available in
conjunction with the NeXT runtime and ABI version 0 or 1.

-fobjc-abi-version=n
Use version n of the Objective-C ABI for the selected runtime. This option is
currently supported only for the NeXT runtime. In that case, Version 0 is the

46

Using the GNU Compiler Collection (GCC)

traditional (32-bit) ABI without support for properties and other Objective-
C 2.0 additions. Version 1 is the traditional (32-bit) ABI with support for
properties and other Objective-C 2.0 additions. Version 2 is the modern (64-bit)
ABI. If nothing is specified, the default is Version 0 on 32-bit target machines,
and Version 2 on 64-bit target machines.

-fobjc-call-cxx-cdtors

For each Objective-C class, check if any of its instance variables is a C++ object
with a non-trivial default constructor. If so, synthesize a special - (id) .cxx_
construct instance method which will run non-trivial default constructors on
any such instance variables, in order, and then return self. Similarly, check if
any instance variable is a C++ object with a non-trivial destructor, and if so,
synthesize a special - (void) .cxx_destruct method which will run all such
default destructors, in reverse order.

The - (id) .cxx_construct and - (void) .cxx_destruct methods thusly
generated will only operate on instance variables declared in the current
Objective-C class, and not those inherited from superclasses. It is the
responsibility of the Objective-C runtime to invoke all such methods in an
object’s inheritance hierarchy. The - (id) .cxx_construct methods will be
invoked by the runtime immediately after a new object instance is allocated;
the = (void) .cxx_destruct methods will be invoked immediately before the
runtime deallocates an object instance.

As of this writing, only the NeXT runtime on Mac OS X 10.4 and later has sup-
port for invoking the - (id) .cxx_construct and - (void) .cxx_destruct
methods.

-fobjc-direct-dispatch

Allow fast jumps to the message dispatcher. On Darwin this is accomplished
via the comm page.

-fobjc-exceptions

-fobjc-gc

Enable syntactic support for structured exception handling in Objective-C, sim-
ilar to what is offered by C++ and Java. This option is required to use the
Objective-C keywords @try, @throw, @catch, @finally and @synchronized.
This option is available with both the GNU runtime and the NeXT runtime
(but not available in conjunction with the NeXT runtime on Mac OS X 10.2
and earlier).

Enable garbage collection (GC) in Objective-C and Objective-C++ programs.
This option is only available with the NeXT runtime; the GNU runtime has a
different garbage collection implementation that does not require special com-
piler flags.

-fobjc-nilcheck

For the NeXT runtime with version 2 of the ABI, check for a nil receiver in
method invocations before doing the actual method call. This is the default
and can be disabled using ‘~fno-objc-nilcheck’. Class methods and super
calls are never checked for nil in this way no matter what this flag is set to.

Chapter 3: GCC Command Options 47

Currently this flag does nothing when the GNU runtime, or an older version of
the NeXT runtime ABI, is used.

-fobjc-std=objcl

Conform to the language syntax of Objective-C 1.0, the language recognized by
GCC 4.0. This only affects the Objective-C additions to the C/C++ language;
it does not affect conformance to C/C++ standards, which is controlled by
the separate C/C++ dialect option flags. When this option is used with the
Objective-C or Objective-C++ compiler, any Objective-C syntax that is not
recognized by GCC 4.0 is rejected. This is useful if you need to make sure that
your Objective-C code can be compiled with older versions of GCC.

-freplace-objc-classes

Emit a special marker instructing 1d(1) not to statically link in the resulting
object file, and allow dyld(1) to load it in at run time instead. This is used
in conjunction with the Fix-and-Continue debugging mode, where the object
file in question may be recompiled and dynamically reloaded in the course of
program execution, without the need to restart the program itself. Currently,
Fix-and-Continue functionality is only available in conjunction with the NeXT
runtime on Mac OS X 10.3 and later.

-fzero-link

When compiling for the NeXT runtime, the compiler ordinarily replaces calls to
objc_getClass("...") (when the name of the class is known at compile time)
with static class references that get initialized at load time, which improves run-
time performance. Specifying the ‘~fzero-1link’ flag suppresses this behavior
and causes calls to objc_getClass("...") to be retained. This is useful in
Zero-Link debugging mode, since it allows for individual class implementations
to be modified during program execution. The GNU runtime currently always
retains calls to objc_get_class("...") regardless of command-line options.

-gen-decls
Dump interface declarations for all classes seen in the source file to a file named
‘sourcename.decl’.

-Wassign-intercept (Objective-C and Objective-C++ only)
Warn whenever an Objective-C assignment is being intercepted by the garbage
collector.

-Wno-protocol (Objective-C and Objective-C++ only)
If a class is declared to implement a protocol, a warning is issued for every
method in the protocol that is not implemented by the class. The default
behavior is to issue a warning for every method not explicitly implemented in the
class, even if a method implementation is inherited from the superclass. If you
use the ‘-Wno-protocol’ option, then methods inherited from the superclass
are considered to be implemented, and no warning is issued for them.

-Wselector (Objective-C and Objective-C++ only)
Warn if multiple methods of different types for the same selector are found
during compilation. The check is performed on the list of methods in the
final stage of compilation. Additionally, a check is performed for each selector

48 Using the GNU Compiler Collection (GCC)

appearing in a @selector(...) expression, and a corresponding method for
that selector has been found during compilation. Because these checks scan the
method table only at the end of compilation, these warnings are not produced
if the final stage of compilation is not reached, for example because an error
is found during compilation, or because the ‘~fsyntax-only’ option is being
used.

-Wstrict-selector-match (Objective-C and Objective-C++ only)
Warn if multiple methods with differing argument and/or return types are found
for a given selector when attempting to send a message using this selector to
a receiver of type id or Class. When this flag is off (which is the default
behavior), the compiler will omit such warnings if any differences found are
confined to types that share the same size and alignment.

-Wundeclared-selector (Objective-C and Objective-C++ only)

Warn if a @selector(...) expression referring to an undeclared selector is
found. A selector is considered undeclared if no method with that name has
been declared before the @selector(...) expression, either explicitly in an
@interface or @protocol declaration, or implicitly in an @implementation
section. This option always performs its checks as soon as a @selector(...)
expression is found, while ‘-Wselector’ only performs its checks in the final
stage of compilation. This also enforces the coding style convention that meth-
ods and selectors must be declared before being used.

-print-objc-runtime-info
Generate C header describing the largest structure that is passed by value, if
any.

3.7 Options to Control Diagnostic Messages Formatting

Traditionally, diagnostic messages have been formatted irrespective of the output device’s
aspect (e.g. its width, ...). The options described below can be used to control the diag-
nostic messages formatting algorithm, e.g. how many characters per line, how often source
location information should be reported. Right now, only the C++ front end can honor these
options. However it is expected, in the near future, that the remaining front ends would be
able to digest them correctly.

-fmessage-length=n
Try to format error messages so that they fit on lines of about n characters. The
default is 72 characters for g++ and 0 for the rest of the front ends supported
by GCC. If n is zero, then no line-wrapping will be done; each error message
will appear on a single line.

-fdiagnostics-show-location=once
Only meaningful in line-wrapping mode. Instructs the diagnostic messages re-
porter to emit once source location information; that is, in case the message
is too long to fit on a single physical line and has to be wrapped, the source
location won’t be emitted (as prefix) again, over and over, in subsequent con-
tinuation lines. This is the default behavior.

Chapter 3: GCC Command Options 49

-fdiagnostics-show-location=every-line
Only meaningful in line-wrapping mode. Instructs the diagnostic messages
reporter to emit the same source location information (as prefix) for physical
lines that result from the process of breaking a message which is too long to fit
on a single line.

-fno-diagnostics-show-option
By default, each diagnostic emitted includes text indicating the command-line
option that directly controls the diagnostic (if such an option is known to the
diagnostic machinery). Specifying the ‘~fno-diagnostics-show-option’ flag
suppresses that behavior.

3.8 Options to Request or Suppress Warnings

Warnings are diagnostic messages that report constructions that are not inherently erro-
neous but that are risky or suggest there may have been an error.

The following language-independent options do not enable specific warnings but control
the kinds of diagnostics produced by GCC.

-fsyntax-only
Check the code for syntax errors, but don’t do anything beyond that.

-fmax-errors=n
Limits the maximum number of error messages to n, at which point GCC bails
out rather than attempting to continue processing the source code. If n is 0
(the default), there is no limit on the number of error messages produced. If
‘~Wfatal-errors’ is also specified, then ‘-Wfatal-errors’ takes precedence
over this option.

-w Inhibit all warning messages.
-Werror Make all warnings into errors.

-Werror= Make the specified warning into an error. The specifier for a warning is
appended, for example ‘-Werror=switch’ turns the warnings controlled by
‘~Wswitch’ into errors. This switch takes a negative form, to be used to negate
‘-Werror’ for specific warnings, for example ‘-Wno-error=switch’ makes
‘~Wswitch’ warnings not be errors, even when ‘-Werror’ is in effect.

The warning message for each controllable warning includes the option that
controls the warning. That option can then be used with ‘-Werror=" and
‘~Wno-error=’ as described above. (Printing of the option in the warning mes-
sage can be disabled using the ‘~fno-diagnostics-show-option’ flag.)

Note that specifying ‘-Werror="foo automatically implies ‘-Wfoo. However,
‘~Wno-error="foo does not imply anything.

-Wfatal-errors
This option causes the compiler to abort compilation on the first error occurred
rather than trying to keep going and printing further error messages.

You can request many specific warnings with options beginning ‘-W’, for example
‘~Wimplicit’ to request warnings on implicit declarations. Each of these specific warning

50 Using the GNU Compiler Collection (GCC)

options also has a negative form beginning ‘-Wno-’ to turn off warnings; for example,
‘-Wno-implicit’. This manual lists only one of the two forms, whichever is not the default.
For further, language-specific options also refer to Section 3.5 [C++ Dialect Options],
page 35 and Section 3.6 [Objective-C and Objective-C++ Dialect Options], page 45.

When an unrecognized warning option is requested (e.g., ‘~Wunknown-warning’), GCC
will emit a diagnostic stating that the option is not recognized. However, if the ‘-Wno-’
form is used, the behavior is slightly different: No diagnostic will be produced for
‘~Wno-unknown-warning’ unless other diagnostics are being produced. This allows the use
of new ‘~Wno-’ options with old compilers, but if something goes wrong, the compiler will
warn that an unrecognized option was used.

-pedantic
Issue all the warnings demanded by strict ISO C and ISO C++; reject all pro-
grams that use forbidden extensions, and some other programs that do not
follow ISO C and ISO C++. For ISO C, follows the version of the ISO C stan-
dard specified by any ‘-std’ option used.

Valid ISO C and ISO C++ programs should compile properly with or without
this option (though a rare few will require ‘-ansi’ or a ‘-std’ option specifying
the required version of ISO C). However, without this option, certain GNU
extensions and traditional C and C++ features are supported as well. With this
option, they are rejected.

‘-pedantic’ does not cause warning messages for use of the alternate keywords
whose names begin and end with ‘__’. Pedantic warnings are also disabled in
the expression that follows __extension__. However, only system header files

should use these escape routes; application programs should avoid them. See
Section 6.45 [Alternate Keywords], page 425.

Some users try to use ‘-pedantic’ to check programs for strict ISO C con-
formance. They soon find that it does not do quite what they want: it finds
some non-ISO practices, but not all—only those for which ISO C requires a
diagnostic, and some others for which diagnostics have been added.

A feature to report any failure to conform to ISO C might be useful in some
instances, but would require considerable additional work and would be quite
different from ‘-pedantic’. We don’t have plans to support such a feature in
the near future.

Where the standard specified with ‘-std’ represents a GNU extended dialect
of C, such as ‘gnu90’ or ‘gnu99’; there is a corresponding base standard, the
version of ISO C on which the GNU extended dialect is based. Warnings from
‘-pedantic’ are given where they are required by the base standard. (It would
not make sense for such warnings to be given only for features not in the spec-
ified GNU C dialect, since by definition the GNU dialects of C include all fea-
tures the compiler supports with the given option, and there would be nothing
to warn about.)

-pedantic-errors
Like ‘-pedantic’, except that errors are produced rather than warnings.

-Wall This enables all the warnings about constructions that some users consider
questionable, and that are easy to avoid (or modify to prevent the warning),

Chapter 3: GCC Command Options 51

-Wextra

even in conjunction with macros. This also enables some language-specific
warnings described in Section 3.5 [C++ Dialect Options|, page 35 and Section 3.6
[Objective-C and Objective-C++ Dialect Options], page 45.

‘-Wall’ turns on the following warning flags:

-Waddress

-Warray-bounds (only with ‘-027)

-Wc++11-compat

-Wchar-subscripts

-Wenum-compare (in C/Objc; this is on by default in C++)
-Wimplicit-int (C and Objective-C only)
-Wimplicit-function-declaration (C and Objective-C only)
-Wcomment

-Wformat

-Wmain (only for C/ObjC and unless ‘-ffreestanding’)
-Wmaybe-uninitialized

-Wmissing-braces

-Wnonnull

-Wparentheses

-Wpointer-sign

-Wreorder

-Wreturn-type

-Wsequence-point

-Wsign-compare (only in C++)

-Wstrict-aliasing

-Wstrict-overflow=1

-Wswitch

-Wtrigraphs

-Wuninitialized

-Wunknown-pragmas

-Wunused-function

-Wunused-label

-Wunused-value

-Wunused-variable

-Wvolatile-register-var

Note that some warning flags are not implied by ‘-Wall’. Some of them warn
about constructions that users generally do not consider questionable, but which
occasionally you might wish to check for; others warn about constructions that
are necessary or hard to avoid in some cases, and there is no simple way to mod-
ify the code to suppress the warning. Some of them are enabled by ‘-Wextra’
but many of them must be enabled individually.

This enables some extra warning flags that are not enabled by ‘-Wall’. (This
option used to be called ‘-W’. The older name is still supported, but the newer
name is more descriptive.)

-Wclobbered

-Wempty-body
-Wignored-qualifiers
-Wmissing-field-initializers
-Wmissing-parameter-type (C only)
-Wold-style-declaration (C only)
-Woverride-init

-Wsign-compare

-Wtype-limits

-Wuninitialized

52

Using the GNU Compiler Collection (GCC)

-Wunused-parameter (only with ‘-Wunused’ or ‘-Wall’)
-Wunused-but-set-parameter (only with ‘-Wunused’ or ‘-Wall’)

The option ‘-Wextra’ also prints warning messages for the following cases:
e A pointer is compared against integer zero with ‘<’, ‘<=’ ‘>’ or >=’".
e (C++ only) An enumerator and a non-enumerator both appear in a condi-

tional expression.

o (C++ only) Ambiguous virtual bases.

(C++ only) Subscripting an array that has been declared ‘register’.

e (C++ only) Taking the address of a variable that has been declared
‘register’.

e (C++ only) A base class is not initialized in a derived class’ copy construc-
tor.

-Wchar-subscripts

-Wcomment

Warn if an array subscript has type char. This is a common cause of error,
as programmers often forget that this type is signed on some machines. This
warning is enabled by ‘-Wall’.

Warn whenever a comment-start sequence ‘/*’ appears in a ‘/*’ comment, or
whenever a Backslash-Newline appears in a ‘//’ comment. This warning is
enabled by ‘-Wall’.

-Wno-coverage-mismatch

-Wno-cpp

Warn if feedback profiles do not match when using the ‘~-fprofile-use’ option.
If a source file was changed between ‘~-fprofile-gen’ and ‘~fprofile-use’, the
files with the profile feedback can fail to match the source file and GCC cannot
use the profile feedback information. By default, this warning is enabled and
is treated as an error. ‘-Wno-coverage-mismatch’ can be used to disable the
warning or ‘-Wno-error=coverage-mismatch’ can be used to disable the error.
Disabling the error for this warning can result in poorly optimized code and is
useful only in the case of very minor changes such as bug fixes to an existing
code-base. Completely disabling the warning is not recommended.

(C, Objective-C, C++, Objective-C++ and Fortran only)
Suppress warning messages emitted by #warning directives.

-Wdouble-promotion (C, C++, Objective-C and Objective-C++ only)

Give a warning when a value of type float is implicitly promoted to double.
CPUs with a 32-bit “single-precision” floating-point unit implement float in
hardware, but emulate double in software. On such a machine, doing compu-
tations using double values is much more expensive because of the overhead
required for software emulation.

It is easy to accidentally do computations with double because floating-point
literals are implicitly of type double. For example, in:
float area(float radius)

{

return 3.14159 * radius * radius;

}

Chapter 3: GCC Command Options 53

-Wformat

the compiler will perform the entire computation with double because the
floating-point literal is a double.

Check calls to printf and scanf, etc., to make sure that the arguments supplied
have types appropriate to the format string specified, and that the conversions
specified in the format string make sense. This includes standard functions, and
others specified by format attributes (see Section 6.30 [Function Attributes],
page 336), in the printf, scanf, strftime and strfmon (an X/Open exten-
sion, not in the C standard) families (or other target-specific families). Which
functions are checked without format attributes having been specified depends
on the standard version selected, and such checks of functions without the at-
tribute specified are disabled by ‘-ffreestanding’ or ‘-fno-builtin’.

The formats are checked against the format features supported by GNU libc
version 2.2. These include all ISO C90 and C99 features, as well as features
from the Single Unix Specification and some BSD and GNU extensions. Other
library implementations may not support all these features; GCC does not sup-
port warning about features that go beyond a particular library’s limitations.
However, if ‘-pedantic’ is used with ‘~-Wformat’, warnings will be given about
format features not in the selected standard version (but not for strfmon for-
mats, since those are not in any version of the C standard). See Section 3.4
[Options Controlling C Dialect], page 29.

Since ‘-Wformat’ also checks for null format arguments for several functions,
‘~Wformat’ also implies ‘~Wnonnull’.

‘~Wformat’ is included in ‘-Wall’. For more control over some aspects of
format checking, the options ‘-Wformat-y2k’, ‘-Wno-format-extra-args’,
‘~Wno-format-zero-length’, ‘-Wformat-nonliteral’, ‘-Wformat-security’,
and ‘-Wformat=2’ are available, but are not included in ‘-Wall’.

-Wformat-y2k

If ‘~Wformat’ is specified, also warn about strftime formats that may yield
only a two-digit year.

-Wno-format-contains—nul

If ‘~Wformat’ is specified, do not warn about format strings that contain NUL
bytes.

-Wno-format-extra-args

If ‘~Wformat’ is specified, do not warn about excess arguments to a printf
or scanf format function. The C standard specifies that such arguments are
ignored.

Where the unused arguments lie between used arguments that are specified
with ‘¢’ operand number specifications, normally warnings are still given, since
the implementation could not know what type to pass to va_arg to skip the
unused arguments. However, in the case of scanf formats, this option will
suppress the warning if the unused arguments are all pointers, since the Single
Unix Specification says that such unused arguments are allowed.

54 Using the GNU Compiler Collection (GCC)

-Wno-format-zero-length
If ‘~Wformat’ is specified, do not warn about zero-length formats. The C stan-
dard specifies that zero-length formats are allowed.

-Wformat-nonliteral
If ‘~Wformat’ is specified, also warn if the format string is not a string literal and
so cannot be checked, unless the format function takes its format arguments as
a va_list.

-Wformat-security

If ‘-Wformat’ is specified, also warn about uses of format functions that repre-
sent possible security problems. At present, this warns about calls to printf
and scanf functions where the format string is not a string literal and there
are no format arguments, as in printf (foo);. This may be a security hole
if the format string came from untrusted input and contains ‘%n’. (This is
currently a subset of what ‘~Wformat-nonliteral’ warns about, but in fu-
ture warnings may be added to ‘-Wformat-security’ that are not included in
‘~Wformat-nonliteral’.)

-Wformat=2
Enable ‘-Wformat’ plus format checks not included in ‘-Wformat’. Currently
equivalent to ‘-Wformat -Wformat-nonliteral -Wformat-security
-Wformat-y2k’.

-Wnonnull
Warn about passing a null pointer for arguments marked as requiring a non-null
value by the nonnull function attribute.
‘~Wnonnull’ is included in ‘-Wall’ and ‘-Wformat’. It can be disabled with the
‘~Wno-nonnull’ option.

-Winit-self (C, C++, Objective-C and Objective-C++ only)
Warn about uninitialized variables that are initialized with themselves. Note
this option can only be used with the ‘-Wuninitialized’ option.

For example, GCC will warn about i being uninitialized in the following snippet
only when ‘-Winit-self’ has been specified:

int £()

{
int i = i;
return i;

}
-Wimplicit-int (C and Objective-C only)
Warn when a declaration does not specify a type. This warning is enabled by
‘~Wall’.

-Wimplicit-function-declaration (C and Objective-C only)
Give a warning whenever a function is used before being declared. In C99 mode
(‘-std=c99’ or ‘-std=gnu99’), this warning is enabled by default and it is made
into an error by ‘-pedantic-errors’. This warning is also enabled by ‘-Wall’.
-Wimplicit (C and Objective-C only)
Same as ‘-Wimplicit-int’ and ‘-Wimplicit-function-declaration’. This
warning is enabled by ‘-Wall’.

Chapter 3: GCC Command Options 55

-Wignored-qualifiers (C and C++ only)

-Wmain

Warn if the return type of a function has a type qualifier such as const. For
ISO C such a type qualifier has no effect, since the value returned by a function
is not an lvalue. For C++, the warning is only emitted for scalar types or void.
ISO C prohibits qualified void return types on function definitions, so such
return types always receive a warning even without this option.

This warning is also enabled by ‘-Wextra’.

Warn if the type of ‘main’ is suspicious. ‘main’ should be a function with
external linkage, returning int, taking either zero arguments, two, or three
arguments of appropriate types. This warning is enabled by default in C++ and
is enabled by either ‘-Wall’ or ‘-pedantic’.

-Wmissing-braces

Warn if an aggregate or union initializer is not fully bracketed. In the following
example, the initializer for ‘a’ is not fully bracketed, but that for ‘b’ is fully
bracketed.

int a[2][2]
int b[2][2]

{0,1, 2, 3}
{{o0, 1} {2, 3}1}

This warning is enabled by ‘-Wall’.

-Wmissing-include-dirs (C, C++, Objective-C and Objective-C++ only)

Warn if a user-supplied include directory does not exist.

-Wparentheses

Warn if parentheses are omitted in certain contexts, such as when there is an
assignment in a context where a truth value is expected, or when operators are
nested whose precedence people often get confused about.

Also warn if a comparison like ‘x<=y<=z’ appears; this is equivalent to ‘(x<=y
7?1 : 0) <= z’, which is a different interpretation from that of ordinary math-
ematical notation.

Also warn about constructions where there may be confusion to which if state-
ment an else branch belongs. Here is an example of such a case:
{
if (a)
if (o)
foo O;
else
bar O;
}

In C/C++, every else branch belongs to the innermost possible if statement,
which in this example is if (b). This is often not what the programmer ex-
pected, as illustrated in the above example by indentation the programmer
chose. When there is the potential for this confusion, GCC will issue a warning
when this flag is specified. To eliminate the warning, add explicit braces around
the innermost if statement so there is no way the else could belong to the
enclosing if. The resulting code would look like this:

56

Using the GNU Compiler Collection (GCC)

{
if (a)
{
if (b)
foo ();
else
bar O;
}
}

Also warn for dangerous uses of the 7: with omitted middle operand GNU
extension. When the condition in the 7: operator is a boolean expression the
omitted value will be always 1. Often the user expects it to be a value computed
inside the conditional expression instead.

This warning is enabled by ‘-Wall’.

-Wsequence-point

Warn about code that may have undefined semantics because of violations of
sequence point rules in the C and C++ standards.

The C and C++ standards defines the order in which expressions in a C/C++
program are evaluated in terms of sequence points, which represent a partial
ordering between the execution of parts of the program: those executed before
the sequence point, and those executed after it. These occur after the evalua-
tion of a full expression (one which is not part of a larger expression), after the
evaluation of the first operand of a &&, ||, ? : or , (comma) operator, before a
function is called (but after the evaluation of its arguments and the expression
denoting the called function), and in certain other places. Other than as ex-
pressed by the sequence point rules, the order of evaluation of subexpressions
of an expression is not specified. All these rules describe only a partial order
rather than a total order, since, for example, if two functions are called within
one expression with no sequence point between them, the order in which the
functions are called is not specified. However, the standards committee have
ruled that function calls do not overlap.

It is not specified when between sequence points modifications to the values of
objects take effect. Programs whose behavior depends on this have undefined
behavior; the C and C++ standards specify that “Between the previous and
next sequence point an object shall have its stored value modified at most once
by the evaluation of an expression. Furthermore, the prior value shall be read
only to determine the value to be stored.”. If a program breaks these rules, the
results on any particular implementation are entirely unpredictable.

Examples of code with undefined behavior are a = a++;, a[n] = b[n++] and
ali++] = 1i;. Some more complicated cases are not diagnosed by this option,
and it may give an occasional false positive result, but in general it has been
found fairly effective at detecting this sort of problem in programs.

The standard is worded confusingly, therefore there is some debate over the
precise meaning of the sequence point rules in subtle cases. Links to discussions
of the problem, including proposed formal definitions, may be found on the GCC
readings page, at http://gcc.gnu.org/readings.html.

This warning is enabled by ‘-Wall’ for C and C++.

http://gcc.gnu.org/readings.html

Chapter 3: GCC Command Options 57

-Wreturn-type
Warn whenever a function is defined with a return-type that defaults to int.
Also warn about any return statement with no return-value in a function whose
return-type is not void (falling off the end of the function body is considered
returning without a value), and about a return statement with an expression
in a function whose return-type is void.

For C++, a function without return type always produces a diagnostic message,
even when ‘-Wno-return-type’ is specified. The only exceptions are ‘main’ and
functions defined in system headers.

This warning is enabled by ‘-Wall’.

-Wswitch Warn whenever a switch statement has an index of enumerated type and lacks
a case for one or more of the named codes of that enumeration. (The presence
of a default label prevents this warning.) case labels outside the enumeration
range also provoke warnings when this option is used (even if there is a default
label). This warning is enabled by ‘-Wall’.

-Wswitch-default
Warn whenever a switch statement does not have a default case.

-Wswitch-enum
Warn whenever a switch statement has an index of enumerated type and lacks
a case for one or more of the named codes of that enumeration. case labels
outside the enumeration range also provoke warnings when this option is used.
The only difference between ‘-Wswitch’ and this option is that this option gives
a warning about an omitted enumeration code even if there is a default label.

-Wsync-nand (C and C++ only)
Warn when __sync_fetch_and_nand and __sync_nand_and_fetch built-in

functions are used. These functions changed semantics in GCC 4.4.

-Wtrigraphs
Warn if any trigraphs are encountered that might change the meaning of the
program (trigraphs within comments are not warned about). This warning is
enabled by ‘-Wall’.

-Wunused-but-set-parameter
Warn whenever a function parameter is assigned to, but otherwise unused (aside
from its declaration).

To suppress this warning use the ‘unused’ attribute (see Section 6.36 [Variable
Attributes|, page 369).

This warning is also enabled by ‘-Wunused’ together with ‘~Wextra’.
-Wunused-but-set-variable

Warn whenever a local variable is assigned to, but otherwise unused (aside from
its declaration). This warning is enabled by ‘-Wall’.

To suppress this warning use the ‘unused’ attribute (see Section 6.36 [Variable
Attributes], page 369).

This warning is also enabled by ‘~Wunused’, which is enabled by ‘-Wall’.

58 Using the GNU Compiler Collection (GCC)

-Wunused-function
Warn whenever a static function is declared but not defined or a non-inline
static function is unused. This warning is enabled by ‘-Wall’.

-Wunused-label
Warn whenever a label is declared but not used. This warning is enabled by
‘~Wall’.
To suppress this warning use the ‘unused’ attribute (see Section 6.36 [Variable
Attributes|, page 369).

-Wunused-local-typedefs (C, Objective-C, C++ and Objective-C++ only)
Warn when a typedef locally defined in a function is not used.

-Wunused-parameter
Warn whenever a function parameter is unused aside from its declaration.

To suppress this warning use the ‘unused’ attribute (see Section 6.36 [Variable
Attributes], page 369).

-Wno-unused-result
Do not warn if a caller of a function marked with attribute warn_unused_
result (see Section 6.30 [Function Attributes|, page 336) does not use its return
value. The default is ‘-Wunused-result’.

-Wunused-variable
Warn whenever a local variable or non-constant static variable is unused aside
from its declaration. This warning is enabled by ‘-Wall’.

To suppress this warning use the ‘unused’ attribute (see Section 6.36 [Variable
Attributes|, page 369).

-Wunused-value
Warn whenever a statement computes a result that is explicitly not used. To
suppress this warning cast the unused expression to ‘void’. This includes an
expression-statement or the left-hand side of a comma expression that con-
tains no side effects. For example, an expression such as ‘x[i,j]’ will cause a
warning, while ‘x[(void)i,j]’ will not.

This warning is enabled by ‘-Wall’.

-Wunused All the above ‘~Wunused’ options combined.

In order to get a warning about an unused function parameter, you must either
specify ‘-Wextra -Wunused’ (note that ‘-Wall’ implies ‘-~Wunused’), or sepa-
rately specify ‘-Wunused-parameter’.

-Wuninitialized
Warn if an automatic variable is used without first being initialized or if a
variable may be clobbered by a setjmp call. In C++, warn if a non-static
reference or non-static ‘const’ member appears in a class without constructors.

If you want to warn about code that uses the uninitialized value of the variable
in its own initializer, use the ‘-Winit-self’ option.

These warnings occur for individual uninitialized or clobbered elements of struc-
ture, union or array variables as well as for variables that are uninitialized or

Chapter 3: GCC Command Options 59

clobbered as a whole. They do not occur for variables or elements declared
volatile. Because these warnings depend on optimization, the exact variables
or elements for which there are warnings will depend on the precise optimization
options and version of GCC used.

Note that there may be no warning about a variable that is used only to compute
a value that itself is never used, because such computations may be deleted by
data flow analysis before the warnings are printed.

-Wmaybe-uninitialized
For an automatic variable, if there exists a path from the function entry to
a use of the variable that is initialized, but there exist some other paths the
variable is not initialized, the compiler will emit a warning if it can not prove
the uninitialized paths do not happen at run time. These warnings are made
optional because GCC is not smart enough to see all the reasons why the code
might be correct despite appearing to have an error. Here is one example of
how this can happen:

{
int x;
switch (y)
{
case 1: x
break;
case 2: X
break;
case 3: X

}
foo (x);
}
If the value of y is always 1, 2 or 3, then x is always initialized, but GCC doesn’t
know this. To suppress the warning, the user needs to provide a default case
with assert(0) or similar code.

]
e

]
IS

]
]

This option also warns when a non-volatile automatic variable might be changed
by a call to longjmp. These warnings as well are possible only in optimizing
compilation.

The compiler sees only the calls to setjmp. It cannot know where longjmp will
be called; in fact, a signal handler could call it at any point in the code. As a
result, you may get a warning even when there is in fact no problem because
longjmp cannot in fact be called at the place that would cause a problem.

Some spurious warnings can be avoided if you declare all the functions you
use that never return as noreturn. See Section 6.30 [Function Attributes],
page 336.

This warning is enabled by ‘-Wall’ or ‘-Wextra’.

-Wunknown-pragmas
Warn when a #pragma directive is encountered that is not understood by GCC.
If this command-line option is used, warnings will even be issued for unknown
pragmas in system header files. This is not the case if the warnings were only
enabled by the ‘-Wall’ command-line option.

60 Using the GNU Compiler Collection (GCC)

-Wno-pragmas
Do not warn about misuses of pragmas, such as incorrect parameters, invalid
syntax, or conflicts between pragmas. See also ‘~Wunknown-pragmas’.

-Wstrict-aliasing
This option is only active when ‘~fstrict-aliasing’ is active. It warns about
code that might break the strict aliasing rules that the compiler is using for
optimization. The warning does not catch all cases, but does attempt to
catch the more common pitfalls. It is included in ‘-Wall’. It is equivalent
to ‘-Wstrict-aliasing=3’

-Wstrict-aliasing=n

This option is only active when ‘~fstrict-aliasing’ is active. It warns about
code that might break the strict aliasing rules that the compiler is using for
optimization. Higher levels correspond to higher accuracy (fewer false posi-
tives). Higher levels also correspond to more effort, similar to the way -O works.
‘-Wstrict-aliasing’ is equivalent to ‘-Wstrict-aliasing=n’, with n=3.
Level 1: Most aggressive, quick, least accurate. Possibly useful when higher
levels do not warn but -fstrict-aliasing still breaks the code, as it has very few
false negatives. However, it has many false positives. Warns for all pointer
conversions between possibly incompatible types, even if never dereferenced.
Runs in the front end only.

Level 2: Aggressive, quick, not too precise. May still have many false positives
(not as many as level 1 though), and few false negatives (but possibly more
than level 1). Unlike level 1, it only warns when an address is taken. Warns
about incomplete types. Runs in the front end only.

Level 3 (default for ‘-Wstrict-aliasing’): Should have very few false positives
and few false negatives. Slightly slower than levels 1 or 2 when optimization
is enabled. Takes care of the common pun+dereference pattern in the front
end: *(int*)&some_float. If optimization is enabled, it also runs in the back
end, where it deals with multiple statement cases using flow-sensitive points-to
information. Only warns when the converted pointer is dereferenced. Does not
warn about incomplete types.

-Wstrict-overflow

-Wstrict-overflow=n
This option is only active when ‘~fstrict-overflow’ is active. It warns about
cases where the compiler optimizes based on the assumption that signed over-
flow does not occur. Note that it does not warn about all cases where the code
might overflow: it only warns about cases where the compiler implements some
optimization. Thus this warning depends on the optimization level.

An optimization that assumes that signed overflow does not occur is perfectly
safe if the values of the variables involved are such that overflow never does, in
fact, occur. Therefore this warning can easily give a false positive: a warning
about code that is not actually a problem. To help focus on important issues,
several warning levels are defined. No warnings are issued for the use of unde-
fined signed overflow when estimating how many iterations a loop will require,
in particular when determining whether a loop will be executed at all.

Chapter 3: GCC Command Options 61

-Wstrict-overflow=1
Warn about cases that are both questionable and easy to avoid. For
example: x + 1 > x; with ‘~fstrict-overflow’, the compiler will
simplify this to 1. This level of ‘~-Wstrict-overflow’ is enabled by
‘~Wall’; higher levels are not, and must be explicitly requested.

-Wstrict-overflow=2
Also warn about other cases where a comparison is simplified to
a constant. For example: abs (x) >= 0. This can only be simpli-
fied when ‘~fstrict-overflow’ is in effect, because abs (INT_MIN)
overflows to INT_MIN, which is less than zero. ‘~Wstrict-overflow’
(with no level) is the same as ‘-Wstrict-overflow=2".

-Wstrict-overflow=3
Also warn about other cases where a comparison is simplified. For
example: x + 1 > 1 will be simplified to x > 0.

-Wstrict-overflow=4
Also warn about other simplifications not covered by the above
cases. For example: (x * 10) / 5 will be simplified to x * 2.

-Wstrict-overflow=5
Also warn about cases where the compiler reduces the magnitude of
a constant involved in a comparison. For example: x + 2 > y will
be simplified to x + 1 >=y. This is reported only at the highest
warning level because this simplification applies to many compar-
isons, so this warning level will give a very large number of false
positives.

-Wsuggest-attribute=|pure|const|noreturn]
Warn for cases where adding an attribute may be beneficial. The attributes
currently supported are listed below.

-Wsuggest-attribute=pure

-Wsuggest-attribute=const

-Wsuggest-attribute=noreturn
Warn about functions that might be candidates for attributes pure,
const or noreturn. The compiler only warns for functions visible
in other compilation units or (in the case of pure and const) if
it cannot prove that the function returns normally. A function
returns normally if it doesn’t contain an infinite loop nor returns
abnormally by throwing, calling abort () or trapping. This analysis
requires option ‘-fipa-pure-const’, which is enabled by default at
‘-0’ and higher. Higher optimization levels improve the accuracy
of the analysis.

-Warray-bounds
This option is only active when ‘-ftree-vrp’ is active (default for ‘-02’ and
above). It warns about subscripts to arrays that are always out of bounds. This
warning is enabled by ‘-Wall’.

62 Using the GNU Compiler Collection (GCC)

-Wno-div-by-zero
Do not warn about compile-time integer division by zero. Floating-point divi-
sion by zero is not warned about, as it can be a legitimate way of obtaining
infinities and NaNs.

-Wsystem-headers

Print warning messages for constructs found in system header files. Warnings
from system headers are normally suppressed, on the assumption that they
usually do not indicate real problems and would only make the compiler output
harder to read. Using this command-line option tells GCC to emit warnings
from system headers as if they occurred in user code. However, note that using
‘-Wall’ in conjunction with this option will not warn about unknown pragmas
in system headers—for that, ‘~Wunknown-pragmas’ must also be used.

-Wtrampolines
Warn about trampolines generated for pointers to nested functions.

A trampoline is a small piece of data or code that is created at run time on
the stack when the address of a nested function is taken, and is used to call
the nested function indirectly. For some targets, it is made up of data only and
thus requires no special treatment. But, for most targets, it is made up of code
and thus requires the stack to be made executable in order for the program to
work properly.

-Wfloat-equal
Warn if floating-point values are used in equality comparisons.

The idea behind this is that sometimes it is convenient (for the programmer)
to consider floating-point values as approximations to infinitely precise real
numbers. If you are doing this, then you need to compute (by analyzing the
code, or in some other way) the maximum or likely maximum error that the
computation introduces, and allow for it when performing comparisons (and
when producing output, but that’s a different problem). In particular, instead
of testing for equality, you would check to see whether the two values have
ranges that overlap; and this is done with the relational operators, so equality
comparisons are probably mistaken.

-Wtraditional (C and Objective-C only)
Warn about certain constructs that behave differently in traditional and ISO
C. Also warn about ISO C constructs that have no traditional C equivalent,
and/or problematic constructs that should be avoided.

e Macro parameters that appear within string literals in the macro body. In
traditional C macro replacement takes place within string literals, but does

not in ISO C.

e In traditional C, some preprocessor directives did not exist. Traditional
preprocessors would only consider a line to be a directive if the ‘#’ appeared
in column 1 on the line. Therefore ‘~Wtraditional’ warns about directives
that traditional C understands but would ignore because the ‘#" does not
appear as the first character on the line. It also suggests you hide directives
like ‘#pragma’ not understood by traditional C by indenting them. Some

Chapter 3: GCC Command Options 63

traditional implementations would not recognize ‘#elif’, so it suggests
avoiding it altogether.

e A function-like macro that appears without arguments.
e The unary plus operator.

e The ‘U’ integer constant suffix, or the ‘F’ or ‘L’ floating-point constant
suffixes. (Traditional C does support the ‘L’ suffix on integer constants.)
Note, these suffixes appear in macros defined in the system headers of most
modern systems, e.g. the ‘_MIN’/‘_MAX’ macros in <limits.h>. Use of these
macros in user code might normally lead to spurious warnings, however
GCC’s integrated preprocessor has enough context to avoid warning in
these cases.

e A function declared external in one block and then used after the end of
the block.

e A switch statement has an operand of type long.

e A non-static function declaration follows a static one. This construct
is not accepted by some traditional C compilers.

e The ISO type of an integer constant has a different width or signedness
from its traditional type. This warning is only issued if the base of the
constant is ten. I.e. hexadecimal or octal values, which typically represent
bit patterns, are not warned about.

e Usage of ISO string concatenation is detected.
e Initialization of automatic aggregates.

e Identifier conflicts with labels. Traditional C lacks a separate namespace
for labels.

e Initialization of unions. If the initializer is zero, the warning is omitted.
This is done under the assumption that the zero initializer in user code
appears conditioned on e.g. __STDC__ to avoid missing initializer warnings
and relies on default initialization to zero in the traditional C case.

e Conversions by prototypes between fixed/floating-point values and vice
versa. The absence of these prototypes when compiling with traditional C
would cause serious problems. This is a subset of the possible conversion
warnings, for the full set use ‘-Wtraditional-conversion’.

e Use of ISO C style function definitions. This warning intentionally is not
issued for prototype declarations or variadic functions because these ISO
C features will appear in your code when using libiberty’s traditional C
compatibility macros, PARAMS and VPARAMS. This warning is also bypassed
for nested functions because that feature is already a GCC extension and
thus not relevant to traditional C compatibility.

-Wtraditional-conversion (C and Objective-C only)
Warn if a prototype causes a type conversion that is different from what would
happen to the same argument in the absence of a prototype. This includes
conversions of fixed point to floating and vice versa, and conversions changing
the width or signedness of a fixed-point argument except when the same as the
default promotion.

64

Using the GNU Compiler Collection (GCC)

-Wdeclaration-after-statement (C and Objective-C only)

-Wundef

Warn when a declaration is found after a statement in a block. This construct,
known from C++, was introduced with ISO C99 and is by default allowed in
GCC. It is not supported by ISO C90 and was not supported by GCC versions
before GCC 3.0. See Section 6.29 [Mixed Declarations], page 336.

Warn if an undefined identifier is evaluated in an ‘#if’ directive.

-Wno-endif-labels

-Wshadow

Do not warn whenever an ‘#else’ or an ‘#endif’ are followed by text.

Warn whenever a local variable or type declaration shadows another variable,
parameter, type, or class member (in C++), or whenever a built-in function is
shadowed. Note that in C++, the compiler will not warn if a local variable
shadows a struct/class/enum, but will warn if it shadows an explicit typedef.

-Wlarger-than=Ien

Warn whenever an object of larger than len bytes is defined.

-Wframe-larger-than=Ien

Warn if the size of a function frame is larger than len bytes. The computation
done to determine the stack frame size is approximate and not conservative.
The actual requirements may be somewhat greater than len even if you do not
get a warning. In addition, any space allocated via alloca, variable-length
arrays, or related constructs is not included by the compiler when determining
whether or not to issue a warning.

-Wno-free-nonheap-object

Do not warn when attempting to free an object that was not allocated on the
heap.

-Wstack-usage=len

Warn if the stack usage of a function might be larger than len bytes. The
computation done to determine the stack usage is conservative. Any space
allocated via alloca, variable-length arrays, or related constructs is included
by the compiler when determining whether or not to issue a warning.

The message is in keeping with the output of ‘~fstack-usage’.
e If the stack usage is fully static but exceeds the specified amount, it’s:
warning: stack usage is 1120 bytes
e If the stack usage is (partly) dynamic but bounded, it’s:
warning: stack usage might be 1648 bytes
e If the stack usage is (partly) dynamic and not bounded, it’s:

warning: stack usage might be unbounded

-Wunsafe-loop-optimizations

Warn if the loop cannot be optimized because the compiler could
not assume anything on the bounds of the loop indices. With
‘~funsafe-loop-optimizations’ warn if the compiler made such
assumptions.

Chapter 3: GCC Command Options 65

-Wno-pedantic-ms-format (MinGW targets only)
Disables the warnings about non-ISO printf / scanf format width specifiers
132, 164, and I used on Windows targets depending on the MS runtime, when
you are using the options ‘-Wformat’ and ‘-pedantic’ without gnu-extensions.

-Wpointer-arith
Warn about anything that depends on the “size of” a function type or of void.
GNU C assigns these types a size of 1, for convenience in calculations with void
* pointers and pointers to functions. In C++, warn also when an arithmetic
operation involves NULL. This warning is also enabled by ‘-pedantic’.

-Wtype-limits
Warn if a comparison is always true or always false due to the limited range of
the data type, but do not warn for constant expressions. For example, warn if
an unsigned variable is compared against zero with ‘<’ or ‘>=". This warning is
also enabled by ‘-Wextra’.

-Wbad-function-cast (C and Objective-C only)
Warn whenever a function call is cast to a non-matching type. For example,
warn if int malloc() is cast to anything *.

-We++-compat (C and Objective-C only)
Warn about ISO C constructs that are outside of the common subset of ISO C
and ISO C++, e.g. request for implicit conversion from void * to a pointer to
non-void type.

-We++11-compat (C++ and Objective-C++ only)
Warn about C++ constructs whose meaning differs between ISO C++ 1998 and
ISO C++ 2011, e.g., identifiers in ISO C++ 1998 that are keywords in ISO C++
2011. This warning turns on ‘-Wnarrowing’ and is enabled by ‘-Wall’.

-Wcast-qual
Warn whenever a pointer is cast so as to remove a type qualifier from the target
type. For example, warn if a const char * is cast to an ordinary char *.

Also warn when making a cast that introduces a type qualifier in an unsafe way.
For example, casting char ** to const char *x is unsafe, as in this example:

/* p is char ** value. */
const char **q = (const char *x) p;
/* Assignment of readonly string to const char * is 0K. */

*q = "string";
/* Now charx* pointer points to read-only memory. */
*¥p = ’b’;

-Wcast-align
Warn whenever a pointer is cast such that the required alignment of the target
is increased. For example, warn if a char * is cast to an int * on machines
where integers can only be accessed at two- or four-byte boundaries.

-Wwrite-strings
When compiling C, give string constants the type const char[length] so that
copying the address of one into a non-const char * pointer will get a warning.
These warnings will help you find at compile time code that can try to write

66 Using the GNU Compiler Collection (GCC)

into a string constant, but only if you have been very careful about using const
in declarations and prototypes. Otherwise, it will just be a nuisance. This is
why we did not make ‘-Wall’ request these warnings.

When compiling C++, warn about the deprecated conversion from string literals
to char *. This warning is enabled by default for C++ programs.

-Wclobbered
Warn for variables that might be changed by ‘longjmp’ or ‘vfork’. This warning
is also enabled by ‘-Wextra’.

-Wconversion

Warn for implicit conversions that may alter a value. This includes conversions
between real and integer, like abs (x) when x is double; conversions between
signed and unsigned, like unsigned ui = -1; and conversions to smaller types,
like sqrtf (M_PI). Do not warn for explicit casts like abs ((int) x) and ui
= (unsigned) -1, or if the value is not changed by the conversion like in abs
(2.0). Warnings about conversions between signed and unsigned integers can
be disabled by using ‘~Wno-sign-conversion’.

For C++, also warn for confusing overload resolution for user-defined conver-
sions; and conversions that will never use a type conversion operator: conver-
sions to void, the same type, a base class or a reference to them. Warnings
about conversions between signed and unsigned integers are disabled by default
in C++ unless ‘-Wsign-conversion’ is explicitly enabled.

-Wno-conversion-null (C++ and Objective-C++ only)
Do not warn for conversions between NULL and non-pointer types.
‘~Wconversion-null’ is enabled by default.

-Wzero-as-null-pointer-constant (C++ and Objective-C++ only)
Warn when a literal ’0’ is used as null pointer constant. This can be useful to
facilitate the conversion to nullptr in C++11.

-Wempty-body
Warn if an empty body occurs in an ‘if’, ‘else’ or ‘do while’ statement. This
warning is also enabled by ‘-Wextra’.

-Wenum-compare
Warn about a comparison between values of different enumerated types. In
C++ enumeral mismatches in conditional expressions are also diagnosed and
the warning is enabled by default. In C this warning is enabled by ‘~-Wall’.

-Wjump-misses-init (C, Objective-C only)
Warn if a goto statement or a switch statement jumps forward across the
initialization of a variable, or jumps backward to a label after the variable has
been initialized. This only warns about variables that are initialized when they
are declared. This warning is only supported for C and Objective-C; in C++
this sort of branch is an error in any case.

‘~Wjump-misses-init’ is included in ‘-Wc++-compat’. It can be disabled with
the ‘-Wno-jump-misses-init’ option.

Chapter 3: GCC Command Options 67

-Wsign-compare
Warn when a comparison between signed and unsigned values could produce an
incorrect result when the signed value is converted to unsigned. This warning
is also enabled by ‘-Wextra’; to get the other warnings of ‘-Wextra’ without
this warning, use ‘-Wextra -Wno-sign-compare’.

-Wsign-conversion
Warn for implicit conversions that may change the sign of an integer value, like
assigning a signed integer expression to an unsigned integer variable. An explicit
cast silences the warning. In C, this option is enabled also by ‘-Wconversion’.

-Waddress

Warn about suspicious uses of memory addresses. These include using the
address of a function in a conditional expression, such as void func(void);
if (func), and comparisons against the memory address of a string literal,
such as if (x == "abc"). Such uses typically indicate a programmer error: the
address of a function always evaluates to true, so their use in a conditional
usually indicate that the programmer forgot the parentheses in a function call;
and comparisons against string literals result in unspecified behavior and are
not portable in C, so they usually indicate that the programmer intended to
use strcmp. This warning is enabled by ‘-Wall’.

-Wlogical-op
Warn about suspicious uses of logical operators in expressions. This includes
using logical operators in contexts where a bit-wise operator is likely to be
expected.

-Waggregate-return
Warn if any functions that return structures or unions are defined or called. (In
languages where you can return an array, this also elicits a warning.)

-Wno-attributes
Do not warn if an unexpected __attribute__ is used, such as unrecognized
attributes, function attributes applied to variables, etc. This will not stop
errors for incorrect use of supported attributes.

-Wno-builtin-macro-redefined
Do not warn if certain built-in macros are redefined. This suppresses warn-
ings for redefinition of __TIMESTAMP _TIME__, __DATE__, __FILE and
__BASE_FILE__.

- - ——

-Wstrict-prototypes (C and Objective-C only)
Warn if a function is declared or defined without specifying the argument types.
(An old-style function definition is permitted without a warning if preceded by
a declaration that specifies the argument types.)

-Wold-style-declaration (C and Objective-C only)
Warn for obsolescent usages, according to the C Standard, in a declaration. For
example, warn if storage-class specifiers like static are not the first things in
a declaration. This warning is also enabled by ‘-Wextra’.

68 Using the GNU Compiler Collection (GCC)

-Wold-style-definition (C and Objective-C only)
Warn if an old-style function definition is used. A warning is given even if there
is a previous prototype.

-Wmissing-parameter-type (C and Objective-C only)
A function parameter is declared without a type specifier in K&R-style func-
tions:

void foo(bar) { }

This warning is also enabled by ‘-Wextra’.

-Wmissing-prototypes (C and Objective-C only)
Warn if a global function is defined without a previous prototype declaration.
This warning is issued even if the definition itself provides a prototype. The
aim is to detect global functions that are not declared in header files.

-Wmissing-declarations
Warn if a global function is defined without a previous declaration. Do so even
if the definition itself provides a prototype. Use this option to detect global
functions that are not declared in header files. In C++, no warnings are issued
for function templates, or for inline functions, or for functions in anonymous
namespaces.

-Wmissing-field-initializers

Warn if a structure’s initializer has some fields missing. For example, the fol-
lowing code would cause such a warning, because x.h is implicitly zero:

struct s { int £, g, h; };

struct s x = { 3, 4 };
This option does not warn about designated initializers, so the following mod-
ification would not trigger a warning:

struct s { int £, g, h; };

struct s x = { .f =3, .g=4};
This warning is included in ‘~Wextra’. To get other ‘~Wextra’ warnings without
this one, use ‘-Wextra -Wno-missing-field-initializers’.

-Wmissing-format-attribute

Warn about function pointers that might be candidates for format attributes.
Note these are only possible candidates, not absolute ones. GCC will guess that
function pointers with format attributes that are used in assignment, initial-
ization, parameter passing or return statements should have a corresponding
format attribute in the resulting type. lL.e. the left-hand side of the assignment
or initialization, the type of the parameter variable, or the return type of the
containing function respectively should also have a format attribute to avoid
the warning.

GCC will also warn about function definitions that might be candidates for
format attributes. Again, these are only possible candidates. GCC will guess
that format attributes might be appropriate for any function that calls a func-
tion like vprintf or vscanf, but this might not always be the case, and some
functions for which format attributes are appropriate may not be detected.

Chapter 3: GCC Command Options 69

-Wno-multichar
Do not warn if a multicharacter constant (‘’FO0F’’) is used. Usually they
indicate a typo in the user’s code, as they have implementation-defined values,
and should not be used in portable code.

-Wnormalized=<none|id|nfc|nfkc>

In ISO C and ISO C++, two identifiers are different if they are different sequences
of characters. However, sometimes when characters outside the basic ASCII
character set are used, you can have two different character sequences that
look the same. To avoid confusion, the ISO 10646 standard sets out some
normalization rules which when applied ensure that two sequences that look the
same are turned into the same sequence. GCC can warn you if you are using
identifiers that have not been normalized; this option controls that warning.

There are four levels of warning supported by GCC. The default is
‘-Wnormalized=nfc’, which warns about any identifier that is not in the ISO
10646 “C” normalized form, NFC. NFC is the recommended form for most
uses.

Unfortunately, there are some characters allowed in identifiers by ISO C and
ISO C++ that, when turned into NFC, are not allowed in identifiers. That is,
there’s no way to use these symbols in portable ISO C or C++ and have all
your identifiers in NFC. ‘-Wnormalized=id’ suppresses the warning for these
characters. It is hoped that future versions of the standards involved will correct
this, which is why this option is not the default.

You can switch the warning off for all characters by writing
‘~Wnormalized=none’. You would only want to do this if you were
using some other normalization scheme (like “D”), because otherwise you can
easily create bugs that are literally impossible to see.

Some characters in ISO 10646 have distinct meanings but look identical in some
fonts or display methodologies, especially once formatting has been applied. For
instance \u207F, “SUPERSCRIPT LATIN SMALL LETTER N”, will display
just like a regular n that has been placed in a superscript. ISO 10646 defines the
NFKC normalization scheme to convert all these into a standard form as well,
and GCC will warn if your code is not in NFKC if you use ‘~-Wnormalized=nfkc’.
This warning is comparable to warning about every identifier that contains the
letter O because it might be confused with the digit 0, and so is not the default,
but may be useful as a local coding convention if the programming environment
is unable to be fixed to display these characters distinctly.

-Wno-deprecated
Do not warn about usage of deprecated features. See Section 7.11 [Deprecated
Features|, page 637.

-Wno-deprecated-declarations
Do not warn about uses of functions (see Section 6.30 [Function Attributes],
page 336), variables (see Section 6.36 [Variable Attributes|, page 369), and types
(see Section 6.37 [Type Attributes|, page 378) marked as deprecated by using
the deprecated attribute.

70

Using the GNU Compiler Collection (GCC)

-Wno-overflow

Do not warn about compile-time overflow in constant expressions.

-Woverride-init (C and Objective-C only)

-Wpacked

Warn if an initialized field without side effects is overridden when using desig-
nated initializers (see Section 6.26 [Designated Initializers|, page 333).

This warning is included in ‘-Wextra’. To get other ‘~Wextra’ warnings without
this one, use ‘-Wextra -Wno-override-init’.

Warn if a structure is given the packed attribute, but the packed attribute has
no effect on the layout or size of the structure. Such structures may be mis-
aligned for little benefit. For instance, in this code, the variable f.x in struct
bar will be misaligned even though struct bar does not itself have the packed
attribute:

struct foo {

int x;

char a, b, c, d;
} __attribute__((packed));
struct bar {

char z;

struct foo f;

};

-Wpacked-bitfield-compat

-Wpadded

The 4.1, 4.2 and 4.3 series of GCC ignore the packed attribute on bit-fields
of type char. This has been fixed in GCC 4.4 but the change can lead to
differences in the structure layout. GCC informs you when the offset of such a
field has changed in GCC 4.4. For example there is no longer a 4-bit padding
between field a and b in this structure:

struct foo
{

char a:4;
char b:8;
} __attribute__ ((packed));
This warning is enabled by default. Use ‘-Wno-packed-bitfield-compat’ to
disable this warning.

Warn if padding is included in a structure, either to align an element of the
structure or to align the whole structure. Sometimes when this happens it is
possible to rearrange the fields of the structure to reduce the padding and so
make the structure smaller.

-Wredundant-decls

Warn if anything is declared more than once in the same scope, even in cases
where multiple declaration is valid and changes nothing.

-Wnested-externs (C and Objective-C only)

-Winline

Warn if an extern declaration is encountered within a function.

Warn if a function can not be inlined and it was declared as inline. Even with
this option, the compiler will not warn about failures to inline functions declared
in system headers.

Chapter 3: GCC Command Options 71

The compiler uses a variety of heuristics to determine whether or not to inline a
function. For example, the compiler takes into account the size of the function
being inlined and the amount of inlining that has already been done in the cur-
rent function. Therefore, seemingly insignificant changes in the source program
can cause the warnings produced by ‘~Winline’ to appear or disappear.

-Wno-invalid-offsetof (C++ and Objective-C++ only)

Suppress warnings from applying the ‘offsetof’ macro to a non-POD type.
According to the 1998 ISO C++ standard, applying ‘offsetof’ to a non-POD
type is undefined. In existing C++ implementations, however, ‘offsetof’ typi-
cally gives meaningful results even when applied to certain kinds of non-POD
types. (Such as a simple ‘struct’ that fails to be a POD type only by virtue of
having a constructor.) This flag is for users who are aware that they are writ-
ing nonportable code and who have deliberately chosen to ignore the warning
about it.

The restrictions on ‘offsetof’ may be relaxed in a future version of the C++
standard.

-Wno-int-to-pointer-cast
Suppress warnings from casts to pointer type of an integer of a different
size. In C++, casting to a pointer type of smaller size is an error.
‘Wint-to-pointer-cast’ is enabled by default.

-Wno-pointer-to-int-cast (C and Objective-C only)
Suppress warnings from casts from a pointer to an integer type of a different
size.

-Winvalid-pch
Warn if a precompiled header (see Section 3.20 [Precompiled Headers],
page 299) is found in the search path but can’t be used.

-Wlong-long
Warn if ‘long long’ type is used. This is enabled by either ‘-pedantic’ or
‘~Wtraditional’ in ISO C90 and C++98 modes. To inhibit the warning mes-
sages, use ‘~Wno-long-long’.

3

-Wvariadic-macros
Warn if variadic macros are used in pedantic ISO C90 mode, or the GNU
alternate syntax when in pedantic ISO C99 mode. This is default. To inhibit
the warning messages, use ‘~Wno-variadic-macros’.

-Wvector-operation-performance

Warn if vector operation is not implemented via SIMD capabilities of the ar-
chitecture. Mainly useful for the performance tuning. Vector operation can be
implemented piecewise, which means that the scalar operation is performed
on every vector element; in parallel, which means that the vector operation
is implemented using scalars of wider type, which normally is more performance
efficient; and as a single scalar, which means that vector fits into a scalar
type.

-Wvla Warn if variable length array is used in the code. ‘~Wno-vla’ will prevent the
‘-pedantic’ warning of the variable length array.

72 Using the GNU Compiler Collection (GCC)

-Wvolatile-register-var
Warn if a register variable is declared volatile. The volatile modifier does not
inhibit all optimizations that may eliminate reads and/or writes to register
variables. This warning is enabled by ‘-Wall’.

-Wdisabled-optimization
Warn if a requested optimization pass is disabled. This warning does not gen-
erally indicate that there is anything wrong with your code; it merely indicates
that GCC’s optimizers were unable to handle the code effectively. Often, the
problem is that your code is too big or too complex; GCC will refuse to optimize
programs when the optimization itself is likely to take inordinate amounts of
time.

-Wpointer-sign (C and Objective-C only)
Warn for pointer argument passing or assignment with different signedness.
This option is only supported for C and Objective-C. It is implied by ‘-Wall’
and by ‘-pedantic’, which can be disabled with ‘~-Wno-pointer-sign’.

-Wstack-protector
This option is only active when ‘~fstack-protector’ is active. It warns about
functions that will not be protected against stack smashing.

-Wno-mudflap
Suppress warnings about constructs that cannot be instrumented by
‘~fmudflap’.

-Woverlength-strings
Warn about string constants that are longer than the “minimum maximum”
length specified in the C standard. Modern compilers generally allow string
constants that are much longer than the standard’s minimum limit, but very
portable programs should avoid using longer strings.

The limit applies after string constant concatenation, and does not count the
trailing NUL. In C90, the limit was 509 characters; in C99, it was raised to
4095. C++98 does not specify a normative minimum maximum, so we do not
diagnose overlength strings in C++.

This option is implied by ‘-pedantic’, and can be disabled with
‘-Wno-overlength-strings’.

-Wunsuffixed-float-constants (C and Objective-C only)
GCC will issue a warning for any floating constant that does not have a suffix.
When used together with ‘-Wsystem-headers’ it will warn about such constants
in system header files. This can be useful when preparing code to use with the
FLOAT_CONST_DECIMAL64 pragma from the decimal floating-point extension to
C99.

3.9 Options for Debugging Your Program or GCC
GCC has various special options that are used for debugging either your program or GCC:

-g Produce debugging information in the operating system’s native format (stabs,
COFF, XCOFF, or DWARF 2). GDB can work with this debugging informa-
tion.

Chapter 3: GCC Command Options 73

-ggdb

-gstabs

On most systems that use stabs format, ‘~g’ enables use of extra debugging
information that only GDB can use; this extra information makes debugging
work better in GDB but will probably make other debuggers crash or refuse to
read the program. If you want to control for certain whether to generate the
extra information, use ‘-~gstabs+’, ‘~gstabs’, ‘~gxcoff+’, ‘~gxcoff’, or ‘~gvms’
(see below).

GCC allows you to use ‘=g’ with ‘-=0’. The shortcuts taken by optimized code
may occasionally produce surprising results: some variables you declared may
not exist at all; flow of control may briefly move where you did not expect it;
some statements may not be executed because they compute constant results
or their values were already at hand; some statements may execute in different
places because they were moved out of loops.

Nevertheless it proves possible to debug optimized output. This makes it rea-
sonable to use the optimizer for programs that might have bugs.

The following options are useful when GCC is generated with the capability for
more than one debugging format.

Produce debugging information for use by GDB. This means to use the most
expressive format available (DWARF 2, stabs, or the native format if neither
of those are supported), including GDB extensions if at all possible.

Produce debugging information in stabs format (if that is supported), without
GDB extensions. This is the format used by DBX on most BSD systems.
On MIPS, Alpha and System V Release 4 systems this option produces stabs
debugging output that is not understood by DBX or SDB. On System V Release
4 systems this option requires the GNU assembler.

-feliminate-unused-debug-symbols

Produce debugging information in stabs format (if that is supported), for only
symbols that are actually used.

-femit-class—-debug-always

Instead of emitting debugging information for a C++ class in only one object
file, emit it in all object files using the class. This option should be used
only with debuggers that are unable to handle the way GCC normally emits
debugging information for classes because using this option will increase the
size of debugging information by as much as a factor of two.

-fno-debug-types-section

-gstabs+

By default when using DWARF v4 or higher type DIEs will be put into their own
.debug_types section instead of making them part of the .debug_info section.
It is more efficient to put them in a separate comdat sections since the linker
will then be able to remove duplicates. But not all DWARF consumers support
.debug_types sections yet.

Produce debugging information in stabs format (if that is supported), using
GNU extensions understood only by the GNU debugger (GDB). The use of
these extensions is likely to make other debuggers crash or refuse to read the
program.

74 Using the GNU Compiler Collection (GCC)

-gcoff Produce debugging information in COFF format (if that is supported). This is
the format used by SDB on most System V systems prior to System V Release
4.

-gxcoff Produce debugging information in XCOFF format (if that is supported). This
is the format used by the DBX debugger on IBM RS/6000 systems.

-gxcoff+ Produce debugging information in XCOFF format (if that is supported), using
GNU extensions understood only by the GNU debugger (GDB). The use of
these extensions is likely to make other debuggers crash or refuse to read the
program, and may cause assemblers other than the GNU assembler (GAS) to
fail with an error.

-gdwarf-version
Produce debugging information in DWARF format (if that is supported). This
is the format used by DBX on IRIX 6. The value of version may be either 2, 3
or 4; the default version is 2.

Note that with DWARF version 2 some ports require, and will always use, some
non-conflicting DWARF 3 extensions in the unwind tables.

Version 4 may require GDB 7.0 and ‘-fvar-tracking-assignments’ for max-
imum benefit.

-grecord-gcc-switches
This switch causes the command-line options used to invoke the compiler that
may affect code generation to be appended to the DW_AT _producer attribute
in DWARF debugging information. The options are concatenated with spa-
ces separating them from each other and from the compiler version. See also
‘~frecord-gcc-switches’ for another way of storing compiler options into the
object file.

-gno-record-gcc-switches
Disallow appending command-line options to the DW_AT _producer attribute
in DWARF debugging information. This is the default.

-gstrict-dwarf
Disallow using extensions of later DWARF standard version than selected with
‘~gdwarf-version’. On most targets using non-conflicting DWARF extensions
from later standard versions is allowed.

-gno-strict-dwarf
Allow using extensions of later DWARF standard version than selected with
‘-gdwarf-version’.

-gvms Produce debugging information in VMS debug format (if that is supported).
This is the format used by DEBUG on VMS systems.

Chapter 3: GCC Command Options 75

-glevel

-ggdblevel

-gstabslevel

-gcofflevel

-gxcofflevel

-gvmslevel
Request debugging information and also use level to specify how much infor-
mation. The default level is 2.

Level 0 produces no debug information at all. Thus, ‘-g0’ negates ‘-g’.

Level 1 produces minimal information, enough for making backtraces in parts
of the program that you don’t plan to debug. This includes descriptions of
functions and external variables, but no information about local variables and
no line numbers.

Level 3 includes extra information, such as all the macro definitions present in
the program. Some debuggers support macro expansion when you use ‘-g3’.

‘~gdwarf-2’ does not accept a concatenated debug level, because GCC used
to support an option ‘-gdwarf’ that meant to generate debug information in
version 1 of the DWARF format (which is very different from version 2), and
it would have been too confusing. That debug format is long obsolete, but the
option cannot be changed now. Instead use an additional ‘-glevel’ option to
change the debug level for DWARF.

-gtoggle Turn off generation of debug info, if leaving out this option would have gen-
erated it, or turn it on at level 2 otherwise. The position of this argument in
the command line does not matter, it takes effect after all other options are
processed, and it does so only once, no matter how many times it is given. This
is mainly intended to be used with ‘~fcompare-debug’.

-fdump-final-insns[=file]
Dump the final internal representation (RTL) to file. If the optional argument
is omitted (or if file is .), the name of the dump file will be determined by
appending .gkd to the compilation output file name.

-fcompare-debug[=opts]
If no error occurs during compilation, run the compiler a second time, adding
opts and ‘-fcompare-debug-second’ to the arguments passed to the second
compilation. Dump the final internal representation in both compilations, and
print an error if they differ.

If the equal sign is omitted, the default ‘-gtoggle’ is used.

The environment variable GCC_COMPARE_DEBUG, if defined, non-empty and
nonzero, implicitly enables ‘-fcompare-debug’. If GCC_COMPARE_DEBUG is
defined to a string starting with a dash, then it is used for opts, otherwise the
default ‘-gtoggle’ is used.

‘~fcompare-debug=", with the equal sign but without opts, is equivalent to
‘~fno-compare-debug’, which disables the dumping of the final representation
and the second compilation, preventing even GCC_COMPARE_DEBUG from taking
effect.

76 Using the GNU Compiler Collection (GCC)

To verify full coverage during ‘-fcompare-debug’ testing, set GCC_COMPARE_
DEBUG to say ‘~fcompare-debug-not-overridden’, which GCC will reject as
an invalid option in any actual compilation (rather than preprocessing, as-
sembly or linking). To get just a warning, setting GCC_COMPARE_DEBUG to
‘~w/n-fcompare-debug not overridden’ will do.

-fcompare-debug-second
This option is implicitly passed to the compiler for the second compilation
requested by ‘-fcompare-debug’, along with options to silence warnings, and
omitting other options that would cause side-effect compiler outputs to files or
to the standard output. Dump files and preserved temporary files are renamed
so as to contain the . gk additional extension during the second compilation, to
avoid overwriting those generated by the first.

When this option is passed to the compiler driver, it causes the first compilation
to be skipped, which makes it useful for little other than debugging the compiler
proper.

-feliminate-dwarf2-dups
Compress DWARF2 debugging information by eliminating duplicated infor-
mation about each symbol. This option only makes sense when generating
DWARF2 debugging information with ‘-gdwarf-2’.

-femit-struct-debug-baseonly
Emit debug information for struct-like types only when the base name of the
compilation source file matches the base name of file in which the struct was
defined.

This option substantially reduces the size of debugging information,
but at significant potential loss in type information to the debugger.
See ‘-femit-struct-debug-reduced’ for a less aggressive option. See
‘~femit-struct-debug-detailed’ for more detailed control.

This option works only with DWARF 2.

-femit-struct-debug-reduced
Emit debug information for struct-like types only when the base name of the
compilation source file matches the base name of file in which the type was
defined, unless the struct is a template or defined in a system header.

This option significantly reduces the size of debugging information,
with some potential loss in type information to the debugger. See
‘~femit-struct-debug-baseonly’ for a more aggressive option. See
‘~femit-struct-debug-detailed’ for more detailed control.

This option works only with DWARF 2.

-femit-struct-debug-detailed[=spec-list]
Specify the struct-like types for which the compiler will generate debug infor-
mation. The intent is to reduce duplicate struct debug information between
different object files within the same program.

This option is a detailed version of ‘-femit-struct-debug-reduced’ and
‘~femit-struct-debug-baseonly’, which will serve for most needs.

Chapter 3: GCC Command Options 7

A specification has the syntax

[‘dir:’|‘ind:’][‘ord:’|‘gen:’](‘any’| ‘sys’| ‘base’| ‘none’)

The optional first word limits the specification to structs that are used directly
(‘dir:’) or used indirectly (‘ind:’). A struct type is used directly when it is
the type of a variable, member. Indirect uses arise through pointers to structs.
That is, when use of an incomplete struct would be legal, the use is indirect.
An example is ‘struct one direct; struct two * indirect;’ .

The optional second word limits the specification to ordinary structs (‘ord:’) or
generic structs (‘gen:’). Generic structs are a bit complicated to explain. For
C++, these are non-explicit specializations of template classes, or non-template
classes within the above. Other programming languages have generics, but
‘~femit-struct-debug-detailed’ does not yet implement them.

The third word specifies the source files for those structs for which the compiler
will emit debug information. The values ‘none’ and ‘any’ have the normal
meaning. The value ‘base’ means that the base of name of the file in which
the type declaration appears must match the base of the name of the main
compilation file. In practice, this means that types declared in ‘foo.c’ and
‘foo.h’ will have debug information, but types declared in other header will
not. The value ‘sys’ means those types satisfying ‘base’ or declared in system
or compiler headers.

You may need to experiment to determine the best settings for your application.
The default is ‘~-femit-struct-debug-detailed=all’.
This option works only with DWARF 2.

-fno-merge-debug-strings

Direct the linker to not merge together strings in the debugging information
that are identical in different object files. Merging is not supported by all
assemblers or linkers. Merging decreases the size of the debug information in
the output file at the cost of increasing link processing time. Merging is enabled
by default.

-fdebug-prefix-map=old=new

When compiling files in directory ‘ol1d’, record debugging information describ-
ing them as in ‘new’ instead.

-fno-dwarf2-cfi-asm

P

~pg

Emit DWARF 2 unwind info as compiler generated .eh_frame section instead
of using GAS .cfi_x* directives.

Generate extra code to write profile information suitable for the analysis pro-
gram prof. You must use this option when compiling the source files you want
data about, and you must also use it when linking.

Generate extra code to write profile information suitable for the analysis pro-
gram gprof. You must use this option when compiling the source files you want
data about, and you must also use it when linking.

Makes the compiler print out each function name as it is compiled, and print
some statistics about each pass when it finishes.

78 Using the GNU Compiler Collection (GCC)

-ftime-report
Makes the compiler print some statistics about the time consumed by each pass
when it finishes.

-fmem-report
Makes the compiler print some statistics about permanent memory allocation
when it finishes.

-fpre-ipa-mem-report

-fpost-ipa-mem-report
Makes the compiler print some statistics about permanent memory allocation
before or after interprocedural optimization.

-fstack-usage
Makes the compiler output stack usage information for the program, on a per-
function basis. The filename for the dump is made by appending ‘.su’ to the
auxname. auxname is generated from the name of the output file, if explicitly
specified and it is not an executable, otherwise it is the basename of the source
file. An entry is made up of three fields:

e The name of the function.
e A number of bytes.

e One or more qualifiers: static, dynamic, bounded.

The qualifier static means that the function manipulates the stack statically: a
fixed number of bytes are allocated for the frame on function entry and released
on function exit; no stack adjustments are otherwise made in the function. The
second field is this fixed number of bytes.

The qualifier dynamic means that the function manipulates the stack dynami-
cally: in addition to the static allocation described above, stack adjustments are
made in the body of the function, for example to push/pop arguments around
function calls. If the qualifier bounded is also present, the amount of these ad-
justments is bounded at compile time and the second field is an upper bound of
the total amount of stack used by the function. If it is not present, the amount
of these adjustments is not bounded at compile time and the second field only
represents the bounded part.

-fprofile-arcs

Add code so that program flow arcs are instrumented. During execution the
program records how many times each branch and call is executed and how
many times it is taken or returns. When the compiled program exits it saves
this data to a file called ‘auxname.gcda’ for each source file. The data may be
used for profile-directed optimizations (‘~fbranch-probabilities’), or for test
coverage analysis (‘-ftest-coverage’). Each object file’s auxname is generated
from the name of the output file, if explicitly specified and it is not the final
executable, otherwise it is the basename of the source file. In both cases any
suffix is removed (e.g. ‘foo.gcda’ for input file ‘dir/foo.c’, or ‘dir/foo.gcda’
for output file specified as ‘-0 dir/foo.0’). See Section 10.5 [Cross-profiling],
page 666.

Chapter 3: GCC Command Options 79

--coverage
This option is used to compile and link code instrumented for coverage analysis.
The option is a synonym for ‘~fprofile-arcs’ ‘~ftest-coverage’ (when com-
piling) and ‘~1gcov’ (when linking). See the documentation for those options
for more details.

e Compile the source files with ‘-fprofile-arcs’ plus optimization and
code generation options. For test coverage analysis, use the additional
‘~ftest-coverage’ option. You do not need to profile every source file in
a program.

e Link your object files with ‘~1gcov’ or ‘~fprofile-arcs’ (the latter implies
the former).

e Run the program on a representative workload to generate the arc profile
information. This may be repeated any number of times. You can run
concurrent instances of your program, and provided that the file system
supports locking, the data files will be correctly updated. Also fork calls
are detected and correctly handled (double counting will not happen).

e For profile-directed optimizations, compile the source files again
with the same optimization and code generation options plus
‘~fbranch-probabilities’ (see Section 3.10 [Options that Control
Optimization], page 92).

e For test coverage analysis, use gcov to produce human readable information
from the ‘.gcno’ and ‘.gcda’ files. Refer to the gcov documentation for
further information.

With ‘~fprofile-arcs’, for each function of your program GCC creates a
program flow graph, then finds a spanning tree for the graph. Only arcs that
are not on the spanning tree have to be instrumented: the compiler adds code
to count the number of times that these arcs are executed. When an arc is
the only exit or only entrance to a block, the instrumentation code can be
added to the block; otherwise, a new basic block must be created to hold the
instrumentation code.
-ftest-coverage

Produce a notes file that the gcov code-coverage utility (see Chapter 10 [gcov—
a Test Coverage Program|, page 659) can use to show program coverage. Each
source file’s note file is called ‘auxname.gcno’. Refer to the ‘~fprofile-arcs’
option above for a description of auxname and instructions on how to generate
test coverage data. Coverage data will match the source files more closely, if
you do not optimize.

-fdbg-cnt-1list
Print the name and the counter upper bound for all debug counters.

-fdbg-cnt=counter-value-list
Set the internal debug counter upper bound. counter-value-list is a comma-
separated list of name:value pairs which sets the upper bound of each debug
counter name to value. All debug counters have the initial upper bound of
UINT_MAX, thus dbg_cnt() returns true always unless the upper bound is set

80

Using the GNU Compiler Collection (GCC)

by this option. e.g. With -fdbg-cnt=dce:10,tail_call:0 dbg_cnt(dce) will return
true only for first 10 invocations

-fenable-kind-pass

-fdisable-kind-pass=range-1list
This is a set of debugging options that are used to explicitly disable/enable
optimization passes. For compiler users, regular options for enabling/disabling
passes should be used instead.

-fdisable-ipa-pass Disable ipa pass pass. pass is the pass name. If the same
pass is statically invoked in the compiler multiple times, the pass name
should be appended with a sequential number starting from 1.

-fdisable-rtl-pass

-fdisable-rtl-pass=range-list Disable rtl pass pass. pass is the pass name.
If the same pass is statically invoked in the compiler multiple times, the
pass name should be appended with a sequential number starting from 1.
range-list is a comma seperated list of function ranges or assembler names.
Each range is a number pair seperated by a colon. The range is inclusive
in both ends. If the range is trivial, the number pair can be simplified as
a single number. If the function’s cgraph node’s uid is falling within one
of the specified ranges, the pass is disabled for that function. The uid is
shown in the function header of a dump file, and the pass names can be
dumped by using option ‘-fdump-passes’.

-fdisable-tree-pass

-fdisable-tree-pass=range-list Disable tree pass pass. See ‘-fdisable-rtl’
for the description of option arguments.

-fenable-ipa-pass Enable ipa pass pass. pass is the pass name. If the same
pass is statically invoked in the compiler multiple times, the pass name
should be appended with a sequential number starting from 1.

-fenable-rtl-pass

-fenable-rtl-pass=range-list Enable rtl pass pass. See ‘-fdisable-rtl’ for
option argument description and examples.

-fenable-tree-pass

-fenable-tree-pass=range-list Enable tree pass pass. See ‘-fdisable-rtl’
for the description of option arguments.

disable ccpl for all functioms
-fdisable-tree-ccpl
disable complete unroll for function whose cgraph node uid is 1
-fenable-tree-cunroll=1
disable gcse2 for functions at the following ranges [1,1],
[300,400], and [400,1000]
disable gcse2 for functions foo and foo2
-fdisable-rtl-gcse2=foo,fo02
disable early inlining
-fdisable-tree-einline
disable ipa inlining
-fdisable-ipa-inline
enable tree full unroll

H*

Chapter 3: GCC Command Options 81

-fenable-tree-unroll

-dletters

—-fdump-rtl-pass
Says to make debugging dumps during compilation at times specified by letters.
This is used for debugging the RTL-based passes of the compiler. The file names
for most of the dumps are made by appending a pass number and a word to
the dumpname, and the files are created in the directory of the output file.
Note that the pass number is computed statically as passes get registered into
the pass manager. Thus the numbering is not related to the dynamic order of
execution of passes. In particular, a pass installed by a plugin could have a
number over 200 even if it executed quite early. dumpname is generated from
the name of the output file, if explicitly specified and it is not an executable,
otherwise it is the basename of the source file. These switches may have different
effects when ‘-E’ is used for preprocessing.

Debug dumps can be enabled with a ‘~fdump-rtl’ switch or some ‘-d’ option
letters. Here are the possible letters for use in pass and letters, and their
meanings:

-fdump-rtl-alignments
Dump after branch alignments have been computed.

-fdump-rtl-asmcons
Dump after fixing rtl statements that have unsatisfied in/out con-
straints.

—fdump-rtl-auto_inc_dec
Dump after auto-inc-dec discovery. This pass is only run on archi-
tectures that have auto inc or auto dec instructions.

—-fdump-rtl-barriers
Dump after cleaning up the barrier instructions.

-fdump-rtl-bbpart
Dump after partitioning hot and cold basic blocks.

—-fdump-rtl-bbro
Dump after block reordering.

—fdump-rtl-btlil

-fdump-rtl-btl2
‘~fdump-rtl-btll’ and ‘~fdump-rtl-btl2’ enable dumping after
the two branch target load optimization passes.

—-fdump-rtl-bypass
Dump after jump bypassing and control flow optimizations.

-fdump-rtl-combine
Dump after the RTL instruction combination pass.

—-fdump-rtl-compgotos
Dump after duplicating the computed gotos.

Using the GNU Compiler Collection (GCC)

—fdump-rtl-cel

-fdump-rtl-ce2

-fdump-rtl-ce3
‘~fdump-rtl-cel’, ‘~fdump-rtl-ce2’, and ‘-fdump-rtl-ce3’ en-
able dumping after the three if conversion passes.

-fdump-rtl-cprop_hardreg
Dump after hard register copy propagation.

-fdump-rtl-csa
Dump after combining stack adjustments.

-fdump-rtl-csel

-fdump-rtl-cse2
‘~fdump-rtl-csel’ and ‘-fdump-rtl-cse2’ enable dumping after
the two common sub-expression elimination passes.

-fdump-rtl-dce
Dump after the standalone dead code elimination passes.

-fdump-rtl-dbr
Dump after delayed branch scheduling.

-fdump-rtl-dcel

—fdump-rtl-dce2
‘~fdump-rtl-dcel’ and ‘~fdump-rtl-dce2’ enable dumping after
the two dead store elimination passes.

—-fdump-rtl-eh
Dump after finalization of EH handling code.

-fdump-rtl-eh_ranges
Dump after conversion of EH handling range regions.

-fdump-rtl-expand
Dump after RTL generation.

—-fdump-rtl-fwpropl

—fdump-rtl-fwprop2
‘~fdump-rtl-fwpropl’ and ‘~fdump-rtl-fwprop2’ enable dump-
ing after the two forward propagation passes.

—fdump-rtl-gcsel

-fdump-rtl-gcse2
‘~fdump-rtl-gcsel’ and ‘-~fdump-rtl-gcse2’ enable dumping af-
ter global common subexpression elimination.

-fdump-rtl-init-regs

Dump after the initialization of the registers.
-fdump-rtl-initvals

Dump after the computation of the initial value sets.

—fdump-rtl-into_cfglayout
Dump after converting to cfglayout mode.

Chapter 3:

GCC Command Options 83

-fdump-rtl-ira
Dump after iterated register allocation.

—fdump-rtl-jump
Dump after the second jump optimization.

-fdump-rtl-loop2
‘~fdump-rtl-loop2’ enables dumping after the rtl loop optimiza-
tion passes.

-fdump-rtl-mach
Dump after performing the machine dependent reorganization pass,
if that pass exists.

-fdump-rtl-mode_sw
Dump after removing redundant mode switches.

-fdump-rtl-rnreg
Dump after register renumbering.

-fdump-rtl-outof_cfglayout
Dump after converting from cfglayout mode.

—fdump-rtl-peephole2
Dump after the peephole pass.

—-fdump-rtl-postreload
Dump after post-reload optimizations.

—fdump-rtl-pro_and_epilogue
Dump after generating the function prologues and epilogues.

-fdump-rtl-regmove
Dump after the register move pass.

—fdump-rtl-schedl

-fdump-rtl-sched2
‘~fdump-rtl-schedl’ and ‘-fdump-rtl-sched2’ enable dumping
after the basic block scheduling passes.

-fdump-rtl-see
Dump after sign extension elimination.

-fdump-rtl-seqabstr
Dump after common sequence discovery.

—-fdump-rtl-shorten
Dump after shortening branches.

—fdump-rtl-sibling
Dump after sibling call optimizations.

84

Using the GNU Compiler Collection (GCC)

-fdump-rtl-spliti

-fdump-rtl-split2

-fdump-rtl-split3

-fdump-rtl-split4

-fdump-rtl-splitb
‘~fdump-rtl-splitl’, ‘~fdump-rtl-split2’, ‘~fdump-rtl-split3’J}
‘~fdump-rtl-split4’ and ‘-fdump-rtl-split5’ enable dumping
after five rounds of instruction splitting.

-fdump-rtl-sms
Dump after modulo scheduling. This pass is only run on some
architectures.

-fdump-rtl-stack
Dump after conversion from GCC’s "flat register file" registers to
the x87’s stack-like registers. This pass is only run on x86 variants.

—-fdump-rtl-subregl

—fdump-rtl-subreg2
‘~fdump-rtl-subregl’ and ‘-fdump-rtl-subreg2’ enable dump-
ing after the two subreg expansion passes.

—-fdump-rtl-unshare
Dump after all rtl has been unshared.

—-fdump-rtl-vartrack
Dump after variable tracking.

-fdump-rtl-vregs
Dump after converting virtual registers to hard registers.

-fdump-rtl-web
Dump after live range splitting.

-fdump-rtl-regclass
-fdump-rtl-subregs_of_mode_init
—fdump-rtl-subregs_of_mode_finish
-fdump-rtl-dfinit
-fdump-rtl-dfinish
These dumps are defined but always produce empty files.

-da
—fdump-rtl-all
Produce all the dumps listed above.

-dA Annotate the assembler output with miscellaneous debugging in-
formation.
-dD Dump all macro definitions, at the end of preprocessing, in addition

to normal output.

-dH Produce a core dump whenever an error occurs.

Chapter 3: GCC Command Options 85

-dp Annotate the assembler output with a comment indicating which
pattern and alternative was used. The length of each instruction is
also printed.

-dpP Dump the RTL in the assembler output as a comment before each
instruction. Also turns on ‘-dp’ annotation.

-dv For each of the other indicated dump files (‘-~fdump-rtl-pass’),
dump a representation of the control flow graph suitable for viewing
with VCG to ‘file.pass.vcg’.

-dx Just generate RTL for a function instead of compiling it. Usually
used with ‘~fdump-rtl-expand’.

-fdump-noaddr
When doing debugging dumps, suppress address output. This makes it more
feasible to use diff on debugging dumps for compiler invocations with different
compiler binaries and/or different text / bss / data / heap / stack / dso start
locations.

—-fdump-unnumbered
When doing debugging dumps, suppress instruction numbers and address out-
put. This makes it more feasible to use diff on debugging dumps for compiler
invocations with different options, in particular with and without ‘-g’.

-fdump-unnumbered-1links
When doing debugging dumps (see ‘-d’ option above), suppress instruction
numbers for the links to the previous and next instructions in a sequence.

-fdump-translation-unit (C++ only)

-fdump-translation-unit-options (C++ only)
Dump a representation of the tree structure for the entire translation unit to
a file. The file name is made by appending ‘.tu’ to the source file name, and
the file is created in the same directory as the output file. If the ‘~options’
form is used, options controls the details of the dump as described for the
‘~fdump-tree’ options.

-fdump-class-hierarchy (C++ only)

-fdump-class-hierarchy-options (C++ only)
Dump a representation of each class’s hierarchy and virtual function table layout
to a file. The file name is made by appending ‘.class’ to the source file name,
and the file is created in the same directory as the output file. If the ‘~options’
form is used, options controls the details of the dump as described for the
‘~fdump-tree’ options.

-fdump-ipa-switch
Control the dumping at various stages of inter-procedural analysis language tree
to a file. The file name is generated by appending a switch specific suffix to the
source file name, and the file is created in the same directory as the output file.
The following dumps are possible:

‘all’ Enables all inter-procedural analysis dumps.

86 Using the GNU Compiler Collection (GCC)

‘cgraph’ Dumps information about call-graph optimization, unused function
removal, and inlining decisions.

‘inline’ Dump after function inlining.

-fdump-passes
Dump the list of optimization passes that are turned on and off by the current
command-line options.

—-fdump-statistics-option

Enable and control dumping of pass statistics in a separate file. The file name
is generated by appending a suffix ending in ‘.statistics’ to the source file
name, and the file is created in the same directory as the output file. If the
‘~option’ form is used, ‘-stats’ will cause counters to be summed over the
whole compilation unit while ‘~details’ will dump every event as the passes
generate them. The default with no option is to sum counters for each function
compiled.

-fdump-tree-switch

-fdump-tree-switch-options
Control the dumping at various stages of processing the intermediate language
tree to a file. The file name is generated by appending a switch specific suffix to
the source file name, and the file is created in the same directory as the output
file. If the ‘-options’ form is used, options is a list of ‘=" separated options
which control the details of the dump. Not all options are applicable to all
dumps; those that are not meaningful will be ignored. The following options
are available

‘address’ Print the address of each node. Usually this is not meaningful as it
changes according to the environment and source file. Its primary
use is for tying up a dump file with a debug environment.

‘asmname’ If DECL_ASSEMBLER_NAME has been set for a given decl, use that
in the dump instead of DECL_NAME. Its primary use is ease of use
working backward from mangled names in the assembly file.

‘slim’ Inhibit dumping of members of a scope or body of a function merely
because that scope has been reached. Only dump such items when
they are directly reachable by some other path. When dumping
pretty-printed trees, this option inhibits dumping the bodies of con-
trol structures.

raw Print a raw representation of the tree. By default, trees are pretty-
printed into a C-like representation.

‘details’ Enable more detailed dumps (not honored by every dump option).

‘stats’ Enable dumping various statistics about the pass (not honored by
every dump option).

‘blocks’ Enable showing basic block boundaries (disabled in raw dumps).

‘vops’ Enable showing virtual operands for every statement.

Chapter 3:

GCC Command Options

‘lineno’
‘uid’
‘verbose’
(eh7
‘scev’

‘all’

87

Enable showing line numbers for statements.

Enable showing the unique ID (DECL_UID) for each variable.
Enable showing the tree dump for each statement.

Enable showing the EH region number holding each statement.
Enable showing scalar evolution analysis details.

Turn on all options, except ‘raw’, ‘slim’, ‘verbose’ and ‘lineno’.

The following tree dumps are possible:

‘original’

‘optimized’

‘gimple’

?

‘cfg

‘ch,

‘storeccp’

(pre7

‘fre’

‘copyprop’

Dump before any tree based optimization, to ‘file.original’.

Dump after all tree based optimization, to ‘file.optimized’.

Dump each function before and after the gimplification pass to a
file. The file name is made by appending ‘.gimple’ to the source
file name.

Dump the control flow graph of each function to a file. The file
name is made by appending ‘.cfg’ to the source file name.

Dump the control flow graph of each function to a file in VCG
format. The file name is made by appending ‘.vcg’ to the source
file name. Note that if the file contains more than one function, the
generated file cannot be used directly by VCG. You will need to
cut and paste each function’s graph into its own separate file first.

Dump each function after copying loop headers. The file name is
made by appending ‘.ch’ to the source file name.

Dump SSA related information to a file. The file name is made by
appending ‘.ssa’ to the source file name.

Dump aliasing information for each function. The file name is made
by appending ‘.alias’ to the source file name.

Dump each function after CCP. The file name is made by append-
ing ‘.ccp’ to the source file name.

Dump each function after STORE-CCP. The file name is made by
appending ‘.storeccp’ to the source file name.

Dump trees after partial redundancy elimination. The file name is
made by appending ‘.pre’ to the source file name.

Dump trees after full redundancy elimination. The file name is
made by appending ‘.fre’ to the source file name.

Dump trees after copy propagation. The file name is made by
appending ‘. copyprop’ to the source file name.

88

Using the GNU Compiler Collection (GCC)

‘store_copyprop’

‘dce

‘mudflap’

Sra

‘sink’

‘dom’

‘dse’

‘phiopt’

‘forwprop’

Dump trees after store copy-propagation. The file name is made
by appending ‘.store_copyprop’ to the source file name.

Dump each function after dead code elimination. The file name is
made by appending ‘.dce’ to the source file name.

Dump each function after adding mudflap instrumentation. The
file name is made by appending ‘.mudflap’ to the source file name.

Dump each function after performing scalar replacement of aggre-
gates. The file name is made by appending ‘.sra’ to the source file
name.

Dump each function after performing code sinking. The file name
is made by appending ‘.sink’ to the source file name.

Dump each function after applying dominator tree optimizations.
The file name is made by appending ‘.dom’ to the source file name.

Dump each function after applying dead store elimination. The file
name is made by appending ‘.dse’ to the source file name.

Dump each function after optimizing PHI nodes into straightline
code. The file name is made by appending ‘.phiopt’ to the source
file name.

Dump each function after forward propagating single use variables.
The file name is made by appending ‘. forwprop’ to the source file
name.

‘copyrename’

nrv

‘vect’
b

‘slp

‘Vrp,

‘all’

Dump each function after applying the copy rename optimization.
The file name is made by appending . copyrename’ to the source
file name.

Dump each function after applying the named return value opti-
mization on generic trees. The file name is made by appending
‘.nrv’ to the source file name.

Dump each function after applying vectorization of loops. The file
name is made by appending ‘.vect’ to the source file name.

Dump each function after applying vectorization of basic blocks.
The file name is made by appending ‘.slp’ to the source file name.

Dump each function after Value Range Propagation (VRP). The
file name is made by appending ‘.vrp’ to the source file name.

Enable all the available tree dumps with the flags provided in this
option.

-ftree-vectorizer-verbose=n
This option controls the amount of debugging output the vectorizer prints.
This information is written to standard error, unless ‘-fdump-tree-all’ or

Chapter 3: GCC Command Options 89

‘~fdump-tree-vect’ is specified, in which case it is output to the usual dump
listing file, ‘.vect’. For n=0 no diagnostic information is reported. If n=1
the vectorizer reports each loop that got vectorized, and the total number of
loops that got vectorized. If n=2 the vectorizer also reports non-vectorized
loops that passed the first analysis phase (vect_analyze_loop_form) - i.e. count-
able, inner-most, single-bb, single-entry /exit loops. This is the same verbosity
level that ‘~fdump-tree-vect-stats’ uses. Higher verbosity levels mean ei-
ther more information dumped for each reported loop, or same amount of in-
formation reported for more loops: if n=3, vectorizer cost model information
is reported. If n=4, alignment related information is added to the reports. If
n=5, data-references related information (e.g. memory dependences, memory
access-patterns) is added to the reports. If n=6, the vectorizer reports also non-
vectorized inner-most loops that did not pass the first analysis phase (i.e., may
not be countable, or may have complicated control-flow). If n=7, the vectorizer
reports also non-vectorized nested loops. If n=8, SLP related information is
added to the reports. For n=9, all the information the vectorizer generates
during its analysis and transformation is reported. This is the same verbosity
level that ‘-fdump-tree-vect-details’ uses.

-frandom-seed=string
This option provides a seed that GCC uses when it would otherwise use random
numbers. It is used to generate certain symbol names that have to be different
in every compiled file. It is also used to place unique stamps in coverage data
files and the object files that produce them. You can use the ‘~frandom-seed’
option to produce reproducibly identical object files.

The string should be different for every file you compile.

-fsched-verbose=n
On targets that use instruction scheduling, this option controls the amount of
debugging output the scheduler prints. This information is written to stan-
dard error, unless ‘-fdump-rtl-schedl’ or ‘~fdump-rtl-sched?2’ is specified,
in which case it is output to the usual dump listing file, ‘. sched1’ or ‘.sched?2’
respectively. However for n greater than nine, the output is always printed to
standard error.

For n greater than zero, ‘-fsched-verbose’ outputs the same information as
‘~fdump-rtl-schedl’ and ‘-fdump-rtl-sched2’. For n greater than one, it also
output basic block probabilities, detailed ready list information and unit/insn
info. For n greater than two, it includes RTL at abort point, control-flow and
regions info. And for n over four, ‘~fsched-verbose’ also includes dependence
info.

-save-temps

-save-temps=cwd
Store the usual “temporary” intermediate files permanently; place them in the
current directory and name them based on the source file. Thus, compiling
‘foo.c’ with ‘~c -save-temps’ would produce files ‘foo.i’ and ‘foo.s’, as well
as ‘foo.o’. This creates a preprocessed ‘foo.i’ output file even though the
compiler now normally uses an integrated preprocessor.

90

Using the GNU Compiler Collection (GCC)

When used in combination with the ‘-x’ command-line option, ‘-save-temps’

is sensible enough to avoid over writing an input source file with the same
extension as an intermediate file. The corresponding intermediate file may be
obtained by renaming the source file before using ‘-save-temps’.

If you invoke GCC in parallel, compiling several different source files that share
a common base name in different subdirectories or the same source file compiled
for multiple output destinations, it is likely that the different parallel compilers
will interfere with each other, and overwrite the temporary files. For instance:
gcc —save-temps -o outdirl/foo.o indirl/foo.c&
gcc -save-temps -o outdir2/foo.o indir2/foo.c&
may result in ‘foo.i’ and ‘foo.o’ being written to simultaneously by both
compilers.

-save—temps=obj

Store the usual “temporary” intermediate files permanently. If the ‘=0’ option
is used, the temporary files are based on the object file. If the ‘-0’ option is
not used, the ‘-save-temps=obj’ switch behaves like ‘-save-temps’.

For example:

gcc -save-temps=obj -c foo.c

gcc —save-temps=obj -c bar.c -o dir/xbar.o

gcc -save-temps=obj foobar.c -o dir2/yfoobar
would create ‘foo.i’, ‘foo.s’, ‘dir/xbar.i’, ‘dir/xbar.s’, ‘dir2/yfoobar.i’,
‘dir2/yfoobar.s’, and ‘dir2/yfoobar.o’.

~time[=file]

Report the CPU time taken by each subprocess in the compilation sequence.
For C source files, this is the compiler proper and assembler (plus the linker if
linking is done).
Without the specification of an output file, the output looks like this:

ccl 0.12 0.01

as 0.00 0.01
The first number on each line is the “user time”, that is time spent executing
the program itself. The second number is “system time”, time spent executing
operating system routines on behalf of the program. Both numbers are in
seconds.

With the specification of an output file, the output is appended to the named
file, and it looks like this:

0.12 0.01 ccl options

0.00 0.01 as options
The “user time” and the “system time” are moved before the program name,
and the options passed to the program are displayed, so that one can later tell
what file was being compiled, and with which options.

—-fvar-tracking

Run variable tracking pass. It computes where variables are stored at each posi-
tion in code. Better debugging information is then generated (if the debugging
information format supports this information).

Chapter 3: GCC Command Options 91

It is enabled by default when compiling with optimization (‘-0s’, ‘-0’, ‘-02’,
...), debugging information (‘-g’) and the debug info format supports it.

-fvar-tracking-assignments
Annotate assignments to user variables early in the compilation and attempt to
carry the annotations over throughout the compilation all the way to the end, in
an attempt to improve debug information while optimizing. Use of ‘~gdwarf-4’
is recommended along with it.

It can be enabled even if var-tracking is disabled, in which case annotations will
be created and maintained, but discarded at the end.

-fvar-tracking-assignments-toggle
Toggle ‘-fvar-tracking-assignments’, in the same way that ‘-gtoggle’ tog-
gles ‘-g’.

-print-file-name=1library
Print the full absolute name of the library file library that would be used when
linking—and don’t do anything else. With this option, GCC does not compile
or link anything; it just prints the file name.

-print-multi-directory
Print the directory name corresponding to the multilib selected by any other
switches present in the command line. This directory is supposed to exist in
GCC_EXEC_PREFIX.

-print-multi-1ib
Print the mapping from multilib directory names to compiler switches that
enable them. The directory name is separated from the switches by ‘;’, and
each switch starts with an ‘@ instead of the ‘~’, without spaces between multiple
switches. This is supposed to ease shell-processing.

-print-multi-os-directory
Print the path to OS libraries for the selected multilib, relative to some ‘1ib’
subdirectory. If OS libraries are present in the ‘1ib’ subdirectory and no mul-
tilibs are used, this is usually just ‘.’ if OS libraries are present in ‘libsuffix’
sibling directories this prints e.g. ‘../1ib64’, ‘../1lib’ or ‘../1ib32’, or if
OS libraries are present in ‘lib/subdir’ subdirectories it prints e.g. ‘amd64’,
‘sparcv9’ or ‘ev6’.

-print-multiarch
Print the path to OS libraries for the selected multiarch, relative to some ‘1ib’
subdirectory.

-print-prog-name=program
Like ‘-print-file-name’, but searches for a program such as ‘cpp’.
-print-libgcc-file-name
Same as ‘-print-file-name=libgcc.a’.
This is useful when you use ‘-nostdlib’ or ‘-nodefaultlibs’ but you do want
to link with ‘libgcc.a’. You can do

gcc -nostdlib files... ‘gcc -print-libgcc-file-name*

92 Using the GNU Compiler Collection (GCC)

-print-search-dirs
Print the name of the configured installation directory and a list of program
and library directories gcc will search—and don’t do anything else.

This is useful when gcc prints the error message ‘installation problem,
cannot exec cppO: No such file or directory’. To resolve this you either
need to put ‘cpp0’ and the other compiler components where gcc expects to
find them, or you can set the environment variable GCC_EXEC_PREFIX to the di-
rectory where you installed them. Don’t forget the trailing ‘/’. See Section 3.19
[Environment Variables], page 296.

-print-sysroot
Print the target sysroot directory that will be used during compilation. This
is the target sysroot specified either at configure time or using the ‘--sysroot’
option, possibly with an extra suffix that depends on compilation options. If
no target sysroot is specified, the option prints nothing.

-print-sysroot-headers-suffix
Print the suffix added to the target sysroot when searching for headers, or
give an error if the compiler is not configured with such a suffix—and don’t do
anything else.

—dumpmachine
Print the compiler’s target machine (for example, ‘1686-pc-1linux-gnu’)—and
don’t do anything else.

—dumpversion
Print the compiler version (for example, ‘3.0%)—and don’t do anything else.

—dumpspecs
Print the compiler’s built-in specs—and don’t do anything else. (This is used
when GCC itself is being built.) See Section 3.15 [Spec Files|, page 160.

-feliminate-unused-debug-types

Normally, when producing DWARF2 output, GCC will emit debugging infor-
mation for all types declared in a compilation unit, regardless of whether or not
they are actually used in that compilation unit. Sometimes this is useful, such
as if, in the debugger, you want to cast a value to a type that is not actually
used in your program (but is declared). More often, however, this results in
a significant amount of wasted space. With this option, GCC will avoid pro-
ducing debug symbol output for types that are nowhere used in the source file
being compiled.

3.10 Options That Control Optimization

These options control various sorts of optimizations.

Without any optimization option, the compiler’s goal is to reduce the cost of compilation
and to make debugging produce the expected results. Statements are independent: if you
stop the program with a breakpoint between statements, you can then assign a new value
to any variable or change the program counter to any other statement in the function and
get exactly the results you would expect from the source code.

Chapter 3: GCC Command Options 93

Turning on optimization flags makes the compiler attempt to improve the performance
and/or code size at the expense of compilation time and possibly the ability to debug the
program.

The compiler performs optimization based on the knowledge it has of the program. Com-
piling multiple files at once to a single output file mode allows the compiler to use informa-
tion gained from all of the files when compiling each of them.

Not all optimizations are controlled directly by a flag. Only optimizations that have a
flag are listed in this section.

Most optimizations are only enabled if an ‘-0’ level is set on the command line. Otherwise
they are disabled, even if individual optimization flags are specified.

Depending on the target and how GCC was configured, a slightly different set of opti-
mizations may be enabled at each ‘-0’ level than those listed here. You can invoke GCC
with ‘-Q —-—help=optimizers’ to find out the exact set of optimizations that are enabled
at each level. See Section 3.2 [Overall Options|, page 23, for examples.

-0
-01 Optimize. Optimizing compilation takes somewhat more time, and a lot more
memory for a large function.

With ‘-0’, the compiler tries to reduce code size and execution time, without
performing any optimizations that take a great deal of compilation time.

‘-0’ turns on the following optimization flags:

-fauto-inc-dec

-fcompare-elim

-fcprop-registers

-fdce

-fdefer-pop

-fdelayed-branch

-fdse

-fguess-branch-probability

-fif-conversion2

-fif-conversion

-fipa-pure-const

-fipa-profile

-fipa-reference

-fmerge-constants -fsplit-wide-types
-ftree-bit-ccp
-ftree-builtin-call-dce
-ftree-ccp

-ftree-ch
-ftree-copyrename
-ftree-dce
-ftree-dominator-opts
-ftree-dse

-ftree-forwprop

-ftree-fre

-ftree-phiprop

-ftree-sra

-ftree-pta

-ftree-ter
-funit-at-a-time

‘-0’ also turns on ‘~-fomit-frame-pointer’ on machines where doing so does
not interfere with debugging.

94

-02

-03

-00

-0s

-0fast

Using the GNU Compiler Collection (GCC)

Optimize even more. GCC performs nearly all supported optimizations that do
not involve a space-speed tradeoff. As compared to ‘-=0’, this option increases
both compilation time and the performance of the generated code.

‘-02’ turns on all optimization flags specified by ‘-0’. It also turns on the
following optimization flags:

-fthread-jumps

-falign-functions -falign-jumps
-falign-loops -falign-labels
-fcaller-saves

-fcrossjumping

-fcse-follow-jumps -fcse-skip-blocks
-fdelete-null-pointer-checks
-fdevirtualize
-fexpensive-optimizations

-fgcse -fgecse-1m
-finline-small-functions
-findirect-inlining

-fipa-sra

-foptimize-sibling-calls
-fpartial-inlining

-fpeephole2

-fregmove

-freorder-blocks -freorder-functions
-frerun-cse-after-loop
-fsched-interblock -fsched-spec
-fschedule-insns -fschedule-insns2
-fstrict-aliasing -fstrict-overflow
-ftree-switch-conversion -ftree-tail-merge
-ftree-pre

-ftree-vrp

Please note the warning under ‘-fgcse’ about invoking ‘-~02’ on programs that
use computed gotos.

Optimize yet more. ‘-03’ turns on all optimizations specified by ‘-02’
and also turns on the ‘-finline-functions’, ‘-funswitch-loops’,
‘~fpredictive-commoning’, ‘-fgcse-after-reload’, ‘-ftree-vectorize’,

‘~ftree-partial-pre’ and ‘-fipa-cp-clone’ options.

Reduce compilation time and make debugging produce the expected results.
This is the default.

Optimize for size. ‘-0s’ enables all ‘-02’ optimizations that do not typically
increase code size. It also performs further optimizations designed to reduce
code size.

‘-0s’ disables the following optimization flags:

-falign-functions -falign-jumps -falign-loops
-falign-labels -freorder-blocks -freorder-blocks-and-partition
-fprefetch-loop-arrays -ftree-vect-loop-version

Disregard strict standards compliance. ‘-0fast’ enables all ‘-03’ opti-
mizations. It also enables optimizations that are not valid for all standard
compliant programs. It turns on ‘-ffast-math’ and the Fortran-specific
‘~fno-protect-parens’ and ‘-fstack-arrays’.

Chapter 3: GCC Command Options 95

If you use multiple ‘-0’ options, with or without level numbers, the last such
option is the one that is effective.

Options of the form ‘-fflag’ specify machine-independent flags. Most flags have both
positive and negative forms; the negative form of ‘~ffoo’ would be ‘~fno-foo’. In the table
below, only one of the forms is listed—the one you typically will use. You can figure out
the other form by either removing ‘no-’ or adding it.

The following options control specific optimizations. They are either activated by ‘-0’
options or are related to ones that are. You can use the following flags in the rare cases
when “fine-tuning” of optimizations to be performed is desired.

-fno-default-inline
Do not make member functions inline by default merely because they are defined
inside the class scope (C++ only). Otherwise, when you specify ‘-0’, member
functions defined inside class scope are compiled inline by default; i.e., you don’t
need to add ‘inline’ in front of the member function name.

-fno-defer-pop
Always pop the arguments to each function call as soon as that function re-
turns. For machines that must pop arguments after a function call, the compiler
normally lets arguments accumulate on the stack for several function calls and
pops them all at once.

Disabled at levels ‘-0’, ‘-02’, ‘-03’, ‘-0s’.

-fforward-propagate
Perform a forward propagation pass on RTL. The pass tries to combine two
instructions and checks if the result can be simplified. If loop unrolling is active,
two passes are performed and the second is scheduled after loop unrolling.

This option is enabled by default at optimization levels ‘-0, ‘-02’, ‘~-03’, ‘-0s’.

-ffp-contract=style
‘~ffp-contract=off’ disables floating-point expression contraction.
‘~ffp-contract=fast’ enables floating-point expression contraction such as
forming of fused multiply-add operations if the target has native support for
them. ‘-ffp-contract=on’ enables floating-point expression contraction if
allowed by the language standard. This is currently not implemented and
treated equal to ‘~ffp-contract=off’.

The default is ‘~ffp-contract=fast’.

-fomit-frame-pointer
Don’t keep the frame pointer in a register for functions that don’t need one.
This avoids the instructions to save, set up and restore frame pointers; it also
makes an extra register available in many functions. It also makes debugging
impossible on some machines.

On some machines, such as the VAX, this flag has no effect, because the stan-
dard calling sequence automatically handles the frame pointer and nothing is
saved by pretending it doesn’t exist. The machine-description macro FRAME_
POINTER_REQUIRED controls whether a target machine supports this flag. See
Section “Register Usage” in GNU Compiler Collection (GCC) Internals.

96

Using the GNU Compiler Collection (GCC)

Starting with GCC version 4.6, the default setting (when not opti-
mizing for size) for 32-bit Linux x86 and 32-bit Darwin x86 targets
has been changed to ‘-fomit-frame-pointer’. The default can be
reverted to ‘-fno-omit-frame-pointer’ by configuring GCC with the
‘-—enable-frame-pointer’ configure option.

Enabled at levels ‘-0’, ~-02’, ‘-03’, ‘-0s’.

-foptimize-sibling-calls

Optimize sibling and tail recursive calls.
Enabled at levels ‘-02’, ‘~-03’, ‘-0s’.

-fno-inline

Do not expand any functions inline apart from those marked with the always_
inline attribute. This is the default when not optimizing.

Single functions can be exempted from inlining by marking them with the
noinline attribute.

—finline-small-functions

Integrate functions into their callers when their body is smaller than expected
function call code (so overall size of program gets smaller). The compiler heuris-
tically decides which functions are simple enough to be worth integrating in this
way. This inlining applies to all functions, even those not declared inline.

Enabled at level ‘-02’.

-findirect-inlining

Inline also indirect calls that are discovered to be known at compile time thanks
to previous inlining. This option has any effect only when inlining itself is turned
on by the ‘~finline-functions’ or ‘~finline-small-functions’ options.

Enabled at level ‘-02°.

—finline-functions

Consider all functions for inlining, even if they are not declared inline. The
compiler heuristically decides which functions are worth integrating in this way.
If all calls to a given function are integrated, and the function is declared
static, then the function is normally not output as assembler code in its own
right.

Enabled at level ‘-03’.

—finline-functions-called-once

Consider all static functions called once for inlining into their caller even if
they are not marked inline. If a call to a given function is integrated, then
the function is not output as assembler code in its own right.

Enabled at levels ‘-01’, ‘~-02’, ‘=03’ and ‘-0s’.

-fearly-inlining

Inline functions marked by always_inline and functions whose body
seems smaller than the function call overhead early before doing
‘~fprofile-generate’ instrumentation and real inlining pass. Doing so makes
profiling significantly cheaper and usually inlining faster on programs having
large chains of nested wrapper functions.

Chapter 3: GCC Command Options 97

Enabled by default.

-fipa-sra
Perform interprocedural scalar replacement of aggregates, removal of unused
parameters and replacement of parameters passed by reference by parameters
passed by value.

Enabled at levels ‘-02’, ‘-03’ and ‘-0s’.
-finline-limit=n
By default, GCC limits the size of functions that can be inlined. This flag

allows coarse control of this limit. n is the size of functions that can be inlined
in number of pseudo instructions.

Inlining is actually controlled by a number of parameters, which may be spec-
ified individually by using ‘--param name=value’. The ‘~finline-limit=n’
option sets some of these parameters as follows:

max-inline-insns-single
is set to n/2.

max-inline-insns-auto
is set to n/2.

See below for a documentation of the individual parameters controlling inlining
and for the defaults of these parameters.

Note: there may be no value to ‘-finline-1limit’ that results in default be-
havior.

Note: pseudo instruction represents, in this particular context, an abstract
measurement of function’s size. In no way does it represent a count of assembly
instructions and as such its exact meaning might change from one release to an
another.

-fno-keep-inline-dllexport
This is a more fine-grained version of ‘~fkeep-inline-functions’, which ap-
plies only to functions that are declared using the dllexport attribute or de-
clspec (See Section 6.30 [Declaring Attributes of Functions|, page 336.)

-fkeep-inline-functions
In C, emit static functions that are declared inline into the object file, even
if the function has been inlined into all of its callers. This switch does not affect
functions using the extern inline extension in GNU C90. In C++, emit any
and all inline functions into the object file.

-fkeep-static-consts
Emit variables declared static const when optimization isn’t turned on, even
if the variables aren’t referenced.

GCC enables this option by default. If you want to force the compiler to check if
the variable was referenced, regardless of whether or not optimization is turned
on, use the ‘~fno-keep-static-consts’ option.

-fmerge-constants
Attempt to merge identical constants (string constants and floating-point con-
stants) across compilation units.

98 Using the GNU Compiler Collection (GCC)

This option is the default for optimized compilation if the assembler and linker
support it. Use ‘-fno-merge-constants’ to inhibit this behavior.

Enabled at levels ‘-0’, ~-02’, ‘-03’, ‘-0s’.

-fmerge-all-constants
Attempt to merge identical constants and identical variables.

This option implies ‘~fmerge-constants’. In addition to ‘~fmerge-constants’
this considers e.g. even constant initialized arrays or initialized constant vari-
ables with integral or floating-point types. Languages like C or C++ require each
variable, including multiple instances of the same variable in recursive calls, to
have distinct locations, so using this option will result in non-conforming be-
havior.

-fmodulo-sched
Perform swing modulo scheduling immediately before the first scheduling pass.
This pass looks at innermost loops and reorders their instructions by overlap-
ping different iterations.

-fmodulo-sched-allow-regmoves
Perform more aggressive SMS based modulo scheduling with register moves
allowed. By setting this flag certain anti-dependences edges will be deleted
which will trigger the generation of reg-moves based on the life-range analysis.
This option is effective only with ‘~fmodulo-sched’ enabled.

-fno-branch-count-reg
Do not use “decrement and branch” instructions on a count register, but instead
generate a sequence of instructions that decrement a register, compare it against
zero, then branch based upon the result. This option is only meaningful on
architectures that support such instructions, which include x86, PowerPC, TA-
64 and S/390.

The default is ‘~fbranch-count-reg’.

—-fno-function-cse
Do not put function addresses in registers; make each instruction that calls a
constant function contain the function’s address explicitly.

This option results in less efficient code, but some strange hacks that alter the
assembler output may be confused by the optimizations performed when this
option is not used.

The default is ‘~ffunction-cse’

-fno-zero-initialized-in-bss
If the target supports a BSS section, GCC by default puts variables that are
initialized to zero into BSS. This can save space in the resulting code.

This option turns off this behavior because some programs explicitly rely on
variables going to the data section. E.g., so that the resulting executable can
find the beginning of that section and/or make assumptions based on that.

The default is ‘-fzero-initialized-in-bss’.

Chapter 3: GCC Command Options 99

-fmudflap -fmudflapth -fmudflapir

For front-ends that support it (C and C++), instrument all risky pointer/array
dereferencing operations, some standard library string/heap functions, and
some other associated constructs with range/validity tests. Modules so in-
strumented should be immune to buffer overflows, invalid heap use, and some
other classes of C/C++ programming errors. The instrumentation relies on a
separate runtime library (‘libmudflap’), which will be linked into a program
if ‘~fmudflap’ is given at link time. Run-time behavior of the instrumented
program is controlled by the MUDFLAP_OPTIONS environment variable. See env
MUDFLAP_QOPTIONS=-help a.out for its options.

Use ‘-fmudflapth’ instead of ‘-fmudflap’ to compile and to link if your pro-
gram is multi-threaded. Use ‘-fmudflapir’, in addition to ‘-fmudflap’ or
‘~fmudflapth’, if instrumentation should ignore pointer reads. This produces
less instrumentation (and therefore faster execution) and still provides some
protection against outright memory corrupting writes, but allows erroneously
read data to propagate within a program.

-fthread-jumps
Perform optimizations where we check to see if a jump branches to a location
where another comparison subsumed by the first is found. If so, the first branch
is redirected to either the destination of the second branch or a point immedi-
ately following it, depending on whether the condition is known to be true or
false.

Enabled at levels ‘-02’, ‘~-03’, ‘-0s’.

-fsplit-wide-types
When using a type that occupies multiple registers, such as long long on a
32-bit system, split the registers apart and allocate them independently. This
normally generates better code for those types, but may make debugging more
difficult.

Enabled at levels ‘-0’, ‘~-02’, ‘-03’, ‘-0s’.

-fcse-follow-jumps
In common subexpression elimination (CSE), scan through jump instructions
when the target of the jump is not reached by any other path. For example,
when CSE encounters an if statement with an else clause, CSE will follow
the jump when the condition tested is false.

Enabled at levels ‘-02’, ‘-03’, ‘-0s’.

-fcse-skip-blocks
This is similar to ‘-fcse-follow-jumps’, but causes CSE to follow jumps that
conditionally skip over blocks. When CSE encounters a simple if statement
with no else clause, ‘-fcse-skip-blocks’ causes CSE to follow the jump around
the body of the if.

Enabled at levels ‘-02’, ‘~-03’, ‘-0s’.
-frerun-cse-after-loop

Re-run common subexpression elimination after loop optimizations has been
performed.

100 Using the GNU Compiler Collection (GCC)

Enabled at levels ‘~-02’, ‘-03’, ‘-0s’.

-fgcse Perform a global common subexpression elimination pass. This pass also per-
forms global constant and copy propagation.

Note: When compiling a program using computed gotos, a GCC extension,
you may get better run-time performance if you disable the global common
subexpression elimination pass by adding ‘-fno-gcse’ to the command line.

Enabled at levels ‘-02’, ‘-03’, ‘-0s’.

-fgcse-1m
When ‘-fgcse-1m’ is enabled, global common subexpression elimination will
attempt to move loads that are only killed by stores into themselves. This
allows a loop containing a load/store sequence to be changed to a load outside
the loop, and a copy/store within the loop.

Enabled by default when gcse is enabled.

-fgcse-sm
When ‘-fgcse-sm’ is enabled, a store motion pass is run after global common
subexpression elimination. This pass will attempt to move stores out of loops.
When used in conjunction with ‘~fgcse-1m’, loops containing a load/store se-
quence can be changed to a load before the loop and a store after the loop.

Not enabled at any optimization level.

-fgcse-las
When ‘-fgcse-las’ is enabled, the global common subexpression elimination
pass eliminates redundant loads that come after stores to the same memory
location (both partial and full redundancies).

Not enabled at any optimization level.

-fgcse-after-reload
When ‘-fgcse-after-reload’ is enabled, a redundant load elimination pass
is performed after reload. The purpose of this pass is to cleanup redundant
spilling.

-funsafe-loop-optimizations
If given, the loop optimizer will assume that loop indices do not overflow, and
that the loops with nontrivial exit condition are not infinite. This enables a
wider range of loop optimizations even if the loop optimizer itself cannot prove
that these assumptions are valid. Using ‘~Wunsafe-loop-optimizations’, the
compiler will warn you if it finds this kind of loop.

-fcrossjumping
Perform cross-jumping transformation. This transformation unifies equivalent
code and save code size. The resulting code may or may not perform better
than without cross-jumping.

Enabled at levels ‘~-02’, ‘-03’, ‘-0s’.

-fauto-inc-dec
Combine increments or decrements of addresses with memory accesses. This
pass is always skipped on architectures that do not have instructions to support
this. Enabled by default at ‘=0’ and higher on architectures that support this.

Chapter 3: GCC Command Options 101

-fdce

—-fdse

Perform dead code elimination (DCE) on RTL. Enabled by default at ‘-0’ and
higher.

Perform dead store elimination (DSE) on RTL. Enabled by default at ‘-0’ and
higher.

—-fif-conversion

Attempt to transform conditional jumps into branch-less equivalents. This
include use of conditional moves, min, max, set flags and abs instructions, and
some tricks doable by standard arithmetics. The use of conditional execution
on chips where it is available is controlled by if-conversion?2.

Enabled at levels ‘-0’, <-02’, ‘-03’, ‘-0s’.

-fif-conversion2

Use conditional execution (where available) to transform conditional jumps into
branch-less equivalents.

Enabled at levels ‘=07, ~-02’, ‘-03’, ‘-0s’.

-fdelete-null-pointer-checks

Assume that programs cannot safely dereference null pointers, and that no code
or data element resides there. This enables simple constant folding optimiza-
tions at all optimization levels. In addition, other optimization passes in GCC
use this flag to control global dataflow analyses that eliminate useless checks
for null pointers; these assume that if a pointer is checked after it has already
been dereferenced, it cannot be null.

Note however that in some environments this assumption is not true.
Use ‘-fno-delete-null-pointer-checks’ to disable this optimization for
programs that depend on that behavior.

Some targets, especially embedded ones, disable this option at all levels. Oth-
erwise it is enabled at all levels: ‘-=00°, ‘~-=01’, *-02’, ‘-03’, ‘-0s’. Passes that use
the information are enabled independently at different optimization levels.

—fdevirtualize

Attempt to convert calls to virtual functions to direct calls. This is done
both within a procedure and interprocedurally as part of indirect inlining (-
findirect-inlining) and interprocedural constant propagation (‘-fipa-cp’).
Enabled at levels ‘~-02’, ‘-03’, ‘-0s’.

-fexpensive-optimizations

—-free

Perform a number of minor optimizations that are relatively expensive.
Enabled at levels ‘-02’, ‘-03’, ‘-0s’.
Attempt to remove redundant extension instructions. This is especially helpful

for the x86-64 architecture which implicitly zero-extends in 64-bit registers after
writing to their lower 32-bit half.

Enabled for x86 at levels ‘-02’, ‘-03’.

102 Using the GNU Compiler Collection (GCC)

-foptimize-register—-move

-fregmove
Attempt to reassign register numbers in move instructions and as operands of
other simple instructions in order to maximize the amount of register tying.
This is especially helpful on machines with two-operand instructions.
Note ‘-fregmove’ and ‘-foptimize-register-move’ are the same optimiza-
tion.

Enabled at levels ‘~-02’, ‘-03’, ‘-0s’.

-fira-algorithm=algorithm
Use the specified coloring algorithm for the integrated register allocator. The
algorithm argument can be ‘priority’, which specifies Chow’s priority coloring,
or ‘CB’, which specifies Chaitin-Briggs coloring. Chaitin-Briggs coloring is not
implemented for all architectures, but for those targets that do support it, it is
the default because it generates better code.

-fira-region=region
Use specified regions for the integrated register allocator. The region argument
should be one of the following:

‘all’ Use all loops as register allocation regions. This can give the best
results for machines with a small and/or irregular register set.

‘mixed’ Use all loops except for loops with small register pressure as the
regions. This value usually gives the best results in most cases and
for most architectures, and is enabled by default when compiling
with optimization for speed (‘-0’, ‘-02’, . ..).

one Use all functions as a single region. This typically results in the
smallest code size, and is enabled by default for ‘-0s’ or ‘-00’.

—-fira-loop—pressure
Use IRA to evaluate register pressure in loops for decisions to move loop in-
variants. This option usually results in generation of faster and smaller code on
machines with large register files (>= 32 registers), but it can slow the compiler
down.

This option is enabled at level ‘-03’ for some targets.

-fno-ira-share-save-slots
Disable sharing of stack slots used for saving call-used hard registers living
through a call. Each hard register gets a separate stack slot, and as a result
function stack frames are larger.

-fno-ira-share-spill-slots
Disable sharing of stack slots allocated for pseudo-registers. Each pseudo-
register that does not get a hard register gets a separate stack slot, and as
a result function stack frames are larger.

-fira-verbose=n
Control the verbosity of the dump file for the integrated register allocator. The
default value is 5. If the value n is greater or equal to 10, the dump output is
sent to stderr using the same format as n minus 10.

Chapter 3: GCC Command Options 103

-fdelayed-branch
If supported for the target machine, attempt to reorder instructions to exploit
instruction slots available after delayed branch instructions.

Enabled at levels ‘-0’, ‘~-02’, ‘-03’, ‘-0s’.

-fschedule-insns
If supported for the target machine, attempt to reorder instructions to eliminate
execution stalls due to required data being unavailable. This helps machines
that have slow floating point or memory load instructions by allowing other
instructions to be issued until the result of the load or floating-point instruction
is required.
Enabled at levels ‘--02’, ‘-03’.

-fschedule-insns?2
Similar to ‘-fschedule-insns’, but requests an additional pass of instruction
scheduling after register allocation has been done. This is especially useful on
machines with a relatively small number of registers and where memory load
instructions take more than one cycle.

Enabled at levels ‘-02’, ‘~-03’, ‘-0s’.

-fno-sched-interblock
Don’t schedule instructions across basic blocks. This is normally enabled by
default when scheduling before register allocation, i.e. with ‘-fschedule-insns’
or at ‘=02’ or higher.

-fno-sched-spec
Don’t allow speculative motion of non-load instructions. This is normally
enabled by default when scheduling before register allocation, i.e. with
‘~fschedule-insns’ or at ‘-02’ or higher.

-fsched-pressure
Enable register pressure sensitive insn scheduling before the register allocation.
This only makes sense when scheduling before register allocation is enabled,
i.e. with ‘~fschedule-insns’ or at ‘-02’ or higher. Usage of this option can
improve the generated code and decrease its size by preventing register pressure
increase above the number of available hard registers and as a consequence
register spills in the register allocation.

-fsched-spec-load
Allow speculative motion of some load instructions. This only makes sense
when scheduling before register allocation, i.e. with ‘~fschedule-insns’ or at
‘=02’ or higher.

-fsched-spec-load-dangerous
Allow speculative motion of more load instructions. This only makes sense
when scheduling before register allocation, i.e. with ‘~fschedule-insns’ or at
‘-02’ or higher.

—-fsched-stalled-insns

-fsched-stalled-insns=n
Define how many insns (if any) can be moved prematurely from the queue
of stalled insns into the ready list, during the second scheduling pass.

104 Using the GNU Compiler Collection (GCC)

‘~fno-sched-stalled-insns’ means that no insns will be moved prematurely,
‘~fsched-stalled-insns=0" means there is no limit on how many queued
insns can be moved prematurely. ‘-fsched-stalled-insns’ without a value
is equivalent to ‘-fsched-stalled-insns=1’.

-fsched-stalled-insns-dep

-fsched-stalled-insns-dep=n
Define how many insn groups (cycles) will be examined for a de-
pendency on a stalled insn that is candidate for premature removal

from the queue of stalled insns. This has an effect only during
the second scheduling pass, and only if ‘-fsched-stalled-insns’
is used. ‘~fno-sched-stalled-insns-dep’ is equivalent to
‘~-fsched-stalled-insns-dep=0’. ‘~-fsched-stalled-insns-dep’

without a value is equivalent to ‘~-fsched-stalled-insns-dep=1".

-fsched2-use-superblocks
When scheduling after register allocation, do use superblock scheduling algo-
rithm. Superblock scheduling allows motion across basic block boundaries re-
sulting on faster schedules. This option is experimental, as not all machine
descriptions used by GCC model the CPU closely enough to avoid unreliable
results from the algorithm.

This only makes sense when scheduling after register allocation, i.e. with
‘~fschedule-insns2’ or at ‘=02’ or higher.

—-fsched-group-heuristic
Enable the group heuristic in the scheduler. This heuristic favors the instruction
that belongs to a schedule group. This is enabled by default when scheduling
is enabled, i.e. with ‘~fschedule-insns’ or ‘~fschedule-insns2’ or at ‘-02’
or higher.

—-fsched-critical-path-heuristic
Enable the critical-path heuristic in the scheduler. This heuristic favors in-
structions on the critical path. This is enabled by default when scheduling is
enabled, i.e. with ‘-fschedule-insns’ or ‘~fschedule-insns2’ or at ‘-02’ or
higher.

—-fsched-spec-insn-heuristic
Enable the speculative instruction heuristic in the scheduler. This heuristic
favors speculative instructions with greater dependency weakness. This is en-
abled by default when scheduling is enabled, i.e. with ‘~fschedule-insns’ or
‘~fschedule-insns2’ or at ‘=02’ or higher.

-fsched-rank-heuristic
Enable the rank heuristic in the scheduler. This heuristic favors the instruc-
tion belonging to a basic block with greater size or frequency. This is en-
abled by default when scheduling is enabled, i.e. with ‘~fschedule-insns’ or
‘~fschedule-insns2’ or at ‘=02’ or higher.

—-fsched-last-insn-heuristic
Enable the last-instruction heuristic in the scheduler. This heuristic favors the
instruction that is less dependent on the last instruction scheduled. This is

Chapter 3: GCC Command Options 105

enabled by default when scheduling is enabled, i.e. with ‘~fschedule-insns’
or ‘-fschedule-insns2’ or at ‘-02’ or higher.

-fsched-dep-count-heuristic
Enable the dependent-count heuristic in the scheduler. This heuristic favors
the instruction that has more instructions depending on it. This is enabled
by default when scheduling is enabled, i.e. with ‘-fschedule-insns’ or
‘~fschedule-insns2’ or at ‘=02’ or higher.

-freschedule-modulo-scheduled-loops
The modulo scheduling comes before the traditional scheduling, if a loop was
modulo scheduled we may want to prevent the later scheduling passes from
changing its schedule, we use this option to control that.

-fselective-scheduling
Schedule instructions using selective scheduling algorithm. Selective scheduling
runs instead of the first scheduler pass.

-fselective-scheduling?2
Schedule instructions using selective scheduling algorithm. Selective scheduling
runs instead of the second scheduler pass.

-fsel-sched-pipelining
Enable software pipelining of innermost loops during selective scheduling.
This option has no effect until one of ‘-fselective-scheduling’ or
‘~-fselective-scheduling?’ is turned on.

-fsel-sched-pipelining-outer—-loops
When pipelining loops during selective scheduling, also pipeline outer loops.
This option has no effect until ‘~fsel-sched-pipelining’ is turned on.

-fshrink-wrap
Emit function prologues only before parts of the function that need it, rather
than at the top of the function. This flag is enabled by default at ‘-0’ and
higher.

-fcaller-saves
Enable values to be allocated in registers that will be clobbered by function
calls, by emitting extra instructions to save and restore the registers around
such calls. Such allocation is done only when it seems to result in better code
than would otherwise be produced.

This option is always enabled by default on certain machines, usually those
which have no call-preserved registers to use instead.

Enabled at levels ‘-02’, ‘~-03’, ‘-0s’.

-fcombine-stack-adjustments
Tracks stack adjustments (pushes and pops) and stack memory references and
then tries to find ways to combine them.

Enabled by default at ‘-01” and higher.
-fconserve-stack

Attempt to minimize stack usage. The compiler will attempt to use less stack
space, even if that makes the program slower. This option implies setting the

106 Using the GNU Compiler Collection (GCC)

‘large-stack-frame’ parameter to 100 and the ‘large-stack-frame-growth’
parameter to 400.

-ftree-reassoc
Perform reassociation on trees. This flag is enabled by default at ‘-0’ and
higher.

-ftree-pre
Perform partial redundancy elimination (PRE) on trees. This flag is enabled
by default at ‘-02’ and ‘-03’.

-ftree-partial-pre
Make partial redundancy elimination (PRE) more aggressive. This flag is en-
abled by default at ‘-03’.

-ftree-forwprop
Perform forward propagation on trees. This flag is enabled by default at ‘-0’
and higher.

-ftree-fre
Perform full redundancy elimination (FRE) on trees. The difference between
FRE and PRE is that FRE only considers expressions that are computed on
all paths leading to the redundant computation. This analysis is faster than
PRE, though it exposes fewer redundancies. This flag is enabled by default at
‘-0’ and higher.

-ftree-phiprop
Perform hoisting of loads from conditional pointers on trees. This pass is en-
abled by default at ‘-~0” and higher.

—-ftree-copy-prop
Perform copy propagation on trees. This pass eliminates unnecessary copy
operations. This flag is enabled by default at ‘-0’ and higher.

-fipa-pure-const
Discover which functions are pure or constant. Enabled by default at ‘-0’ and
higher.

-fipa-reference
Discover which static variables do not escape cannot escape the compilation
unit. Enabled by default at ‘-0 and higher.

-fipa-pta
Perform interprocedural pointer analysis and interprocedural modification and
reference analysis. This option can cause excessive memory and compile-time
usage on large compilation units. It is not enabled by default at any optimiza-
tion level.

-fipa-profile
Perform interprocedural profile propagation. The functions called only from
cold functions are marked as cold. Also functions executed once (such as cold,
noreturn, static constructors or destructors) are identified. Cold functions and
loop less parts of functions executed once are then optimized for size. Enabled
by default at ‘-0’ and higher.

Chapter 3: GCC Command Options 107

-fipa-cp Perform interprocedural constant propagation. This optimization analyzes the
program to determine when values passed to functions are constants and then
optimizes accordingly. This optimization can substantially increase perfor-
mance if the application has constants passed to functions. This flag is enabled
by default at ‘-02’, ‘-0s’ and ‘-03’.

-fipa-cp-clone
Perform function cloning to make interprocedural constant propagation
stronger. When enabled, interprocedural constant propagation will perform
function cloning when externally visible function can be called with constant
arguments. Because this optimization can create multiple copies of functions, it
may significantly increase code size (see ‘~-param ipcp-unit-growth=value’).
This flag is enabled by default at ‘-03’.

-fipa-matrix-reorg

Perform matrix flattening and transposing. Matrix flattening tries to replace an
m-dimensional matrix with its equivalent n-dimensional matrix, where n < m.
This reduces the level of indirection needed for accessing the elements of the
matrix. The second optimization is matrix transposing, which attempts to
change the order of the matrix’s dimensions in order to improve cache locality.
Both optimizations need the ‘-fwhole-program’ flag. Transposing is enabled
only if profiling information is available.

—-ftree-sink
Perform forward store motion on trees. This flag is enabled by default at ‘-0’
and higher.

-ftree-bit-ccp
Perform sparse conditional bit constant propagation on trees and propagate
pointer alignment information. This pass only operates on local scalar variables
and is enabled by default at ‘-0’ and higher. It requires that ‘-ftree-ccp’ is
enabled.

-ftree-ccp
Perform sparse conditional constant propagation (CCP) on trees. This pass
only operates on local scalar variables and is enabled by default at ‘-0 and
higher.

-ftree-switch-conversion
Perform conversion of simple initializations in a switch to initializations from a
scalar array. This flag is enabled by default at ‘-02’ and higher.

-ftree-tail-merge
Look for identical code sequences. When found, replace one with a jump
to the other. This optimization is known as tail merging or cross jumping.
This flag is enabled by default at ‘-02’ and higher. The compilation time in
this pass can be limited using ‘max-tail-merge-comparisons’ parameter and
‘max-tail-merge-iterations’ parameter.

-ftree-dce
Perform dead code elimination (DCE) on trees. This flag is enabled by default
at ‘=0’ and higher.

108

Using the GNU Compiler Collection (GCC)

—-ftree-builtin-call-dce

Perform conditional dead code elimination (DCE) for calls to builtin functions
that may set errno but are otherwise side-effect free. This flag is enabled by
default at ‘=02’ and higher if ‘-0s’ is not also specified.

-ftree-dominator-opts

Perform a variety of simple scalar cleanups (constant/copy propagation, redun-
dancy elimination, range propagation and expression simplification) based on a
dominator tree traversal. This also performs jump threading (to reduce jumps
to jumps). This flag is enabled by default at ‘-0’ and higher.

-ftree-dse

Perform dead store elimination (DSE) on trees. A dead store is a store into a
memory location that is later overwritten by another store without any inter-
vening loads. In this case the earlier store can be deleted. This flag is enabled
by default at ‘-0’ and higher.

—-ftree-ch

Perform loop header copying on trees. This is beneficial since it increases ef-
fectiveness of code motion optimizations. It also saves one jump. This flag is
enabled by default at ‘-0’ and higher. It is not enabled for ‘-0s’, since it usually
increases code size.

—-ftree-loop-optimize

Perform loop optimizations on trees. This flag is enabled by default at ‘-0’ and
higher.

-ftree-loop-linear

Perform loop interchange transformations on tree. Same as
‘-floop-interchange’. To wuse this code transformation, GCC has
to be configured with ‘--with-ppl’ and ‘--with-cloog’ to enable the
Graphite loop transformation infrastructure.

-floop-interchange

Perform loop interchange transformations on loops. Interchanging two nested
loops switches the inner and outer loops. For example, given a loop like:

DO J =1, M
DOI =1, N
AQJ, I) = A(J, I) x C
ENDDO
ENDDO

loop interchange will transform the loop as if the user had written:

DOI =1, N
DO J =1, M
AQJ, I) = AQJ, I) * C
ENDDO
ENDDO

which can be beneficial when N is larger than the caches, because in Fortran,
the elements of an array are stored in memory contiguously by column, and
the original loop iterates over rows, potentially creating at each access a cache
miss. This optimization applies to all the languages supported by GCC and

Chapter 3: GCC Command Options 109

is not limited to Fortran. To use this code transformation, GCC has to be
configured with ‘--with-ppl’ and ‘--with-cloog’ to enable the Graphite loop
transformation infrastructure.

-floop-strip-mine
Perform loop strip mining transformations on loops. Strip mining splits a loop
into two nested loops. The outer loop has strides equal to the strip size and the
inner loop has strides of the original loop within a strip. The strip length can
be changed using the ‘loop-block-tile-size’ parameter. For example, given
a loop like:

loop strip mining will transform the loop as if the user had written:

DO II = 1, N, 51
DO I = II, min (II + 50, N)
A(I) = A(I) + C
ENDDO
ENDDO

This optimization applies to all the languages supported by GCC and is not
limited to Fortran. To use this code transformation, GCC has to be configured

with ‘--with-ppl’ and ‘--with-cloog’ to enable the Graphite loop transfor-
mation infrastructure.

-floop-block
Perform loop blocking transformations on loops. Blocking strip mines each loop
in the loop nest such that the memory accesses of the element loops fit inside
caches. The strip length can be changed using the ‘loop-block-tile-size’
parameter. For example, given a loop like:

DOI=1,N
D0J=1,M
A(J, I) = B(D) + C(D
ENDDO
ENDDO

loop blocking will transform the loop as if the user had written:
DO II =1, N, 51
DO JJ =1, M, 51
DO I = II, min (II + 50, N)
DO J = JJ, min (JJ + 50, M)
A(J, I) = B(I) + C(D)
ENDDO
ENDDO
ENDDO
ENDDO

which can be beneficial when M is larger than the caches, because the inner-
most loop will iterate over a smaller amount of data which can be kept in the
caches. This optimization applies to all the languages supported by GCC and
is not limited to Fortran. To use this code transformation, GCC has to be
configured with ‘--with-ppl’” and ‘--with-cloog’ to enable the Graphite loop
transformation infrastructure.

110 Using the GNU Compiler Collection (GCC)

-fgraphite-identity
Enable the identity transformation for graphite. For every SCoP we gener-
ate the polyhedral representation and transform it back to gimple. Using
‘~-fgraphite-identity’ we can check the costs or benefits of the GIMPLE
-> GRAPHITE -> GIMPLE transformation. Some minimal optimizations are
also performed by the code generator CLooG, like index splitting and dead code
elimination in loops.

-floop-flatten
Removes the loop nesting structure: transforms the loop nest into a single loop.
This transformation can be useful as an enablement transform for vectorization
and parallelization. This feature is experimental. To use this code transfor-
mation, GCC has to be configured with ‘--with-ppl’ and ‘--with-cloog’ to
enable the Graphite loop transformation infrastructure.

-floop-parallelize-all
Use the Graphite data dependence analysis to identify loops that can be paral-
lelized. Parallelize all the loops that can be analyzed to not contain loop carried
dependences without checking that it is profitable to parallelize the loops.

-fcheck-data-deps
Compare the results of several data dependence analyzers. This option is used
for debugging the data dependence analyzers.

-ftree-loop-if-convert
Attempt to transform conditional jumps in the innermost loops to branch-less
equivalents. The intent is to remove control-flow from the innermost loops in
order to improve the ability of the vectorization pass to handle these loops.
This is enabled by default if vectorization is enabled.

—-ftree-loop-if-convert-stores
Attempt to also if-convert conditional jumps containing memory writes. This
transformation can be unsafe for multi-threaded programs as it transforms con-
ditional memory writes into unconditional memory writes. For example,
for (i = 0; i < N; i++)
if (cond)
A[i] = expr;
would be transformed to
0; i < N; i++)
cond 7 expr : A[il;

for (i
Ali]

potentially producing data races.

-ftree-loop-distribution
Perform loop distribution. This flag can improve cache performance on big loop
bodies and allow further loop optimizations, like parallelization or vectorization,
to take place. For example, the loop

DOI =1, N
A(I) = B(I) + C
D(I) = E(I) = F
ENDDO

is transformed to

Chapter 3: GCC Command Options 111

DOI =1, N

A(I) = B(I) +C
ENDDO
DOI =1, N

D(I) = E(I) = F
ENDDO

-ftree-loop-distribute-patterns
Perform loop distribution of patterns that can be code generated with calls to
a library. This flag is enabled by default at ‘-03’.

This pass distributes the initialization loops and generates a call to memset
zero. For example, the loop

DOI =1, N

A(I) =0

B(I) = A(I) + I
ENDDO

is transformed to

DOI =1, N

A(I) =0
ENDDO
DOI =1, N

B(I) = A(I) + I
ENDDO

and the initialization loop is transformed into a call to memset zero.

-ftree-loop-im
Perform loop invariant motion on trees. This pass moves only invariants that
would be hard to handle at RTL level (function calls, operations that expand
to nontrivial sequences of insns). With ‘-~funswitch-loops’ it also moves
operands of conditions that are invariant out of the loop, so that we can use
just trivial invariantness analysis in loop unswitching. The pass also includes
store motion.

-ftree-loop-ivcanon
Create a canonical counter for number of iterations in loops for which deter-
mining number of iterations requires complicated analysis. Later optimizations
then may determine the number easily. Useful especially in connection with
unrolling.

-fivopts Perform induction variable optimizations (strength reduction, induction vari-
able merging and induction variable elimination) on trees.

-ftree-parallelize-loops=n
Parallelize loops, i.e., split their iteration space to run in n threads. This is
only possible for loops whose iterations are independent and can be arbitrarily
reordered. The optimization is only profitable on multiprocessor machines, for
loops that are CPU-intensive, rather than constrained e.g. by memory band-
width. This option implies ‘-pthread’, and thus is only supported on targets
that have support for ‘-pthread’.

-ftree-pta
Perform function-local points-to analysis on trees. This flag is enabled by de-
fault at ‘-0’ and higher.

112 Using the GNU Compiler Collection (GCC)

-ftree-sra
Perform scalar replacement of aggregates. This pass replaces structure refer-
ences with scalars to prevent committing structures to memory too early. This
flag is enabled by default at ‘-0’ and higher.

-ftree-copyrename
Perform copy renaming on trees. This pass attempts to rename compiler tem-
poraries to other variables at copy locations, usually resulting in variable names
which more closely resemble the original variables. This flag is enabled by de-
fault at ‘-0 and higher.

—-ftree-coalesce-inlined-vars

Tell the copyrename pass (see ‘-ftree-copyrename’) to attempt to combine
small user-defined variables too, but only if they were inlined from other func-
tions. It is a more limited form of ‘~-ftree-coalesce-vars’. This may harm
debug information of such inlined variables, but it will keep variables of the
inlined-into function apart from each other, such that they are more likely to
contain the expected values in a debugging session. This was the default in
GCC versions older than 4.7.

-ftree-coalesce-vars
Tell the copyrename pass (see ‘-ftree-copyrename’) to attempt to combine
small user-defined variables too, instead of just compiler temporaries. This
may severely limit the ability to debug an optimized program compiled with
‘~fno-var-tracking-assignments’. In the negated form, this flag prevents
SSA coalescing of user variables, including inlined ones. This option is enabled
by default.

—-ftree-ter
Perform temporary expression replacement during the SSA->normal phase. Sin-
gle use/single def temporaries are replaced at their use location with their defin-
ing expression. This results in non-GIMPLE code, but gives the expanders
much more complex trees to work on resulting in better RTL generation. This
is enabled by default at ‘-0’ and higher.

-ftree-vectorize
Perform loop vectorization on trees. This flag is enabled by default at ‘-03’.

-ftree-slp-vectorize
Perform basic block vectorization on trees. This flag is enabled by default at
‘-03” and when ‘~ftree-vectorize’ is enabled.

-ftree-vect-loop-version
Perform loop versioning when doing loop vectorization on trees. When a loop
appears to be vectorizable except that data alignment or data dependence can-
not be determined at compile time, then vectorized and non-vectorized versions
of the loop are generated along with run-time checks for alignment or depen-
dence to control which version is executed. This option is enabled by default
except at level ‘-=0s’ where it is disabled.

-fvect-cost-model
Enable cost model for vectorization.

Chapter 3: GCC Command Options 113

-ftree-vrp
Perform Value Range Propagation on trees. This is similar to the constant prop-
agation pass, but instead of values, ranges of values are propagated. This allows
the optimizers to remove unnecessary range checks like array bound checks and
null pointer checks. This is enabled by default at ‘=02 and higher. Null pointer
check elimination is only done if ‘~fdelete-null-pointer-checks’ is enabled.

-ftracer Perform tail duplication to enlarge superblock size. This transformation sim-
plifies the control flow of the function allowing other optimizations to do better
job.

-funroll-loops
Unroll loops whose number of iterations can be determined at compile time or
upon entry to the loop. ‘~funroll-loops’ implies ‘~frerun-cse-after-loop’.
This option makes code larger, and may or may not make it run faster.

-funroll-all-loops
Unroll all loops, even if their number of iterations is uncertain when the loop is
entered. This usually makes programs run more slowly. ‘~funroll-all-loops’
implies the same options as ‘-funroll-loops’,

-fsplit-ivs-in-unroller
Enables expressing of values of induction variables in later iterations of the
unrolled loop using the value in the first iteration. This breaks long dependency
chains, thus improving efficiency of the scheduling passes.

Combination of ‘-fweb’ and CSE is often sufficient to obtain the same effect.
However in cases the loop body is more complicated than a single basic block,
this is not reliable. It also does not work at all on some of the architectures
due to restrictions in the CSE pass.

This optimization is enabled by default.

-fvariable-expansion-in-unroller
With this option, the compiler will create multiple copies of some local variables
when unrolling a loop which can result in superior code.

-fpartial-inlining
Inline parts of functions. This option has any effect only when inlining itself
is turned on by the ‘~-finline-functions’ or ‘-finline-small-functions’
options.

Enabled at level ‘-02’.

-fpredictive-commoning
Perform predictive commoning optimization, i.e., reusing computations (espe-
cially memory loads and stores) performed in previous iterations of loops.
This option is enabled at level ‘-03’.

—-fprefetch-loop-arrays
If supported by the target machine, generate instructions to prefetch memory
to improve the performance of loops that access large arrays.

This option may generate better or worse code; results are highly dependent on
the structure of loops within the source code.

114 Using the GNU Compiler Collection (GCC)

Disabled at level ‘-0s’.

-fno-peephole

—-fno-peephole?2
Disable any machine-specific peephole optimizations. The difference between
‘~fno-peephole’ and ‘~fno-peephole2’ is in how they are implemented in the
compiler; some targets use one, some use the other, a few use both.

‘~fpeephole’ is enabled by default. ‘-fpeephole2’ enabled at levels ‘-02’,
‘-03’, ‘-0s’.

-fno-guess-branch-probability
Do not guess branch probabilities using heuristics.

GCC will use heuristics to guess branch probabilities if they are not
provided by profiling feedback (‘-fprofile-arcs’). These heuristics
are based on the control flow graph. If some branch probabilities are
specified by ‘__builtin_expect’, then the heuristics will be used to guess
branch probabilities for the rest of the control flow graph, taking the
‘__builtin_expect’ info into account. The interactions between the heuristics
and ‘__builtin_expect’ can be complex, and in some cases, it may be useful
to disable the heuristics so that the effects of ‘__builtin_expect’ are easier
to understand.

The default is ‘~fguess-branch-probability’ at levels ‘-0°, ‘~-02’, ‘-03’, ‘-0s’.

—-freorder-blocks
Reorder basic blocks in the compiled function in order to reduce number of
taken branches and improve code locality.

Enabled at levels ‘-02’, ‘~-03’.

-freorder-blocks—-and-partition

In addition to reordering basic blocks in the compiled function, in order to
reduce number of taken branches, partitions hot and cold basic blocks into
separate sections of the assembly and .o files, to improve paging and cache
locality performance.

This optimization is automatically turned off in the presence of exception han-
dling, for linkonce sections, for functions with a user-defined section attribute
and on any architecture that does not support named sections.

—-freorder-functions
Reorder functions in the object file in order to improve code locality. This is im-
plemented by using special subsections .text.hot for most frequently executed
functions and .text.unlikely for unlikely executed functions. Reordering is
done by the linker so object file format must support named sections and linker
must place them in a reasonable way.

Also profile feedback must be available in to make this option effective. See
‘~fprofile-arcs’ for details.
Enabled at levels ‘-02’, ‘~-03’, ‘-0s’.

—-fstrict-aliasing
Allow the compiler to assume the strictest aliasing rules applicable to the lan-
guage being compiled. For C (and C++), this activates optimizations based on

Chapter 3: GCC Command Options 115

the type of expressions. In particular, an object of one type is assumed never
to reside at the same address as an object of a different type, unless the types
are almost the same. For example, an unsigned int can alias an int, but not
a void* or a double. A character type may alias any other type.

Pay special attention to code like this:

union a_union {
int i;

double d;

}s

int £() {
union a_union t;
t.d = 3.0;
return t.i;
}
The practice of reading from a different union member than the one
most recently written to (called “type-punning”) is common. Even with
‘~fstrict-aliasing’, type-punning is allowed, provided the memory is
accessed through the union type. So, the code above will work as expected.
See Section 4.9 [Structures unions enumerations and bit-fields implementation)],
page 307. However, this code might not:

int £ {
union a_union t;
int* ip;
t.d = 3.0;
ip = &t.1i;
return *ip;
}
Similarly, access by taking the address, casting the resulting pointer and deref-
erencing the result has undefined behavior, even if the cast uses a union type,
e.g.:
int £ {
double d = 3.0;
return ((union a_union *) &d)->i;

}

The ‘~fstrict-aliasing’ option is enabled at levels ‘-02’, *-03’, ‘-0s’.

-fstrict-overflow

Allow the compiler to assume strict signed overflow rules, depending on the lan-
guage being compiled. For C (and C++) this means that overflow when doing
arithmetic with signed numbers is undefined, which means that the compiler
may assume that it will not happen. This permits various optimizations. For
example, the compiler will assume that an expression like i + 10 > i will always
be true for signed i. This assumption is only valid if signed overflow is unde-
fined, as the expression is false if 1 + 10 overflows when using twos complement
arithmetic. When this option is in effect any attempt to determine whether
an operation on signed numbers will overflow must be written carefully to not
actually involve overflow.

This option also allows the compiler to assume strict pointer semantics: given
a pointer to an object, if adding an offset to that pointer does not produce a

116 Using the GNU Compiler Collection (GCC)

pointer to the same object, the addition is undefined. This permits the compiler
to conclude that p + u > p is always true for a pointer p and unsigned integer
u. This assumption is only valid because pointer wraparound is undefined, as
the expression is false if p + u overflows using twos complement arithmetic.

See also the ‘~fwrapv’ option. Using ‘~fwrapv’ means that integer signed over-
flow is fully defined: it wraps. When ‘-fwrapv’ is used, there is no difference
between ‘~fstrict-overflow’ and ‘-fno-strict-overflow’ for integers. With
‘~fwrapv’ certain types of overflow are permitted. For example, if the compiler
gets an overflow when doing arithmetic on constants, the overflowed value can
still be used with ‘~fwrapv’, but not otherwise.

The ‘~fstrict-overflow’ option is enabled at levels ‘-02’, ‘-03’, ‘-0s’.

-falign-functions

-falign-functions=n
Align the start of functions to the next power-of-two greater than n, skipping
up to n bytes. For instance, ‘-falign-functions=32’ aligns functions to the
next 32-byte boundary, but ‘-falign-functions=24’ would align to the next
32-byte boundary only if this can be done by skipping 23 bytes or less.

‘-fno-align-functions’ and ‘-falign-functions=1’ are equivalent and mean
that functions will not be aligned.

Some assemblers only support this flag when n is a power of two; in that case,
it is rounded up.

If n is not specified or is zero, use a machine-dependent default.
Enabled at levels ‘--02’, ‘-03’.

-falign-labels

-falign-labels=n
Align all branch targets to a power-of-two boundary, skipping up to n bytes
like ‘~falign-functions’. This option can easily make code slower, because
it must insert dummy operations for when the branch target is reached in the
usual flow of the code.

‘-fno-align-labels’ and ‘-falign-labels=1" are equivalent and mean that
labels will not be aligned.

If ‘~falign-loops’ or ‘~falign-jumps’ are applicable and are greater than this
value, then their values are used instead.

If n is not specified or is zero, use a machine-dependent default which is very
likely to be ‘1’, meaning no alignment.

Enabled at levels ‘-02’, ‘~-03’.

—-falign-loops

-falign-loops=n
Align loops to a power-of-two boundary, skipping up to n bytes like
‘~falign-functions’. The hope is that the loop will be executed many times,
which will make up for any execution of the dummy operations.

‘-fno-align-loops’ and ‘-falign-loops=1’" are equivalent and mean that
loops will not be aligned.

Chapter 3: GCC Command Options 117

If n is not specified or is zero, use a machine-dependent default.
Enabled at levels ‘-02’, ‘~-03’.

-falign—-jumps
-falign-jumps=n

Align branch targets to a power-of-two boundary, for branch targets where
the targets can only be reached by jumping, skipping up to n bytes like
‘~falign-functions’. In this case, no dummy operations need be executed.

‘~fno-align-jumps’ and ‘-falign-jumps=1" are equivalent and mean that
loops will not be aligned.

If n is not specified or is zero, use a machine-dependent default.
Enabled at levels ‘-02’, ‘~-03’.

—funit-at-a-time

This option is left for compatibility reasons. ‘-funit-at-a-time’ has no
effect, while ‘~fno-unit-at-a-time’ implies ‘~-fno-toplevel-reorder’ and
‘~fno-section-anchors’.

Enabled by default.

—-fno-toplevel-reorder

-fweb

Do not reorder top-level functions, variables, and asm statements. Output them
in the same order that they appear in the input file. When this option is used,
unreferenced static variables will not be removed. This option is intended to
support existing code that relies on a particular ordering. For new code, it is
better to use attributes.

Enabled at level °-00’. When disabled explicitly, it also implies
‘~fno-section-anchors’, which is otherwise enabled at ‘=00’ on some targets.

Constructs webs as commonly used for register allocation purposes and assign
each web individual pseudo register. This allows the register allocation pass
to operate on pseudos directly, but also strengthens several other optimization
passes, such as CSE, loop optimizer and trivial dead code remover. It can,
however, make debugging impossible, since variables will no longer stay in a
“home register”.

Enabled by default with ‘~funroll-loops’.

-fwhole-program

Assume that the current compilation unit represents the whole program being
compiled. All public functions and variables with the exception of main and
those merged by attribute externally_visible become static functions and
in effect are optimized more aggressively by interprocedural optimizers. If gold
is used as the linker plugin, externally_visible attributes are automatically
added to functions (not variable yet due to a current gold issue) that are ac-
cessed outside of LTO objects according to resolution file produced by gold. For
other linkers that cannot generate resolution file, explicit externally_visible
attributes are still necessary. While this option is equivalent to proper use of
the static keyword for programs consisting of a single file, in combination

118

-flto[=n]

Using the GNU Compiler Collection (GCC)

with option ‘-flto’ this flag can be used to compile many smaller scale pro-
grams since the functions and variables become local for the whole combined
compilation unit, not for the single source file itself.

This option implies ‘-fwhole-file’ for Fortran programs.

This option runs the standard link-time optimizer. When invoked with source
code, it generates GIMPLE (one of GCC’s internal representations) and writes
it to special ELF sections in the object file. When the object files are linked
together, all the function bodies are read from these ELF sections and instan-
tiated as if they had been part of the same translation unit.

To use the link-time optimizer, ‘~f1to’ needs to be specified at compile time
and during the final link. For example:

gcc -¢ -02 -flto foo.c

gcc —c -02 -flto bar.c

gcc —o myprog —-flto -02 foo.o bar.o
The first two invocations to GCC save a bytecode representation of GIMPLE
into special ELF sections inside ‘foo.0’ and ‘bar.o’. The final invocation reads
the GIMPLE bytecode from ‘foo.o’ and ‘bar.o’, merges the two files into a
single internal image, and compiles the result as usual. Since both ‘foo.o’
and ‘bar.o’ are merged into a single image, this causes all the interprocedural
analyses and optimizations in GCC to work across the two files as if they were a
single one. This means, for example, that the inliner is able to inline functions
in ‘bar.o’ into functions in ‘foo.o’ and vice-versa.

Another (simpler) way to enable link-time optimization is:
gcc —o myprog —-flto -02 foo.c bar.c

The above generates bytecode for ‘foo.c’ and ‘bar.c’, merges them together
into a single GIMPLE representation and optimizes them as usual to produce
‘myprog’.

The only important thing to keep in mind is that to enable link-time opti-
mizations the ‘-fl1to’ flag needs to be passed to both the compile and the link
commands.

To make whole program optimization effective, it is necessary to make
certain whole program assumptions. The compiler needs to know what
functions and variables can be accessed by libraries and runtime outside
of the link-time optimized unit. When supported by the linker, the linker
plugin (see ‘~fuse-linker-plugin’) passes information to the compiler about
used and externally visible symbols. When the linker plugin is not available,
‘~fwhole-program’ should be used to allow the compiler to make these
assumptions, which leads to more aggressive optimization decisions.

Note that when a file is compiled with ‘-f1to’, the generated object file is larger
than a regular object file because it contains GIMPLE bytecodes and the usual
final code. This means that object files with LTO information can be linked
as normal object files; if ‘~f1to’ is not passed to the linker, no interprocedural
optimizations are applied.

Chapter 3: GCC Command Options 119

Additionally, the optimization flags used to compile individual files are not
necessarily related to those used at link time. For instance,
gcc —c¢ -00 -flto foo.c

gcc —-c¢ -00 -flto bar.c
gcc -o myprog —-flto -03 foo.o bar.o

This produces individual object files with unoptimized assembler code, but the
resulting binary ‘myprog’ is optimized at ‘-03’. If, instead, the final binary is
generated without ‘-f1to’, then ‘myprog’ is not optimized.

When producing the final binary with ‘-flto’, GCC only applies link-time
optimizations to those files that contain bytecode. Therefore, you can mix and
match object files and libraries with GIMPLE bytecodes and final object code.
GCC automatically selects which files to optimize in LTO mode and which files
to link without further processing.

There are some code generation flags preserved by GCC when generating byte-
codes, as they need to be used during the final link stage. Currently, the fol-
lowing options are saved into the GIMPLE bytecode files: ‘~fPIC’, ‘-fcommon’
and all the ‘-m’ target flags.

At link time, these options are read in and reapplied. Note that the current
implementation makes no attempt to recognize conflicting values for these op-
tions. If different files have conflicting option values (e.g., one file is compiled
with ‘~fPIC’ and another isn’t), the compiler simply uses the last value read
from the bytecode files. It is recommended, then, that you compile all the files
participating in the same link with the same options.

If LTO encounters objects with C linkage declared with incompatible types in
separate translation units to be linked together (undefined behavior according
to ISO C99 6.2.7), a non-fatal diagnostic may be issued. The behavior is still
undefined at run time.

Another feature of LTO is that it is possible to apply interprocedural opti-
mizations on files written in different languages. This requires support in the
language front end. Currently, the C, C++ and Fortran front ends are capable
of emitting GIMPLE bytecodes, so something like this should work:

gcc -c¢ —-flto foo.c

g++ —c -flto bar.cc

gfortran -c -flto baz.f90
g++ -o myprog -flto -03 foo.o bar.o baz.o -lgfortran

Notice that the final link is done with g++ to get the C++ runtime libraries and
‘~lgfortran’ is added to get the Fortran runtime libraries. In general, when
mixing languages in LTO mode, you should use the same link command options
as when mixing languages in a regular (non-LTO) compilation; all you need to
add is ‘=f1to’ to all the compile and link commands.

If object files containing GIMPLE bytecode are stored in a library archive,
say ‘libfoo.a’, it is possible to extract and use them in an LTO link if you
are using a linker with plugin support. To enable this feature, use the flag
‘~fuse-linker-plugin’ at link time:

gcc -o myprog -02 -flto -fuse-linker-plugin a.o b.o -1foo

120

Using the GNU Compiler Collection (GCC)

With the linker plugin enabled, the linker extracts the needed GIMPLE files
from ‘1ibfoo.a’ and passes them on to the running GCC to make them part
of the aggregated GIMPLE image to be optimized.

If you are not using a linker with plugin support and/or do not enable the linker
plugin, then the objects inside ‘libfoo.a’ are extracted and linked as usual,
but they do not participate in the LTO optimization process.

Link-time optimizations do not require the presence of the whole program to
operate. If the program does not require any symbols to be exported, it is pos-
sible to combine ‘-flto’ and ‘-fwhole-program’ to allow the interprocedural
optimizers to use more aggressive assumptions which may lead to improved op-
timization opportunities. Use of ‘~fwhole-program’ is not needed when linker
plugin is active (see ‘-~fuse-linker-plugin’).

The current implementation of LTO makes no attempt to generate bytecode
that is portable between different types of hosts. The bytecode files are ver-
sioned and there is a strict version check, so bytecode files generated in one
version of GCC will not work with an older/newer version of GCC.

Link-time optimization does not work well with generation of debugging infor-
mation. Combining ‘-flto’ with ‘-g’ is currently experimental and expected
to produce wrong results.

If you specify the optional n, the optimization and code generation done at link
time is executed in parallel using n parallel jobs by utilizing an installed make
program. The environment variable MAKE may be used to override the program
used. The default value for n is 1.

You can also specify ‘~flto=jobserver’ to use GNU make’s job server mode to
determine the number of parallel jobs. This is useful when the Makefile calling
GCC is already executing in parallel. You must prepend a ‘+’ to the command
recipe in the parent Makefile for this to work. This option likely only works if
MAKE is GNU make.

This option is disabled by default

-flto-partition=alg

Specify the partitioning algorithm used by the link-time optimizer. The value
is either 1tol to specify a partitioning mirroring the original source files or
balanced to specify partitioning into equally sized chunks (whenever possible).
Specifying none as an algorithm disables partitioning and streaming completely.
The default value is balanced.

-flto-compression-level=n

This option specifies the level of compression used for intermediate language
written to LTO object files, and is only meaningful in conjunction with LTO
mode (‘-f1to’). Valid values are 0 (no compression) to 9 (maximum compres-
sion). Values outside this range are clamped to either 0 or 9. If the option is
not given, a default balanced compression setting is used.

-flto-report

Prints a report with internal details on the workings of the link-time optimizer.
The contents of this report vary from version to version. It is meant to be useful
to GCC developers when processing object files in LTO mode (via ‘-f1to’).

Chapter 3: GCC Command Options 121

Disabled by default.

-fuse-linker-plugin
Enables the use of a linker plugin during link-time optimization. This option
relies on plugin support in the linker, which is available in gold or in GNU 1d
2.21 or newer.

This option enables the extraction of object files with GIMPLE bytecode out
of library archives. This improves the quality of optimization by exposing more
code to the link-time optimizer. This information specifies what symbols can be
accessed externally (by non-LTO object or during dynamic linking). Resulting
code quality improvements on binaries (and shared libraries that use hidden
visibility) are similar to ~-fwhole-program. See ‘~flto’ for a description of the
effect of this flag and how to use it.

This option is enabled by default when LTO support in GCC is enabled and
GCC was configured for use with a linker supporting plugins (GNU 1d 2.21 or
newer or gold).

-ffat-lto-objects
Fat LTO objects are object files that contain both the intermediate language
and the object code. This makes them usable for both LTO linking and normal
linking. This option is effective only when compiling with ‘-f1to’ and is ignored
at link time.

‘~fno-fat-1lto-objects’ improves compilation time over plain LTO, but re-
quires the complete toolchain to be aware of LTO. It requires a linker with
linker plugin support for basic functionality. Additionally, nm, ar and ran-
lib need to support linker plugins to allow a full-featured build environment
(capable of building static libraries etc).

The default is ‘-ffat-1to-objects’ but this default is intended to change in
future releases when linker plugin enabled environments become more common.

-fcompare-elim
After register allocation and post-register allocation instruction splitting, iden-
tify arithmetic instructions that compute processor flags similar to a comparison
operation based on that arithmetic. If possible, eliminate the explicit compar-
ison operation.

This pass only applies to certain targets that cannot explicitly represent the
comparison operation before register allocation is complete.

Enabled at levels ‘-0°, ‘~-02’, ‘-03’, ‘-0s’.

-fcprop-registers
After register allocation and post-register allocation instruction splitting, we
perform a copy-propagation pass to try to reduce scheduling dependencies and
occasionally eliminate the copy.

Enabled at levels ‘-0’, ‘~-02’, ‘-03’, ‘-0s’.

-fprofile-correction
Profiles collected using an instrumented binary for multi-threaded programs
may be inconsistent due to missed counter updates. When this option is spec-
ified, GCC will use heuristics to correct or smooth out such inconsistencies.

122

Using the GNU Compiler Collection (GCC)

By default, GCC will emit an error message when an inconsistent profile is
detected.

-fprofile-dir=path

Set the directory to search for the profile data files in to path. This
option affects only the profile data generated by ‘-fprofile-generate’,
‘~-ftest-coverage’, ‘-fprofile-arcs’ and used by ‘-fprofile-use’ and
‘~fbranch-probabilities’ and its related options. Both absolute and relative
paths can be used. By default, GCC will use the current directory as path,
thus the profile data file will appear in the same directory as the object file.

-fprofile-generate
-fprofile-generate=path

Enable options usually used for instrumenting application to produce profile
useful for later recompilation with profile feedback based optimization. You
must use ‘~fprofile-generate’ both when compiling and when linking your
program.

The following options are enabled: -fprofile-arcs, -fprofile-values, -
fvpt.

If path is specified, GCC will look at the path to find the profile feedback data
files. See ‘~fprofile-dir’.

-fprofile-use
-fprofile-use=path

Enable profile feedback directed optimizations, and optimizations generally
profitable only with profile feedback available.

The following options are enabled: -fbranch-probabilities, -fvpt,
-funroll-loops, -fpeel-loops, —ftracer

By default, GCC emits an error message if the feedback profiles do not
match the source code. This error can be turned into a warning by using
‘~Wcoverage-mismatch’. Note this may result in poorly optimized code.

If path is specified, GCC will look at the path to find the profile feedback data
files. See ‘-fprofile-dir’.

The following options control compiler behavior regarding floating-point arithmetic.
These options trade off between speed and correctness. All must be specifically enabled.

—-ffloat-store

Do not store floating-point variables in registers, and inhibit other options that
might change whether a floating-point value is taken from a register or memory.
This option prevents undesirable excess precision on machines such as the 68000
where the floating registers (of the 68881) keep more precision than a double
is supposed to have. Similarly for the x86 architecture. For most programs,
the excess precision does only good, but a few programs rely on the precise
definition of IEEE floating point. Use ‘-ffloat-store’ for such programs, after
modifying them to store all pertinent intermediate computations into variables.

-fexcess-precision=style

This option allows further control over excess precision on machines where
floating-point registers have more precision than the IEEE float and double

Chapter 3: GCC Command Options 123

types and the processor does not support operations rounding to those types.
By default, ‘~fexcess-precision=fast’ is in effect; this means that operations
are carried out in the precision of the registers and that it is unpredictable when
rounding to the types specified in the source code takes place. When compiling
C, if ‘~fexcess-precision=standard’ is specified then excess precision will
follow the rules specified in ISO C99; in particular, both casts and assignments
cause values to be rounded to their semantic types (whereas ‘~ffloat-store’
only affects assignments). This option is enabled by default for C if a strict
conformance option such as ‘-std=c99’ is used.

‘~-fexcess-precision=standard’ is not implemented for languages other than
C, and has no effect if ‘~-funsafe-math-optimizations’ or ‘-ffast-math’
is specified. On the x86, it also has no effect if ‘-mfpmath=sse’ or
‘-mfpmath=sse+387’ is specified; in the former case, IEEE semantics apply
without excess precision, and in the latter, rounding is unpredictable.

—-ffast-math
Sets ‘~fno-math-errno’, ‘~-funsafe-math-optimizations’, ‘~-ffinite-math-only’ |}
‘~fno-rounding-math’, ‘-fno-signaling-nans’ and ‘-~fcx-limited-range’.
This option causes the preprocessor macro __FAST_MATH__ to be defined.

This option is not turned on by any ‘-0 option besides ‘-0fast’ since it can
result in incorrect output for programs that depend on an exact implementation
of IEEE or ISO rules/specifications for math functions. It may, however, yield
faster code for programs that do not require the guarantees of these specifica-
tions.

-fno-math-errno

Do not set ERRNO after calling math functions that are executed with a single
instruction, e.g., sqrt. A program that relies on IEEE exceptions for math error
handling may want to use this flag for speed while maintaining IEEE arithmetic
compatibility.

This option is not turned on by any ‘-0’ option since it can result in incorrect
output for programs that depend on an exact implementation of IEEE or ISO
rules/specifications for math functions. It may, however, yield faster code for
programs that do not require the guarantees of these specifications.

The default is ‘-fmath-errno’.

On Darwin systems, the math library never sets errno. There is therefore
no reason for the compiler to consider the possibility that it might, and
‘~fno-math-errno’ is the default.

-funsafe-math-optimizations

Allow optimizations for floating-point arithmetic that (a) assume that argu-
ments and results are valid and (b) may violate IEEE or ANSI standards.
When used at link-time, it may include libraries or startup files that change the
default FPU control word or other similar optimizations.

This option is not turned on by any ‘-0’ option since it can result in incor-
rect output for programs that depend on an exact implementation of IEEE
or ISO rules/specifications for math functions. It may, however, yield faster

124

Using the GNU Compiler Collection (GCC)

code for programs that do not require the guarantees of these specifications.
Enables ‘-fno-signed-zeros’, ‘~-fno-trapping-math’, ‘-fassociative-math’
and ‘-freciprocal-math’.

The default is ‘-fno-unsafe-math-optimizations’.

-fassociative-math

Allow re-association of operands in series of floating-point operations. This vi-
olates the ISO C and C++ language standard by possibly changing computation
result. NOTE: re-ordering may change the sign of zero as well as ignore NaNs
and inhibit or create underflow or overflow (and thus cannot be used on code
that relies on rounding behavior like (x + 2**52) - 2xx52. May also reorder
floating-point comparisons and thus may not be used when ordered compar-
isons are required. This option requires that both ‘~fno-signed-zeros’ and
‘~fno-trapping-math’ be in effect. Moreover, it doesn’t make much sense with
‘~frounding-math’. For Fortran the option is automatically enabled when both
‘~fno-signed-zeros’ and ‘~fno-trapping-math’ are in effect.

The default is ‘-fno-associative-math’.

-freciprocal-math

Allow the reciprocal of a value to be used instead of dividing by the value if
this enables optimizations. For example x / y can be replaced with x * (1/y),
which is useful if (1/y) is subject to common subexpression elimination. Note
that this loses precision and increases the number of flops operating on the
value.

The default is ‘~fno-reciprocal-math’.

-ffinite-math-only

Allow optimizations for floating-point arithmetic that assume that arguments
and results are not NaNs or +-Infs.

This option is not turned on by any ‘-0’ option since it can result in incorrect
output for programs that depend on an exact implementation of IEEE or ISO
rules/specifications for math functions. It may, however, yield faster code for
programs that do not require the guarantees of these specifications.

The default is ‘-fno-finite-math-only’.

-fno-signed-zeros

Allow optimizations for floating-point arithmetic that ignore the signedness of
zero. IEEE arithmetic specifies the behavior of distinct +0.0 and —0.0 values,
which then prohibits simplification of expressions such as x+0.0 or 0.0*x (even
with ‘~ffinite-math-only’). This option implies that the sign of a zero result
isn’t significant.

The default is ‘~fsigned-zeros’.

-fno-trapping-math

Compile code assuming that floating-point operations cannot generate user-
visible traps. These traps include division by zero, overflow, underflow, inexact
result and invalid operation. This option requires that ‘-fno-signaling-nans’
be in effect. Setting this option may allow faster code if one relies on “non-stop”
IEEE arithmetic, for example.

Chapter 3: GCC Command Options 125

This option should never be turned on by any ‘-0’ option since it can result
in incorrect output for programs that depend on an exact implementation of
IEEE or ISO rules/specifications for math functions.

The default is ‘~ftrapping-math’.

-frounding-math

Disable transformations and optimizations that assume default floating-point
rounding behavior. This is round-to-zero for all floating point to integer con-
versions, and round-to-nearest for all other arithmetic truncations. This option
should be specified for programs that change the FP rounding mode dynami-
cally, or that may be executed with a non-default rounding mode. This option
disables constant folding of floating-point expressions at compile time (which
may be affected by rounding mode) and arithmetic transformations that are
unsafe in the presence of sign-dependent rounding modes.

The default is ‘-fno-rounding-math’.

This option is experimental and does not currently guarantee to disable all GCC
optimizations that are affected by rounding mode. Future versions of GCC may
provide finer control of this setting using C99’s FENV_ACCESS pragma. This
command-line option will be used to specify the default state for FENV_ACCESS.

-fsignaling-nans
Compile code assuming that IEEE signaling NaNs may generate user-visible
traps during floating-point operations. Setting this option disables optimiza-
tions that may change the number of exceptions visible with signaling NaNs.
This option implies ‘~ftrapping-math’.
This option causes the preprocessor macro __SUPPORT_SNAN__ to be defined.
The default is ‘~fno-signaling-nans’.

This option is experimental and does not currently guarantee to disable all
GCC optimizations that affect signaling NaN behavior.

-fsingle-precision-constant
Treat floating-point constants as single precision instead of implicitly converting
them to double-precision constants.

-fcx-limited-range
When enabled, this option states that a range reduction step is not needed when
performing complex division. Also, there is no checking whether the result of
a complex multiplication or division is NaN + I*NaN, with an attempt to rescue
the situation in that case. The default is ‘-fno-cx-limited-range’, but is
enabled by ‘-ffast-math’.

This option controls the default setting of the ISO C99 CX_LIMITED_RANGE
pragma. Nevertheless, the option applies to all languages.

-fcx-fortran-rules
Complex multiplication and division follow Fortran rules. Range reduction is
done as part of complex division, but there is no checking whether the result of
a complex multiplication or division is NaN + I*NaN, with an attempt to rescue
the situation in that case.

126

Using the GNU Compiler Collection (GCC)

The default is ‘-fno-cx-fortran-rules’.

The following options control optimizations that may improve performance, but are not
enabled by any ‘-0’ options. This section includes experimental options that may produce
broken code.

-fbranch-probabilities

After running a program compiled with ‘~fprofile-arcs’ (see Section 3.9 [Op-
tions for Debugging Your Program or gcc|, page 72), you can compile it a sec-
ond time using ‘-~fbranch-probabilities’, to improve optimizations based
on the number of times each branch was taken. When the program com-
piled with ‘-fprofile-arcs’ exits it saves arc execution counts to a file called
‘sourcename.gcda’ for each source file. The information in this data file is very
dependent on the structure of the generated code, so you must use the same
source code and the same optimization options for both compilations.

With ‘-fbranch-probabilities’, GCC puts a ‘REG_BR_PROB’ note on each
‘JUMP_INSN’ and ‘CALL_INSN’. These can be used to improve optimization.
Currently, they are only used in one place: in ‘reorg.c’, instead of guessing
which path a branch is most likely to take, the ‘REG_BR_PROB’ values are used
to exactly determine which path is taken more often.

-fprofile-values

-fvpt

If combined with ‘-fprofile-arcs’, it adds code so that some data about
values of expressions in the program is gathered.

With ‘~fbranch-probabilities’, it reads back the data gathered from profil-
ing values of expressions for usage in optimizations.

Enabled with ‘~fprofile-generate’ and ‘-fprofile-use’.

If combined with ‘~fprofile-arcs’, it instructs the compiler to add a code to
gather information about values of expressions.

With ‘~-fbranch-probabilities’, it reads back the data gathered and actually
performs the optimizations based on them. Currently the optimizations include
specialization of division operation using the knowledge about the value of the
denominator.

-frename-registers

—-ftracer

Attempt to avoid false dependencies in scheduled code by making use of registers
left over after register allocation. This optimization will most benefit processors
with lots of registers. Depending on the debug information format adopted by
the target, however, it can make debugging impossible, since variables will no
longer stay in a “home register”.

Enabled by default with ‘~funroll-loops’ and ‘-fpeel-loops’.
Perform tail duplication to enlarge superblock size. This transformation sim-

plifies the control flow of the function allowing other optimizations to do better
job.

Enabled with ‘~fprofile-use’.

Chapter 3: GCC Command Options 127

-funroll-loops
Unroll loops whose number of iterations can be determined at compile time or
upon entry to the loop. ‘~funroll-loops’ implies ‘-frerun-cse-after-loop’,
‘~fweb’ and ‘~frename-registers’. It also turns on complete loop peeling (i.e.
complete removal of loops with small constant number of iterations). This
option makes code larger, and may or may not make it run faster.

Enabled with ‘~fprofile-use’.

-funroll-all-loops
Unroll all loops, even if their number of iterations is uncertain when the loop is
entered. This usually makes programs run more slowly. ‘~funroll-all-loops’
implies the same options as ‘-funroll-loops’.

-fpeel-loops
Peels loops for which there is enough information that they do not roll much
(from profile feedback). It also turns on complete loop peeling (i.e. complete
removal of loops with small constant number of iterations).

Enabled with ‘-fprofile-use’.

-fmove-loop-invariants
Enables the loop invariant motion pass in the RTL loop optimizer. Enabled at
level ‘-01’

-funswitch-loops
Move branches with loop invariant conditions out of the loop, with duplicates
of the loop on both branches (modified according to result of the condition).

-ffunction-sections

-fdata-sections
Place each function or data item into its own section in the output file if the
target supports arbitrary sections. The name of the function or the name of
the data item determines the section’s name in the output file.

Use these options on systems where the linker can perform optimizations to
improve locality of reference in the instruction space. Most systems using the
ELF object format and SPARC processors running Solaris 2 have linkers with
such optimizations. AIX may have these optimizations in the future.

Only use these options when there are significant benefits from doing so. When
you specify these options, the assembler and linker will create larger object and
executable files and will also be slower. You will not be able to use gprof on all
systems if you specify this option and you may have problems with debugging
if you specify both this option and ‘-g’.

-fbranch-target-load-optimize
Perform branch target register load optimization before prologue / epilogue
threading. The use of target registers can typically be exposed only during
reload, thus hoisting loads out of loops and doing inter-block scheduling needs
a separate optimization pass.

-fbranch-target-load-optimize2
Perform branch target register load optimization after prologue / epilogue
threading.

128 Using the GNU Compiler Collection (GCC)

—-fbtr-bb-exclusive
When performing branch target register load optimization, don’t reuse branch
target registers in within any basic block.

-fstack-protector
Emit extra code to check for buffer overflows, such as stack smashing attacks.
This is done by adding a guard variable to functions with vulnerable objects.
This includes functions that call alloca, and functions with buffers larger than
8 bytes. The guards are initialized when a function is entered and then checked
when the function exits. If a guard check fails, an error message is printed and
the program exits.

-fstack-protector-all
Like ‘-fstack-protector’ except that all functions are protected.

-fsection-anchors
Try to reduce the number of symbolic address calculations by using shared
“anchor” symbols to address nearby objects. This transformation can help to
reduce the number of GOT entries and GOT accesses on some targets.

For example, the implementation of the following function foo:

static int a, b, c;

int foo (void) { return a + b + ¢c; }
would usually calculate the addresses of all three variables, but if you compile it
with ‘-fsection-anchors’, it will access the variables from a common anchor
point instead. The effect is similar to the following pseudocode (which isn’t
valid C):

int foo (void)

{

register int *xr = &x;
return xr[&a - &x] + xr[&b - &x] + xr[&c - &x];

}
Not all targets support this option.

—--param name=value
In some places, GCC uses various constants to control the amount of optimiza-
tion that is done. For example, GCC will not inline functions that contain more
than a certain number of instructions. You can control some of these constants
on the command line using the ‘--param’ option.

The names of specific parameters, and the meaning of the values, are tied to
the internals of the compiler, and are subject to change without notice in future
releases.

In each case, the value is an integer. The allowable choices for name are given
in the following table:

predictable-branch-outcome
When branch is predicted to be taken with probability lower than
this threshold (in percent), then it is considered well predictable.
The default is 10.

Chapter 3: GCC Command Options 129

max-crossjump—-edges
The maximum number of incoming edges to consider for crossjump-
ing. The algorithm used by ‘-fcrossjumping’ is O(N?) in the num-
ber of edges incoming to each block. Increasing values mean more
aggressive optimization, making the compilation time increase with
probably small improvement in executable size.

min-crossjump-insns
The minimum number of instructions that must be matched at the
end of two blocks before crossjumping will be performed on them.
This value is ignored in the case where all instructions in the block
being crossjumped from are matched. The default value is 5.

max-grow-copy-bb-insns
The maximum code size expansion factor when copying basic blocks
instead of jumping. The expansion is relative to a jump instruction.
The default value is 8.

max-goto—-duplication-insns
The maximum number of instructions to duplicate to a block that
jumps to a computed goto. To avoid O(N?) behavior in a number
of passes, GCC factors computed gotos early in the compilation
process, and unfactors them as late as possible. Only computed
jumps at the end of a basic blocks with no more than max-goto-
duplication-insns are unfactored. The default value is 8.

max-delay-slot-insn-search
The maximum number of instructions to consider when looking
for an instruction to fill a delay slot. If more than this arbitrary
number of instructions is searched, the time savings from filling
the delay slot will be minimal so stop searching. Increasing values
mean more aggressive optimization, making the compilation time
increase with probably small improvement in execution time.

max-delay-slot-live-search
When trying to fill delay slots, the maximum number of instruc-
tions to consider when searching for a block with valid live register
information. Increasing this arbitrarily chosen value means more
aggressive optimization, increasing the compilation time. This pa-
rameter should be removed when the delay slot code is rewritten
to maintain the control-flow graph.

max-gcse-memory
The approximate maximum amount of memory that will be allo-
cated in order to perform the global common subexpression elim-
ination optimization. If more memory than specified is required,
the optimization will not be done.

max-gcse—insertion-ratio
If the ratio of expression insertions to deletions is larger than this
value for any expression, then RTL PRE will insert or remove the

130

Using the GNU Compiler Collection (GCC)

expression and thus leave partially redundant computations in the
instruction stream. The default value is 20.

max-pending-list-length
The maximum number of pending dependencies scheduling will al-
low before flushing the current state and starting over. Large func-
tions with few branches or calls can create excessively large lists
which needlessly consume memory and resources.

max-modulo-backtrack-attempts
The maximum number of backtrack attempts the scheduler should
make when modulo scheduling a loop. Larger values can exponen-
tially increase compilation time.

max-inline-insns-single
Several parameters control the tree inliner used in gcc. This num-
ber sets the maximum number of instructions (counted in GCC'’s
internal representation) in a single function that the tree inliner
will consider for inlining. This only affects functions declared in-
line and methods implemented in a class declaration (C++). The
default value is 400.

max-inline-insns-auto
When you use ‘-finline-functions’ (included in ‘-03’), a lot of
functions that would otherwise not be considered for inlining by
the compiler will be investigated. To those functions, a different
(more restrictive) limit compared to functions declared inline can
be applied. The default value is 40.

large-function-insns
The limit specifying really large functions. For functions larger
than this limit after inlining, inlining is constrained by ‘--param
large-function-growth’. This parameter is useful primarily to
avoid extreme compilation time caused by non-linear algorithms
used by the back end. The default value is 2700.

large-function-growth
Specifies maximal growth of large function caused by inlining in per-
cents. The default value is 100 which limits large function growth
to 2.0 times the original size.

large-unit-insns
The limit specifying large translation unit. Growth caused by
inlining of units larger than this limit is limited by ‘--param
inline-unit-growth’. For small units this might be too tight
(consider unit consisting of function A that is inline and B
that just calls A three time. If B is small relative to A, the
growth of unit is 300\% and yet such inlining is very sane. For
very large units consisting of small inlineable functions however
the overall unit growth limit is needed to avoid exponential

explosion of code size. Thus for smaller units, the size is increased

Chapter 3: GCC Command Options 131

to ‘--param large-unit-insns’ before applying ‘--param
inline-unit-growth’. The default is 10000

inline-unit-growth
Specifies maximal overall growth of the compilation unit caused by
inlining. The default value is 30 which limits unit growth to 1.3
times the original size.

ipcp—unit-growth
Specifies maximal overall growth of the compilation unit caused
by interprocedural constant propagation. The default value is 10
which limits unit growth to 1.1 times the original size.

large-stack-frame
The limit specifying large stack frames. While inlining the algo-
rithm is trying to not grow past this limit too much. Default value
is 256 bytes.

large-stack-frame-growth
Specifies maximal growth of large stack frames caused by inlining in
percents. The default value is 1000 which limits large stack frame
growth to 11 times the original size.

max-inline-insns-recursive

max-inline-insns-recursive—-auto
Specifies maximum number of instructions out-of-line copy of self
recursive inline function can grow into by performing recursive in-
lining.
For functions declared inline ‘~-param max-inline-insns-recursive’l]
is taken into account. For function not declared inline, recursive
inlining happens only when ‘-finline-functions’ (included in
‘-03’) is enabled and ‘--param max-inline-insns-recursive-auto’}]
is used. The default value is 450.

max-inline-recursive-depth
max-inline-recursive-depth-auto
Specifies maximum recursion depth used by the recursive inlining.

For functions declared inline ‘~-param max-inline-recursive-depth’}]
is taken into account. For function not declared inline, recursive
inlining happens only when ‘-finline-functions’ (included in
‘-03’) is enabled and ‘--param max-inline-recursive-depth-auto’l]
is used. The default value is 8.

min-inline-recursive-probability
Recursive inlining is profitable only for function having deep re-
cursion in average and can hurt for function having little recursion
depth by increasing the prologue size or complexity of function
body to other optimizers.

When profile feedback is available (see ‘~fprofile-generate’) the
actual recursion depth can be guessed from probability that func-

132

Using the GNU Compiler Collection (GCC)

tion will recurse via given call expression. This parameter lim-
its inlining only to call expression whose probability exceeds given
threshold (in percents). The default value is 10.

early-inlining-insns
Specify growth that early inliner can make. In effect it increases
amount of inlining for code having large abstraction penalty. The
default value is 10.

max—-early-inliner-iterations

max-early-inliner-iterations
Limit of iterations of early inliner. This basically bounds number
of nested indirect calls early inliner can resolve. Deeper chains are
still handled by late inlining.

comdat-sharing-probability

comdat-sharing-probability
Probability (in percent) that C++ inline function with comdat visi-
bility will be shared across multiple compilation units. The default
value is 20.

min-vect-loop-bound
The minimum number of iterations under which a loop will not
get vectorized when ‘~ftree-vectorize’ is used. The number of
iterations after vectorization needs to be greater than the value
specified by this option to allow vectorization. The default value is
0.

gcse—cost-distance-ratio
Scaling factor in calculation of maximum distance an expression can
be moved by GCSE optimizations. This is currently supported only
in the code hoisting pass. The bigger the ratio, the more aggressive
code hoisting will be with simple expressions, i.e., the expressions
that have cost less than ‘gcse-unrestricted-cost’. Specifying 0
will disable hoisting of simple expressions. The default value is 10.

gcse-unrestricted-cost
Cost, roughly measured as the cost of a single typical machine
instruction, at which GCSE optimizations will not constrain the
distance an expression can travel. This is currently supported only
in the code hoisting pass. The lesser the cost, the more aggressive
code hoisting will be. Specifying 0 will allow all expressions to
travel unrestricted distances. The default value is 3.

max-hoist-depth
The depth of search in the dominator tree for expressions to hoist.
This is used to avoid quadratic behavior in hoisting algorithm. The
value of 0 will avoid limiting the search, but may slow down com-
pilation of huge functions. The default value is 30.

Chapter 3: GCC Command Options 133

max-tail-merge-comparisons
The maximum amount of similar bbs to compare a bb with. This is
used to avoid quadratic behavior in tree tail merging. The default
value is 10.

max-tail-merge-iterations
The maximum amount of iterations of the pass over the function.
This is used to limit compilation time in tree tail merging. The
default value is 2.

max-unrolled-insns
The maximum number of instructions that a loop should have if
that loop is unrolled, and if the loop is unrolled, it determines how
many times the loop code is unrolled.

max-average-unrolled-insns
The maximum number of instructions biased by probabilities of
their execution that a loop should have if that loop is unrolled, and
if the loop is unrolled, it determines how many times the loop code
is unrolled.

max-unroll-times
The maximum number of unrollings of a single loop.

max-peeled-insns
The maximum number of instructions that a loop should have if
that loop is peeled, and if the loop is peeled, it determines how
many times the loop code is peeled.

max-peel-times
The maximum number of peelings of a single loop.

max-completely-peeled-insns
The maximum number of insns of a completely peeled loop.

max-completely-peel-times
The maximum number of iterations of a loop to be suitable for
complete peeling.

max-completely-peel-loop-nest-depth
The maximum depth of a loop nest suitable for complete peeling.

max-unswitch-insns
The maximum number of insns of an unswitched loop.

max-unswitch-level
The maximum number of branches unswitched in a single loop.

lim-expensive
The minimum cost of an expensive expression in the loop invariant
motion.

iv-consider—-all-candidates-bound
Bound on number of candidates for induction variables below that
all candidates are considered for each use in induction variable op-

134

Using the GNU Compiler Collection (GCC)

timizations. Only the most relevant candidates are considered if
there are more candidates, to avoid quadratic time complexity.

iv-max-considered-uses
The induction variable optimizations give up on loops that contain
more induction variable uses.

iv-always—-prune-cand-set-bound
If number of candidates in the set is smaller than this value, we
always try to remove unnecessary ivs from the set during its opti-
mization when a new iv is added to the set.

scev-max—-expr-size
Bound on size of expressions used in the scalar evolutions analyzer.
Large expressions slow the analyzer.

scev-max-expr-complexity
Bound on the complexity of the expressions in the scalar evolutions
analyzer. Complex expressions slow the analyzer.

omega-max-vars
The maximum number of variables in an Omega constraint system.
The default value is 128.

omega-max-geqs
The maximum number of inequalities in an Omega constraint sys-
tem. The default value is 256.

omega-max-eqs
The maximum number of equalities in an Omega constraint system.
The default value is 128.

omega-max-wild-cards
The maximum number of wildcard variables that the Omega solver
will be able to insert. The default value is 18.

omega-hash-table-size
The size of the hash table in the Omega solver. The default value
is 550.

omega-max-keys
The maximal number of keys used by the Omega solver. The de-
fault value is 500.

omega-eliminate-redundant-constraints
When set to 1, use expensive methods to eliminate all redundant
constraints. The default value is 0.

vect-max-version-for-alignment-checks
The maximum number of run-time checks that can be performed
when doing loop versioning for alignment in the vectorizer. See
option ftree-vect-loop-version for more information.

Chapter 3: GCC Command Options 135

vect-max-version-for-alias-checks
The maximum number of run-time checks that can be performed
when doing loop versioning for alias in the vectorizer. See option
ftree-vect-loop-version for more information.

max-iterations-to-track
The maximum number of iterations of a loop the brute force algo-
rithm for analysis of # of iterations of the loop tries to evaluate.

hot-bb-count-fraction
Select fraction of the maximal count of repetitions of basic block in
program given basic block needs to have to be considered hot.

hot-bb-frequency-fraction
Select fraction of the entry block frequency of executions of basic
block in function given basic block needs to have to be considered
hot.

max-predicted-iterations
The maximum number of loop iterations we predict statically. This
is useful in cases where function contain single loop with known
bound and other loop with unknown. We predict the known num-
ber of iterations correctly, while the unknown number of iterations
average to roughly 10. This means that the loop without bounds
would appear artificially cold relative to the other one.

align-threshold
Select fraction of the maximal frequency of executions of basic block
in function given basic block will get aligned.

align-loop-iterations
A loop expected to iterate at lest the selected number of iterations
will get aligned.

tracer-dynamic-coverage

tracer-dynamic-coverage-feedback
This value is used to limit superblock formation once the given per-
centage of executed instructions is covered. This limits unnecessary
code size expansion.
The ‘tracer-dynamic-coverage-feedback’ is used only when pro-
file feedback is available. The real profiles (as opposed to statically
estimated ones) are much less balanced allowing the threshold to
be larger value.

tracer-max-code-growth
Stop tail duplication once code growth has reached given percent-
age. This is rather hokey argument, as most of the duplicates will
be eliminated later in cross jumping, so it may be set to much
higher values than is the desired code growth.

tracer-min-branch-ratio
Stop reverse growth when the reverse probability of best edge is
less than this threshold (in percent).

136

Using the GNU Compiler Collection (GCC)

tracer-min-branch-ratio

tracer-min-branch-ratio-feedback
Stop forward growth if the best edge do have probability lower than
this threshold.

Similarly to ‘tracer-dynamic-coverage’ two values are present,
one for compilation for profile feedback and one for compilation
without. The value for compilation with profile feedback needs to
be more conservative (higher) in order to make tracer effective.

max-cse-path-length
Maximum number of basic blocks on path that cse considers. The
default is 10.

max-cse-insns
The maximum instructions CSE process before flushing. The de-
fault is 1000.

ggc-min-expand
GCC uses a garbage collector to manage its own memory alloca-
tion. This parameter specifies the minimum percentage by which
the garbage collector’s heap should be allowed to expand between
collections. Tuning this may improve compilation speed; it has no
effect on code generation.

The default is 30% + 70% * (RAM/1GB) with an upper bound
of 100% when RAM >= 1GB. If getrlimit is available, the no-
tion of "RAM" is the smallest of actual RAM and RLIMIT_DATA or
RLIMIT_AS. If GCC is not able to calculate RAM on a particular
platform, the lower bound of 30% is used. Setting this parameter
and ‘ggc-min-heapsize’ to zero causes a full collection to occur
at every opportunity. This is extremely slow, but can be useful for
debugging.

ggc-min-heapsize
Minimum size of the garbage collector’s heap before it begins
bothering to collect garbage. The first collection occurs after the
heap expands by ‘ggc-min-expand’% beyond ‘ggc-min-heapsize’.
Again, tuning this may improve compilation speed, and has no
effect on code generation.
The default is the smaller of RAM/8, RLIMIT_RSS, or a limit
that tries to ensure that RLIMIT_DATA or RLIMIT_AS are not
exceeded, but with a lower bound of 4096 (four megabytes) and
an upper bound of 131072 (128 megabytes). If GCC is not able
to calculate RAM on a particular platform, the lower bound is
used. Setting this parameter very large effectively disables garbage
collection. Setting this parameter and ‘ggc-min-expand’ to zero
causes a full collection to occur at every opportunity.

max-reload-search-insns
The maximum number of instruction reload should look backward
for equivalent register. Increasing values mean more aggressive op-

Chapter 3: GCC Command Options 137

timization, making the compilation time increase with probably
slightly better performance. The default value is 100.

max-cselib-memory-locations
The maximum number of memory locations cselib should take into
account. Increasing values mean more aggressive optimization,
making the compilation time increase with probably slightly better
performance. The default value is 500.

reorder-blocks-duplicate

reorder-blocks-duplicate-feedback
Used by basic block reordering pass to decide whether to use un-
conditional branch or duplicate the code on its destination. Code
is duplicated when its estimated size is smaller than this value mul-
tiplied by the estimated size of unconditional jump in the hot spots
of the program.

The ‘reorder-block-duplicate-feedback’is used only when pro-
file feedback is available and may be set to higher values than
‘reorder-block-duplicate’ since information about the hot spots
is more accurate.

max-sched-ready-insns
The maximum number of instructions ready to be issued the sched-
uler should consider at any given time during the first scheduling
pass. Increasing values mean more thorough searches, making the
compilation time increase with probably little benefit. The default
value is 100.

max-sched-region-blocks
The maximum number of blocks in a region to be considered for
interblock scheduling. The default value is 10.

max-pipeline-region-blocks
The maximum number of blocks in a region to be considered for
pipelining in the selective scheduler. The default value is 15.

max-sched-region-insns
The maximum number of insns in a region to be considered for
interblock scheduling. The default value is 100.

max-pipeline-region-insns
The maximum number of insns in a region to be considered for
pipelining in the selective scheduler. The default value is 200.

min-spec-prob
The minimum probability (in percents) of reaching a source block
for interblock speculative scheduling. The default value is 40.

max-sched-extend-regions-iters
The maximum number of iterations through CFG to extend regions.
0 - disable region extension, N - do at most N iterations. The default
value is 0.

138

Using the GNU Compiler Collection (GCC)

max-sched-insn-conflict-delay
The maximum conflict delay for an insn to be considered for spec-
ulative motion. The default value is 3.

sched-spec-prob-cutoff
The minimal probability of speculation success (in percents), so
that speculative insn will be scheduled. The default value is 40.

sched-mem-true-dep-cost
Minimal distance (in CPU cycles) between store and load targeting
same memory locations. The default value is 1.

selsched-max-lookahead
The maximum size of the lookahead window of selective scheduling.
It is a depth of search for available instructions. The default value
is 50.

selsched-max-sched-times
The maximum number of times that an instruction will be sched-
uled during selective scheduling. This is the limit on the number
of iterations through which the instruction may be pipelined. The
default value is 2.

selsched-max-insns—-to-rename
The maximum number of best instructions in the ready list that
are considered for renaming in the selective scheduler. The default
value is 2.

sms-min-sc
The minimum value of stage count that swing modulo scheduler
will generate. The default value is 2.

max-last-value-rtl
The maximum size measured as number of RTLs that can be
recorded in an expression in combiner for a pseudo register as last
known value of that register. The default is 10000.

integer-share-limit
Small integer constants can use a shared data structure, reducing
the compiler’s memory usage and increasing its speed. This sets
the maximum value of a shared integer constant. The default value
is 256.

min-virtual-mappings
Specifies the minimum number of virtual mappings in the incre-
mental SSA updater that should be registered to trigger the virtual
mappings heuristic defined by virtual-mappings-ratio. The default
value is 100.

virtual-mappings-ratio
If the number of virtual mappings is virtual-mappings-ratio bigger
than the number of virtual symbols to be updated, then the incre-

Chapter 3: GCC Command Options 139

mental SSA updater switches to a full update for those symbols.
The default ratio is 3.

ssp-buffer-size
The minimum size of buffers (i.e. arrays) that will receive stack
smashing protection when ‘~fstack-protection’ is used.

max-jump-thread-duplication-stmts
Maximum number of statements allowed in a block that needs to
be duplicated when threading jumps.

max-fields-for-field-sensitive
Maximum number of fields in a structure we will treat in a field
sensitive manner during pointer analysis. The default is zero for
-00, and -O1 and 100 for -Os, -0O2, and -O3.

prefetch-latency
Estimate on average number of instructions that are executed be-
fore prefetch finishes. The distance we prefetch ahead is propor-
tional to this constant. Increasing this number may also lead to
less streams being prefetched (see ‘simultaneous-prefetches’).

simultaneous-prefetches
Maximum number of prefetches that can run at the same time.

l1-cache-line-size
The size of cache line in L1 cache, in bytes.

l1-cache-size
The size of L1 cache, in kilobytes.

12-cache-size
The size of L2 cache, in kilobytes.

min-insn-to-prefetch-ratio
The minimum ratio between the number of instructions and the
number of prefetches to enable prefetching in a loop.

prefetch-min-insn-to-mem-ratio
The minimum ratio between the number of instructions and the
number of memory references to enable prefetching in a loop.

use-canonical-types
Whether the compiler should use the “canonical” type system. By
default, this should always be 1, which uses a more efficient internal
mechanism for comparing types in C++ and Objective-C++. How-
ever, if bugs in the canonical type system are causing compilation
failures, set this value to 0 to disable canonical types.

switch-conversion-max-branch-ratio
Switch initialization conversion will refuse to create arrays that
are bigger than ‘switch-conversion-max-branch-ratio’ times
the number of branches in the switch.

140 Using the GNU Compiler Collection (GCC)

max-partial-antic-length

Maximum length of the partial antic set computed during the tree
partial redundancy elimination optimization (‘-ftree-pre’) when
optimizing at ‘-03’ and above. For some sorts of source code the en-
hanced partial redundancy elimination optimization can run away,
consuming all of the memory available on the host machine. This
parameter sets a limit on the length of the sets that are computed,
which prevents the runaway behavior. Setting a value of 0 for this
parameter will allow an unlimited set length.

sccvn-max-scc-size
Maximum size of a strongly connected component (SCC) during
SCCVN processing. If this limit is hit, SCCVN processing for the
whole function will not be done and optimizations depending on it
will be disabled. The default maximum SCC size is 10000.

ira-max-loops—num
TRA uses regional register allocation by default. If a function con-
tains more loops than the number given by this parameter, only at
most the given number of the most frequently-executed loops form
regions for regional register allocation. The default value of the
parameter is 100.

ira-max-conflict-table-size

Although TRA uses a sophisticated algorithm to compress the con-
flict table, the table can still require excessive amounts of memory
for huge functions. If the conflict table for a function could be more
than the size in MB given by this parameter, the register allocator
instead uses a faster, simpler, and lower-quality algorithm that does
not require building a pseudo-register conflict table. The default
value of the parameter is 2000.

ira-loop-reserved-regs
IRA can be used to evaluate more accurate register pressure in
loops for decisions to move loop invariants (see ‘-03’). The number
of available registers reserved for some other purposes is given by
this parameter. The default value of the parameter is 2, which
is the minimal number of registers needed by typical instructions.
This value is the best found from numerous experiments.

loop-invariant-max-bbs-in-loop
Loop invariant motion can be very expensive, both in compilation
time and in amount of needed compile-time memory, with very
large loops. Loops with more basic blocks than this parameter
won’t have loop invariant motion optimization performed on them.
The default value of the parameter is 1000 for -O1 and 10000 for
-02 and above.

loop—max-datarefs—-for-datadeps
Building data dapendencies is expensive for very large loops. This
parameter limits the number of data references in loops that are

Chapter 3: GCC Command Options 141

considered for data dependence analysis. These large loops will not
be handled then by the optimizations using loop data dependencies.
The default value is 1000.

max-vartrack-size

Sets a maximum number of hash table slots to use during variable
tracking dataflow analysis of any function. If this limit is exceeded
with variable tracking at assignments enabled, analysis for that
function is retried without it, after removing all debug insns from
the function. If the limit is exceeded even without debug insns, var
tracking analysis is completely disabled for the function. Setting
the parameter to zero makes it unlimited.

max-vartrack-expr-depth

Sets a maximum number of recursion levels when attempting to
map variable names or debug temporaries to value expressions.
This trades compilation time for more complete debug information.
If this is set too low, value expressions that are available and could
be represented in debug information may end up not being used;
setting this higher may enable the compiler to find more complex
debug expressions, but compile time and memory use may grow.
The default is 12.

min-nondebug-insn-uid
Use uids starting at this parameter for nondebug insns. The range
below the parameter is reserved exclusively for debug insns created
by ‘-fvar-tracking-assignments’, but debug insns may get (non-
overlapping) uids above it if the reserved range is exhausted.

ipa-sra-ptr-growth-factor
TPA-SRA will replace a pointer to an aggregate with one or more
new parameters only when their cumulative size is less or equal
to ‘ipa-sra-ptr-growth-factor’ times the size of the original
pointer parameter.

tm-max-aggregate-size
When making copies of thread-local variables in a transaction, this
parameter specifies the size in bytes after which variables will be
saved with the logging functions as opposed to save/restore code
sequence pairs. This option only applies when using ‘-fgnu-tm’.

graphite-max-nb-scop-params
To avoid exponential effects in the Graphite loop transforms, the
number of parameters in a Static Control Part (SCoP) is bounded.
The default value is 10 parameters. A variable whose value is un-
known at compilation time and defined outside a SCoP is a param-
eter of the SCoP.

142

Using the GNU Compiler Collection (GCC)

graphite-max-bbs-per-function
To avoid exponential effects in the detection of SCoPs, the size of
the functions analyzed by Graphite is bounded. The default value
is 100 basic blocks.

loop-block-tile-size
Loop blocking or strip mining transforms, enabled with
‘~floop-block’ or ‘~floop-strip-mine’, strip mine each loop in
the loop nest by a given number of iterations. The strip length
can be changed using the ‘loop-block-tile-size’ parameter.
The default value is 51 iterations.

ipa-cp-value-list-size
IPA-CP attempts to track all possible values and types passed to a
function’s parameter in order to propagate them and perform devir-
tualization. ‘ipa-cp-value-list-size’ is the maximum number
of values and types it stores per one formal parameter of a function.

lto-partitions
Specify desired number of partitions produced during WHOPR
compilation. The number of partitions should exceed the number
of CPUs used for compilation. The default value is 32.

lto-minpartition
Size of minimal partition for WHOPR (in estimated instructions).
This prevents expenses of splitting very small programs into too
many partitions.

cxx-max-namespaces-for-diagnostic-help
The maximum number of namespaces to consult for suggestions
when C++ name lookup fails for an identifier. The default is 1000.

sink-frequency-threshold
The maximum relative execution frequency (in percents) of the tar-
get block relative to a statement’s original block to allow statement
sinking of a statement. Larger numbers result in more aggressive
statement sinking. The default value is 75. A small positive ad-
justment is applied for statements with memory operands as those
are even more profitable so sink.

max-stores-to-sink
The maximum number of conditional stores paires that can be
sunk. Set to O if either vectorization (‘-ftree-vectorize’) or if-
conversion (‘-ftree-loop-if-convert’) is disabled. The default
is 2.

allow-load-data-races
Allow optimizers to introduce new data races on loads. Set to 1
to allow, otherwise to 0. This option is enabled by default unless
implicitly set by the ‘~fmemory-model=" option.

Chapter 3: GCC Command Options 143

allow-store-data-races
Allow optimizers to introduce new data races on stores. Set to 1
to allow, otherwise to 0. This option is enabled by default unless
implicitly set by the ‘-fmemory-model=" option.

allow-packed-load-data-races
Allow optimizers to introduce new data races on packed data loads.
Set to 1 to allow, otherwise to 0. This option is enabled by default
unless implicitly set by the ‘~fmemory-model=’ option.

allow-packed-store-data-races
Allow optimizers to introduce new data races on packed data stores.
Set to 1 to allow, otherwise to 0. This option is enabled by default
unless implicitly set by the ‘~fmemory-model=’ option.

case-values-threshold
The smallest number of different values for which it is best to use
a jump-table instead of a tree of conditional branches. If the value
is 0, use the default for the machine. The default is 0.

tree-reassoc-width
Set the maximum number of instructions executed in parallel in re-
associated tree. This parameter overrides target dependent heuris-
tics used by default if has non zero value.

3.11 Options Controlling the Preprocessor

These options control the C preprocessor, which is run on each C source file before actual
compilation.

If you use the ‘-E’ option, nothing is done except preprocessing. Some of these options
make sense only together with ‘~E’ because they cause the preprocessor output to be un-
suitable for actual compilation.

-Wp,option

You can use ‘-Wp, option’ to bypass the compiler driver and pass option directly
through to the preprocessor. If option contains commas, it is split into multiple
options at the commas. However, many options are modified, translated or
interpreted by the compiler driver before being passed to the preprocessor,
and ‘-Wp’ forcibly bypasses this phase. The preprocessor’s direct interface is
undocumented and subject to change, so whenever possible you should avoid
using ‘-Wp’ and let the driver handle the options instead.

-Xpreprocessor option
Pass option as an option to the preprocessor. You can use this to supply system-
specific preprocessor options that GCC does not know how to recognize.

If you want to pass an option that takes an argument, you must use
‘~Xpreprocessor’ twice, once for the option and once for the argument.

-D name Predefine name as a macro, with definition 1.

144

Using the GNU Compiler Collection (GCC)

-D name=definition

-U name

—-undef

-I dir

-o file

-Wall

-Wcomment
-Wcomments

The contents of definition are tokenized and processed as if they appeared dur-
ing translation phase three in a ‘#define’ directive. In particular, the definition
will be truncated by embedded newline characters.

If you are invoking the preprocessor from a shell or shell-like program you may
need to use the shell’s quoting syntax to protect characters such as spaces that
have a meaning in the shell syntax.

If you wish to define a function-like macro on the command line, write its
argument list with surrounding parentheses before the equals sign (if any).
Parentheses are meaningful to most shells, so you will need to quote the option.
With sh and csh, ‘-D’name (args...)=definition’’ works.

‘-D’ and ‘-U’ options are processed in the order they are given on the command
line. All ‘-~imacros file’ and ‘-include file’ options are processed after all
‘-D’ and ‘-U’ options.

Cancel any previous definition of name, either built in or provided with a ‘-D’
option.

Do not predefine any system-specific or GCC-specific macros. The standard
predefined macros remain defined.

Add the directory dir to the list of directories to be searched for header files.
Directories named by ‘-1’ are searched before the standard system include di-
rectories. If the directory dir is a standard system include directory, the option
is ignored to ensure that the default search order for system directories and the
special treatment of system headers are not defeated . If dir begins with =, then
the = will be replaced by the sysroot prefix; see ‘~-sysroot’ and ‘-isysroot’.

Write output to file. This is the same as specifying file as the second non-option
argument to cpp. gcc has a different interpretation of a second non-option
argument, so you must use ‘-0’ to specify the output file.

Turns on all optional warnings which are desirable for normal code. At present
this is ‘~-Wcomment’, ‘-Wtrigraphs’, ‘-Wmultichar’ and a warning about integer
promotion causing a change of sign in #if expressions. Note that many of the
preprocessor’s warnings are on by default and have no options to control them.

Warn whenever a comment-start sequence ‘/*’ appears in a ‘/*’ comment, or
whenever a backslash-newline appears in a ‘//’ comment. (Both forms have
the same effect.)

-Wtrigraphs

Most trigraphs in comments cannot affect the meaning of the program. How-
ever, a trigraph that would form an escaped newline (‘??7/’ at the end of a line)
can, by changing where the comment begins or ends. Therefore, only trigraphs
that would form escaped newlines produce warnings inside a comment.

This option is implied by ‘-Wall’. If ‘-Wall’ is not given, this option
is still enabled unless trigraphs are enabled. To get trigraph conversion

Chapter 3: GCC Command Options 145

without warnings, but get the other ‘-Wall’ warnings, use ‘~trigraphs -Wall
-Wno-trigraphs’.

-Wtraditional
Warn about certain constructs that behave differently in traditional and ISO
C. Also warn about ISO C constructs that have no traditional C equivalent,
and problematic constructs which should be avoided.

-Wundef = Warn whenever an identifier which is not a macro is encountered in an ‘#if’
directive, outside of ‘defined’. Such identifiers are replaced with zero.

-Wunused-macros
Warn about macros defined in the main file that are unused. A macro is used if
it is expanded or tested for existence at least once. The preprocessor will also
warn if the macro has not been used at the time it is redefined or undefined.

Built-in macros, macros defined on the command line, and macros defined in
include files are not warned about.

Note: If a macro is actually used, but only used in skipped conditional blocks,
then CPP will report it as unused. To avoid the warning in such a case, you
might improve the scope of the macro’s definition by, for example, moving it
into the first skipped block. Alternatively, you could provide a dummy use with
something like:

#if defined the_macro_causing_the_warning
#endif

-Wendif-labels
Warn whenever an ‘#else’ or an ‘#endif’ are followed by text. This usually
happens in code of the form

#if FOO
#else FOO
#endif FOO
The second and third FOO should be in comments, but often are not in older

programs. This warning is on by default.

-Werror Make all warnings into hard errors. Source code which triggers warnings will
be rejected.

-Wsystem-headers
Issue warnings for code in system headers. These are normally unhelpful in
finding bugs in your own code, therefore suppressed. If you are responsible for
the system library, you may want to see them.

-w Suppress all warnings, including those which GNU CPP issues by default.

-pedantic
Issue all the mandatory diagnostics listed in the C standard. Some of them are
left out by default, since they trigger frequently on harmless code.

146

Using the GNU Compiler Collection (GCC)

-pedantic-errors

-MF file

-MG

-MP

Issue all the mandatory diagnostics, and make all mandatory diagnostics
into errors. This includes mandatory diagnostics that GCC issues without
‘-pedantic’ but treats as warnings.

Instead of outputting the result of preprocessing, output a rule suitable for make
describing the dependencies of the main source file. The preprocessor outputs
one make rule containing the object file name for that source file, a colon, and
the names of all the included files, including those coming from ‘-include’ or
‘~imacros’ command line options.

Unless specified explicitly (with ‘-MT’ or ‘-MQ’), the object file name consists of
the name of the source file with any suffix replaced with object file suffix and
with any leading directory parts removed. If there are many included files then
the rule is split into several lines using ‘\’-newline. The rule has no commands.

This option does not suppress the preprocessor’s debug output, such as ‘~dM’.
To avoid mixing such debug output with the dependency rules you should ex-
plicitly specify the dependency output file with ‘-MF’, or use an environment
variable like DEPENDENCIES_OUTPUT (see Section 3.19 [Environment Variables],
page 296). Debug output will still be sent to the regular output stream as
normal.

Passing ‘-M’ to the driver implies ‘-E’, and suppresses warnings with an implicit

—wl

Like ‘=M’ but do not mention header files that are found in system header
directories, nor header files that are included, directly or indirectly, from such
a header.

This implies that the choice of angle brackets or double quotes in an ‘#include’
directive does not in itself determine whether that header will appear in ‘-MM’
dependency output. This is a slight change in semantics from GCC versions
3.0 and earlier.

When used with ‘=M’ or ‘-MM’, specifies a file to write the dependencies to. If
no ‘-MF’ switch is given the preprocessor sends the rules to the same place it
would have sent preprocessed output.

When used with the driver options ‘-MD’ or ‘-MMD’, ‘-MF’ overrides the default
dependency output file.

In conjunction with an option such as ‘-M’ requesting dependency generation,
‘-MG’ assumes missing header files are generated files and adds them to the
dependency list without raising an error. The dependency filename is taken
directly from the #include directive without prepending any path. ‘-MG’ also
suppresses preprocessed output, as a missing header file renders this useless.

This feature is used in automatic updating of makefiles.
This option instructs CPP to add a phony target for each dependency other
than the main file, causing each to depend on nothing. These dummy rules

work around errors make gives if you remove header files without updating the
‘Makefile’ to match.

This is typical output:

Chapter 3: GCC Command Options 147

-MT target

-MQ target

-MD

-MMD

-fpch-deps

test.o: test.c test.h

test.h:

Change the target of the rule emitted by dependency generation. By default
CPP takes the name of the main input file, deletes any directory components
and any file suffix such as ‘.c’, and appends the platform’s usual object suffix.
The result is the target.

An ‘-MT’ option will set the target to be exactly the string you specify. If you
want multiple targets, you can specify them as a single argument to ‘-MT’, or
use multiple ‘-MT’ options.

For example, ‘-MT ’$(objpfx)foo.o0’’ might give
$(objpfx)foo.o: foo.c

Same as ‘-MT’, but it quotes any characters which are special to Make.
‘-MQ >$(objpfx)foo.0’’ gives
$$ (objpfx)foo.o0: foo.c

The default target is automatically quoted, as if it were given with ‘-MQ’.

‘-MD’ is equivalent to ‘-M -MF file’, except that ‘-E’ is not implied. The driver
determines file based on whether an ‘-0’ option is given. If it is, the driver uses
its argument but with a suffix of ‘.d’, otherwise it takes the name of the input
file, removes any directory components and suffix, and applies a ‘.d’ suffix.

If ‘=MD’ is used in conjunction with ‘-E’, any ‘-0’ switch is understood to specify
the dependency output file (see [-MF], page 146), but if used without ‘~E’, each
‘-0’ is understood to specify a target object file.

Since ‘-E’ is not implied, ‘-MD’ can be used to generate a dependency output
file as a side-effect of the compilation process.

Like ‘-MD’ except mention only user header files, not system header files.

When using precompiled headers (see Section 3.20 [Precompiled Headers],
page 299), this flag will cause the dependency-output flags to also list the
files from the precompiled header’s dependencies. If not specified only the
precompiled header would be listed and not the files that were used to create
it because those files are not consulted when a precompiled header is used.

-fpch-preprocess

This option allows use of a precompiled header (see Section 3.20 [Precompiled
Headers|, page 299) together with ‘~E’. It inserts a special #pragma, #pragma
GCC pch_preprocess "filename" in the output to mark the place where the
precompiled header was found, and its filename. When ‘-fpreprocessed’ is in
use, GCC recognizes this #pragma and loads the PCH.

This option is off by default, because the resulting preprocessed output is only
really suitable as input to GCC. It is switched on by ‘-save-temps’.

148

-XC

-X c++

Using the GNU Compiler Collection (GCC)

You should not write this #pragma in your own code, but it is safe to edit the
filename if the PCH file is available in a different location. The filename may
be absolute or it may be relative to GCC’s current directory.

-x objective-c
-x assembler-with-cpp

Specify the source language: C, C++, Objective-C, or assembly. This has noth-
ing to do with standards conformance or extensions; it merely selects which
base syntax to expect. If you give none of these options, cpp will deduce the
language from the extension of the source file: ‘.c’, ‘.cc’, .m’; or *.8’. Some
other common extensions for C++ and assembly are also recognized. If cpp does
not recognize the extension, it will treat the file as C; this is the most generic

mode.

Note: Previous versions of c¢pp accepted a ‘~lang’ option which selected both
the language and the standards conformance level. This option has been re-
moved, because it conflicts with the ‘=1’ option.

-std=standard

—ansi

Specify the standard to which the code should conform. Currently CPP knows
about C and C++ standards; others may be added in the future.

standard may be one of:
c90

c89

1509899:1990

The ISO C standard from 1990. ‘c90’ is the customary shorthand
for this version of the standard.

The ‘-ansi’ option is equivalent to ‘-std=c90’.

1s09899:199409
The 1990 C standard, as amended in 1994.

1509899:1999

c99
1is09899:199x
c9x The revised ISO C standard, published in December 1999. Before

publication, this was known as C9X.

i509899:2011

cl1

clx The revised ISO C standard, published in December 2011. Before
publication, this was known as C1X.

gnu90

gnu89 The 1990 C standard plus GNU extensions. This is the default.

gnu99

gnu9x The 1999 C standard plus GNU extensions.

Chapter 3: GCC Command Options 149

-nostdinc

gnull
gnulx The 2011 C standard plus GNU extensions.
c++98 The 1998 ISO C++ standard plus amendments.

gnu++98 The same as ‘~std=c++98’ plus GNU extensions. This is the default
for C++ code.

Split the include path. Any directories specified with ‘=1’ options before ‘-I-’
are searched only for headers requested with #include "file"; they are not
searched for #include <file>. If additional directories are specified with ‘=1’
options after the ‘-I-’, those directories are searched for all ‘#include’ direc-
tives.

In addition, ‘~I-’ inhibits the use of the directory of the current file direc-
tory as the first search directory for #include "file". This option has been
deprecated.

Do not search the standard system directories for header files. Only the direc-
tories you have specified with ‘-I’ options (and the directory of the current file,
if appropriate) are searched.

-nostdinc++

Do not search for header files in the C++-specific standard directories, but do
still search the other standard directories. (This option is used when building
the C++ library.)

—-include file

Process file as if #include "file" appeared as the first line of the primary
source file. However, the first directory searched for file is the preprocessor’s
working directory instead of the directory containing the main source file. If
not found there, it is searched for in the remainder of the #include "..."
search chain as normal.

If multiple ‘-include’ options are given, the files are included in the order they
appear on the command line.

—-imacros file

Exactly like ‘-include’, except that any output produced by scanning file is
thrown away. Macros it defines remain defined. This allows you to acquire all
the macros from a header without also processing its declarations.

All files specified by ‘-imacros’ are processed before all files specified by
‘-~include’.

-idirafter dir

Search dir for header files, but do it after all directories specified with ‘-1’
and the standard system directories have been exhausted. dir is treated as a
system include directory. If dir begins with =, then the = will be replaced by
the sysroot prefix; see ‘~-sysroot’ and ‘-~isysroot’.

—iprefix prefix

Specify prefix as the prefix for subsequent ‘~iwithprefix’ options. If the prefix
represents a directory, you should include the final /.

150 Using the GNU Compiler Collection (GCC)

—iwithprefix dir

—iwithprefixbefore dir
Append dir to the prefix specified previously with ‘-iprefix’, and add the
resulting directory to the include search path. ‘-iwithprefixbefore’ puts it
in the same place ‘-I’ would; ‘~iwithprefix’ puts it where ‘-idirafter’ would.

-isysroot dir
This option is like the ‘--sysroot’ option, but applies only to header files
(except for Darwin targets, where it applies to both header files and libraries).
See the ‘~-sysroot’ option for more information.

-imultilib dir
Use dir as a subdirectory of the directory containing target-specific C++ headers.

-isystem dir
Search dir for header files, after all directories specified by ‘-I’ but before the
standard system directories. Mark it as a system directory, so that it gets the
same special treatment as is applied to the standard system directories. If dir
begins with =, then the = will be replaced by the sysroot prefix; see ‘~-sysroot’
and ‘-isysroot’.

-iquote dir
Search dir only for header files requested with #include "file"; they are not
searched for #include <file>, before all directories specified by ‘-I’ and before
the standard system directories. If dir begins with =, then the = will be replaced
by the sysroot prefix; see ‘--sysroot’ and ‘~isysroot’.

-fdirectives-only
When preprocessing, handle directives, but do not expand macros.

The option’s behavior depends on the ‘-E’ and ‘~fpreprocessed’ options.

With ‘~E’, preprocessing is limited to the handling of directives such as #define,
#ifdef, and #error. Other preprocessor operations, such as macro expansion
and trigraph conversion are not performed. In addition, the ‘-dD’ option is
implicitly enabled.

With ‘-fpreprocessed’, predefinition of command line and most builtin macros
is disabled. Macros such as __LINE__, which are contextually dependent, are
handled normally. This enables compilation of files previously preprocessed
with -E -fdirectives-only.

With both ‘-E’ and ‘~fpreprocessed’, the rules for ‘~fpreprocessed’ take
precedence. This enables full preprocessing of files previously preprocessed
with -E -fdirectives-only.

-fdollars-in-identifiers
Accept ‘$’ in identifiers.

-fextended-identifiers
Accept universal character names in identifiers. This option is experimental; in
a future version of GCC, it will be enabled by default for C99 and C++.

Chapter 3: GCC Command Options 151

—-fpreprocessed

Indicate to the preprocessor that the input file has already been preprocessed.
This suppresses things like macro expansion, trigraph conversion, escaped new-
line splicing, and processing of most directives. The preprocessor still recognizes
and removes comments, so that you can pass a file preprocessed with ‘-C’ to the
compiler without problems. In this mode the integrated preprocessor is little
more than a tokenizer for the front ends.

‘~fpreprocessed’ is implicit if the input file has one of the extensions ‘.i’,
“.ii’ or ‘.mi’. These are the extensions that GCC uses for preprocessed files
created by ‘-save-temps’.

-ftabstop=width
Set the distance between tab stops. This helps the preprocessor report correct
column numbers in warnings or errors, even if tabs appear on the line. If the
value is less than 1 or greater than 100, the option is ignored. The default is 8.

-fdebug-cpp
This option is only useful for debugging GCC. When used with ‘-E’, dumps
debugging information about location maps. Every token in the output is pre-
ceded by the dump of the map its location belongs to. The dump of the map
holding the location of a token would be:
{‘P’:“/file/path’; ‘F’: ‘/includer/path’; ‘L’ :line_num; ‘C’:col_num; ‘S’ :system_header_p; ‘M’ :map_

When used without ‘-E’, this option has no effect.

-ftrack-macro-expansion|[=level|

Track locations of tokens across macro expansions. This allows the compiler to
emit diagnostic about the current macro expansion stack when a compilation
error occurs in a macro expansion. Using this option makes the preprocessor
and the compiler consume more memory. The level parameter can be used
to choose the level of precision of token location tracking thus decreasing the
memory consumption if necessary. Value ‘0’ of level de-activates this option
just as if no ‘-ftrack-macro-expansion’ was present on the command line.
Value ‘1’ tracks tokens locations in a degraded mode for the sake of minimal
memory overhead. In this mode all tokens resulting from the expansion of an
argument, of a function-like macro have the same location. Value ‘2’ tracks
tokens locations completely. This value is the most memory hungry. When this
option is given no argument, the default parameter value is ‘2’.

-fexec-charset=charset
Set the execution character set, used for string and character constants. The
default is UTF-8. charset can be any encoding supported by the system’s iconv
library routine.

-fwide-exec-charset=charset
Set the wide execution character set, used for wide string and character con-
stants. The default is UTF-32 or UTF-16, whichever corresponds to the width
of wchar_t. As with ‘~fexec-charset’, charset can be any encoding supported
by the system’s iconv library routine; however, you will have problems with
encodings that do not fit exactly in wchar_t.

152

Using the GNU Compiler Collection (GCC)

-finput-charset=charset

Set the input character set, used for translation from the character set of the
input file to the source character set used by GCC. If the locale does not specify,
or GCC cannot get this information from the locale, the default is UTF-8. This
can be overridden by either the locale or this command line option. Currently
the command line option takes precedence if there’s a conflict. charset can be
any encoding supported by the system’s iconv library routine.

-fworking-directory

Enable generation of linemarkers in the preprocessor output that will let the
compiler know the current working directory at the time of preprocessing.
When this option is enabled, the preprocessor will emit, after the initial line-
marker, a second linemarker with the current working directory followed by
two slashes. GCC will use this directory, when it’s present in the prepro-
cessed input, as the directory emitted as the current working directory in some
debugging information formats. This option is implicitly enabled if debug-
ging information is enabled, but this can be inhibited with the negated form
‘~fno-working-directory’. If the ‘-P’ flag is present in the command line,
this option has no effect, since no #line directives are emitted whatsoever.

-fno-show-column

Do not print column numbers in diagnostics. This may be necessary if diag-
nostics are being scanned by a program that does not understand the column
numbers, such as dejagnu.

-A predicate=answer

Make an assertion with the predicate predicate and answer answer. This form is
preferred to the older form ‘-A predicate (answer)’, which is still supported,
because it does not use shell special characters.

-A -predicate=answer

-dCHARS

Cancel an assertion with the predicate predicate and answer answer.

CHARS is a sequence of one or more of the following characters, and must
not be preceded by a space. Other characters are interpreted by the compiler
proper, or reserved for future versions of GCC, and so are silently ignored. If
you specify characters whose behavior conflicts, the result is undefined.

‘M Instead of the normal output, generate a list of ‘#define’ directives
for all the macros defined during the execution of the preprocessor,
including predefined macros. This gives you a way of finding out
what is predefined in your version of the preprocessor. Assuming
you have no file ‘foo.h’, the command

touch foo.h; cpp -dM foo.h

will show all the predefined macros.

If you use ‘-dM’ without the ‘-E’ option, ‘-dM’ is interpreted as
a synonym for ‘~fdump-rtl-mach’. See Section 3.9 [Debugging
Options|, page 72.

‘D’ Like ‘M’ except in two respects: it does not include the predefined
macros, and it outputs both the ‘#define’ directives and the result

Chapter 3: GCC Command Options 153

-CC

of preprocessing. Both kinds of output go to the standard output

file.

‘N Like ‘D’, but emit only the macro names, not their expansions.

‘T Output ‘#include’ directives in addition to the result of prepro-
cessing.

‘v Like ‘D’ except that only macros that are expanded, or whose de-

finedness is tested in preprocessor directives, are output; the output
is delayed until the use or test of the macro; and ‘#undef’ directives
are also output for macros tested but undefined at the time.

Inhibit generation of linemarkers in the output from the preprocessor. This
might be useful when running the preprocessor on something that is not C code,
and will be sent to a program which might be confused by the linemarkers.

Do not discard comments. All comments are passed through to the output file,
except for comments in processed directives, which are deleted along with the
directive.

You should be prepared for side effects when using ‘-C’; it causes the prepro-
cessor to treat comments as tokens in their own right. For example, comments
appearing at the start of what would be a directive line have the effect of turn-
ing that line into an ordinary source line, since the first token on the line is no
longer a ‘#’.

Do not discard comments, including during macro expansion. This is like ‘-C’,
except that comments contained within macros are also passed through to the
output file where the macro is expanded.

In addition to the side-effects of the ‘-C’ option, the ‘-CC’ option causes all
C++-style comments inside a macro to be converted to C-style comments. This
is to prevent later use of that macro from inadvertently commenting out the
remainder of the source line.

The ‘-CC’ option is generally used to support lint comments.

-traditional-cpp

-trigraphs

-remap

Try to imitate the behavior of old-fashioned C preprocessors, as opposed to ISO
C preprocessors.

Process trigraph sequences. These are three-character sequences, all starting
with ‘??’) that are defined by ISO C to stand for single characters. For example,
“?7/’ stands for ‘\’, so ‘> ?7/n’’ is a character constant for a newline. By default,
GCC ignores trigraphs, but in standard-conforming modes it converts them. See
the ‘-std’ and ‘-ansi’ options.
The nine trigraphs and their replacements are

Trigraph: ?7(?7) ?7< 77> ?7= 7?7/ 777 7?70 77-

Replacement: [] { } # \ - | -

Enable special code to work around file systems which only permit very short
file names, such as MS-DOS.

154 Using the GNU Compiler Collection (GCC)

--help

--target-help
Print text describing all the command line options instead of preprocessing
anything.

-v Verbose mode. Print out GNU CPP’s version number at the beginning of
execution, and report the final form of the include path.

-H Print the name of each header file used, in addition to other normal activities.
Each name is indented to show how deep in the ‘#include’ stack it is. Precom-
piled header files are also printed, even if they are found to be invalid; an invalid
precompiled header file is printed with ‘. ..x’ and a valid one with *...!" .

-version

--version
Print out GNU CPP’s version number. With one dash, proceed to preprocess
as normal. With two dashes, exit immediately.

3.12 Passing Options to the Assembler
You can pass options to the assembler.

-Wa,option
Pass option as an option to the assembler. If option contains commas, it is split
into multiple options at the commas.

-Xassembler option
Pass option as an option to the assembler. You can use this to supply system-
specific assembler options that GCC does not know how to recognize.

If you want to pass an option that takes an argument, you must use
‘~Xassembler’ twice, once for the option and once for the argument.

3.13 Options for Linking

These options come into play when the compiler links object files into an executable output
file. They are meaningless if the compiler is not doing a link step.

object-file-name
A file name that does not end in a special recognized suffix is considered to
name an object file or library. (Object files are distinguished from libraries by
the linker according to the file contents.) If linking is done, these object files
are used as input to the linker.

-E If any of these options is used, then the linker is not run, and object file names
should not be used as arguments. See Section 3.2 [Overall Options], page 23.

-llibrary

-1 library
Search the library named library when linking. (The second alternative with
the library as a separate argument is only for POSIX compliance and is not
recommended.)

Chapter 3: GCC Command Options 155

-lobjc

It makes a difference where in the command you write this option; the linker
searches and processes libraries and object files in the order they are speci-
fied. Thus, ‘foo.o -1z bar.o’ searches library ‘z’ after file ‘foo.0o’ but before
‘bar.o’. If ‘bar.o’ refers to functions in ‘z’, those functions may not be loaded.

The linker searches a standard list of directories for the library, which is actually
a file named ‘liblibrary.a’. The linker then uses this file as if it had been
specified precisely by name.

The directories searched include several standard system directories plus any
that you specify with ‘-L’.

Normally the files found this way are library files—archive files whose members
are object files. The linker handles an archive file by scanning through it for
members which define symbols that have so far been referenced but not defined.
But if the file that is found is an ordinary object file, it is linked in the usual
fashion. The only difference between using an ‘-1’ option and specifying a file
name is that ‘-1’ surrounds library with ‘1lib’ and ‘.a’ and searches several
directories.

You need this special case of the ‘-1’ option in order to link an Objective-C or
Objective-C++ program.

-nostartfiles

Do not use the standard system startup files when linking. The standard system
libraries are used normally, unless ‘-nostdlib’ or ‘-nodefaultlibs’ is used.

-nodefaultlibs

-nostdlib

Do not use the standard system libraries when linking. Only the libraries you
specify will be passed to the linker, options specifying linkage of the system
libraries, such as -static-libgcc or -shared-libgcc, will be ignored. The
standard startup files are used normally, unless ‘-nostartfiles’ is used. The
compiler may generate calls to memcmp, memset, memcpy and memmove. These
entries are usually resolved by entries in libc. These entry points should be
supplied through some other mechanism when this option is specified.

Do not use the standard system startup files or libraries when linking. No
startup files and only the libraries you specify will be passed to the linker,
options specifying linkage of the system libraries, such as -static-libgcc or
-shared-1ibgcc, will be ignored. The compiler may generate calls to memcmp,
memset, memcpy and memmove. These entries are usually resolved by entries in
libc. These entry points should be supplied through some other mechanism
when this option is specified.

One of the standard libraries bypassed by ‘-nostdlib’ and ‘-nodefaultlibs’
is ‘libgcc.a’, a library of internal subroutines which GCC uses to overcome
shortcomings of particular machines, or special needs for some languages. (See
Section “Interfacing to GCC Output” in GNU Compiler Collection (GCC) In-
ternals, for more discussion of ‘libgcc.a’.) In most cases, you need ‘libgcc.a’
even when you want to avoid other standard libraries. In other words, when you
specify ‘-nostdlib’ or ‘-nodefaultlibs’ you should usually specify ‘-1gcc’ as

156

-pie

-rdynamic

-static

-shared

Using the GNU Compiler Collection (GCC)

well. This ensures that you have no unresolved references to internal GCC
library subroutines. (For example, ‘__main’, used to ensure C++ constructors
will be called; see Section “collect2” in GNU Compiler Collection (GCC)
Internals.)

Produce a position independent executable on targets that support it. For
predictable results, you must also specify the same set of options that were
used to generate code (‘-fpie’, ‘~fPIE’, or model suboptions) when you specify
this option.

Pass the flag ‘~export-dynamic’ to the ELF linker, on targets that support
it. This instructs the linker to add all symbols, not only used ones, to the
dynamic symbol table. This option is needed for some uses of dlopen or to
allow obtaining backtraces from within a program.

Remove all symbol table and relocation information from the executable.

On systems that support dynamic linking, this prevents linking with the shared
libraries. On other systems, this option has no effect.

Produce a shared object which can then be linked with other objects to form
an executable. Not all systems support this option. For predictable results,
you must also specify the same set of options that were used to generate code
(‘-fpic’, ‘-fPIC’, or model suboptions) when you specify this option.*

-shared-libgcc
-static-libgcc

On systems that provide ‘1ibgcc’ as a shared library, these options force the
use of either the shared or static version respectively. If no shared version of
‘libgcc’ was built when the compiler was configured, these options have no
effect.

There are several situations in which an application should use the shared
‘libgcc’ instead of the static version. The most common of these is when
the application wishes to throw and catch exceptions across different shared li-
braries. In that case, each of the libraries as well as the application itself should
use the shared ‘libgcc’.

Therefore, the G++ and GCJ drivers automatically add ‘-shared-libgcc’
whenever you build a shared library or a main executable, because C++ and
Java programs typically use exceptions, so this is the right thing to do.

If, instead, you use the GCC driver to create shared libraries, you may find
that they will not always be linked with the shared ‘1ibgcc’. If GCC finds, at
its configuration time, that you have a non-GNU linker or a GNU linker that
does not support option ‘--eh-frame-hdr’, it will link the shared version of
‘libgcc’ into shared libraries by default. Otherwise, it will take advantage of

1 On some systems, ‘gcc -shared’ needs to build supplementary stub code for constructors to work. On
multi-libbed systems, ‘gcc -shared’ must select the correct support libraries to link against. Failing to
supply the correct flags may lead to subtle defects. Supplying them in cases where they are not necessary
is innocuous.

Chapter 3: GCC Command Options 157

the linker and optimize away the linking with the shared version of ‘libgcc’,
linking with the static version of libgcc by default. This allows exceptions to
propagate through such shared libraries, without incurring relocation costs at
library load time.

However, if a library or main executable is supposed to throw or catch excep-
tions, you must link it using the G++ or GCJ driver, as appropriate for the
languages used in the program, or using the option ‘-shared-libgcc’, such
that it is linked with the shared ‘libgcc’.

-static-libstdc++

-symbolic

-T script

When the g++ program is used to link a C++ program, it will normally automat-
ically link against ‘libstdc++’. If ‘libstdc++’ is available as a shared library,
and the ‘-static’ option is not used, then this will link against the shared
version of ‘libstdc++’. That is normally fine. However, it is sometimes useful
to freeze the version of ‘libstdc++’ used by the program without going all the
way to a fully static link. The ‘-static-1libstdc++’ option directs the g++
driver to link ‘libstdc++’ statically, without necessarily linking other libraries
statically.

Bind references to global symbols when building a shared object. Warn about
any unresolved references (unless overridden by the link editor option ‘-X1linker
-z -Xlinker defs’). Only a few systems support this option.

Use script as the linker script. This option is supported by most systems using
the GNU linker. On some targets, such as bare-board targets without an oper-
ating system, the ‘=T’ option may be required when linking to avoid references
to undefined symbols.

-Xlinker option

Pass option as an option to the linker. You can use this to supply system-specific
linker options that GCC does not recognize.

If you want to pass an option that takes a separate argument, you must use
‘~Xlinker’ twice, once for the option and once for the argument. For example,
to pass ‘—assert definitions’, you must write ‘-Xlinker -assert -Xlinker
definitions’. It does not work to write ‘~Xlinker "-assert definitions"’,
because this passes the entire string as a single argument, which is not what
the linker expects.

When using the GNU linker, it is usually more convenient to pass arguments
to linker options using the ‘option=value’ syntax than as separate argu-
ments. For example, you can specify ‘~-X1linker -Map=output.map’ rather than
‘~Xlinker -Map -Xlinker output.map’. Other linkers may not support this
syntax for command-line options.

-W1l,option

Pass option as an option to the linker. If option contains commas, it is split into
multiple options at the commas. You can use this syntax to pass an argument
to the option. For example, ‘-W1,-Map,output.map’ passes ‘~Map output.map’

158

-u symbol

Using the GNU Compiler Collection (GCC)

to the linker. When using the GNU linker, you can also get the same effect
with ‘-W1,-Map=output.map’.

Pretend the symbol symbol is undefined, to force linking of library modules
to define it. You can use ‘-u’ multiple times with different symbols to force
loading of additional library modules.

3.14 Options for Directory Search

These options specify directories to search for header files, for libraries and for parts of the

compiler:

-Idir

Add the directory dir to the head of the list of directories to be searched for
header files. This can be used to override a system header file, substituting
your own version, since these directories are searched before the system header
file directories. However, you should not use this option to add directories that
contain vendor-supplied system header files (use ‘-isystem’ for that). If you
use more than one ‘-I’ option, the directories are scanned in left-to-right order;
the standard system directories come after.

If a standard system include directory, or a directory specified with ‘~isystem’,
is also specified with ‘-I’, the ‘-I’ option will be ignored. The directory will
still be searched but as a system directory at its normal position in the system
include chain. This is to ensure that GCC’s procedure to fix buggy system
headers and the ordering for the include_next directive are not inadvertently
changed. If you really need to change the search order for system directories,
use the ‘-nostdinc’ and/or ‘~isystem’ options.

-iplugindir=dir

Set the directory to search for plugins that are passed by ‘-fplugin=name’
instead of ‘~fplugin=path/name.so’. This option is not meant to be used by
the user, but only passed by the driver.

-iquotedir

-Ldir

-Bprefix

Add the directory dir to the head of the list of directories to be searched for
header files only for the case of ‘#include "file"’; they are not searched for
‘#include <file>’, otherwise just like ‘-I’.

Add directory dir to the list of directories to be searched for ‘-1’

This option specifies where to find the executables, libraries, include files, and
data files of the compiler itself.

The compiler driver program runs one or more of the subprograms ‘cpp’, ‘ccl’,
‘as’ and ‘1d’. It tries prefix as a prefix for each program it tries to run, both with
and without ‘machine/version/’ (see Section 3.16 [Target Options|, page 167).

For each subprogram to be run, the compiler driver first tries the ‘-B’ prefix, if
any. If that name is not found, or if ‘~B’ was not specified, the driver tries two
standard prefixes, ‘/usr/lib/gcc/’ and ‘/usr/local/lib/gcc/’. If neither of
those results in a file name that is found, the unmodified program name is
searched for using the directories specified in your PATH environment variable.

Chapter 3: GCC Command Options 159

The compiler will check to see if the path provided by the ‘-B’ refers to a
directory, and if necessary it will add a directory separator character at the end
of the path.

‘-B’ prefixes that effectively specify directory names also apply to libraries in
the linker, because the compiler translates these options into ‘-L’ options for
the linker. They also apply to includes files in the preprocessor, because the
compiler translates these options into ‘-isystem’ options for the preprocessor.
In this case, the compiler appends ‘include’ to the prefix.

The runtime support file ‘libgcc.a’ can also be searched for using the ‘-B’
prefix, if needed. If it is not found there, the two standard prefixes above are
tried, and that is all. The file is left out of the link if it is not found by those
means.

Another way to specify a prefix much like the ‘-B’ prefix is to use the envi-
ronment variable GCC_EXEC_PREFIX. See Section 3.19 [Environment Variables],
page 296.

As a special kludge, if the path provided by ‘-B’ is ‘[dir/]stageN/’, where N
is a number in the range 0 to 9, then it will be replaced by ‘[dir/]include’.
This is to help with boot-strapping the compiler.

-specs=file

Process file after the compiler reads in the standard ‘specs’ file, in order to
override the defaults which the ‘gcc’ driver program uses when determining
what switches to pass to ‘ccl’, ‘cclplus’, ‘as’, ‘1ld’, etc. More than one
‘-specs=file’ can be specified on the command line, and they are processed
in order, from left to right.

—--sysroot=dir

I

Use dir as the logical root directory for headers and libraries. For example, if
the compiler would normally search for headers in ‘/usr/include’ and libraries
in ‘/usr/1ib’, it will instead search ‘dir/usr/include’ and ‘dir/usr/1ib’.

If you use both this option and the ‘~isysroot’ option, then the ‘--sysroot’
option will apply to libraries, but the ‘~isysroot’ option will apply to header
files.

The GNU linker (beginning with version 2.16) has the necessary support for
this option. If your linker does not support this option, the header file aspect
of ‘-—sysroot’ will still work, but the library aspect will not.

¢

This option has been deprecated. Please use ‘~iquote’ instead for ‘~I’ direc-
tories before the ‘-I-" and remove the ‘-I-’. Any directories you specify with
‘I’ options before the ‘~I-’ option are searched only for the case of ‘#include
"file"’; they are not searched for ‘#include <file>’.

If additional directories are specified with ‘=1’ options after the ‘-I-’, these
directories are searched for all ‘#include’ directives. (Ordinarily all ‘-1’ direc-
tories are used this way.)

In addition, the ‘~I-’ option inhibits the use of the current directory (where
the current input file came from) as the first search directory for ‘#include
"file"’. There is no way to override this effect of ‘-I-’. With ‘-I.’ you can

160 Using the GNU Compiler Collection (GCC)

specify searching the directory that was current when the compiler was invoked.
That is not exactly the same as what the preprocessor does by default, but it
is often satisfactory.

‘~I-’ does not inhibit the use of the standard system directories for header files.
Thus, ‘-I-’ and ‘-nostdinc’ are independent.

3.15 Specifying subprocesses and the switches to pass to
them

gcc is a driver program. It performs its job by invoking a sequence of other programs to do
the work of compiling, assembling and linking. GCC interprets its command-line parameters
and uses these to deduce which programs it should invoke, and which command-line options
it ought to place on their command lines. This behavior is controlled by spec strings. In
most cases there is one spec string for each program that GCC can invoke, but a few
programs have multiple spec strings to control their behavior. The spec strings built into
GCC can be overridden by using the ‘-specs=" command-line switch to specify a spec file.

Spec files are plaintext files that are used to construct spec strings. They consist of a
sequence of directives separated by blank lines. The type of directive is determined by the
first non-whitespace character on the line, which can be one of the following;:

%hcommand Issues a command to the spec file processor. The commands that can appear
here are:

%include <file>

Search for file and insert its text at the current point in the specs
file.

%include_noerr <file>
Just like ‘%include’, but do not generate an error message if the
include file cannot be found.

Y%rename old_name new_name
Rename the spec string old_name to new_name.

* [spec_name] :

This tells the compiler to create, override or delete the named spec string. All
lines after this directive up to the next directive or blank line are considered
to be the text for the spec string. If this results in an empty string then the
spec will be deleted. (Or, if the spec did not exist, then nothing will happen.)
Otherwise, if the spec does not currently exist a new spec will be created. If the
spec does exist then its contents will be overridden by the text of this directive,
unless the first character of that text is the ‘+’ character, in which case the text
will be appended to the spec.

[suffix]:
Creates a new ‘[suffix] spec’ pair. All lines after this directive and up to the
next directive or blank line are considered to make up the spec string for the
indicated suffix. When the compiler encounters an input file with the named
suffix, it will processes the spec string in order to work out how to compile that
file. For example:

Chapter 3: GCC Command Options 161

.ZZ:

z-compile -input %i
This says that any input file whose name ends in ‘.ZZ’ should be passed to the
program ‘z-compile’, which should be invoked with the command-line switch
‘~input’ and with the result of performing the ‘%i’ substitution. (See below.)

As an alternative to providing a spec string, the text that follows a suffix di-
rective can be one of the following:

@language
This says that the suffix is an alias for a known language. This is
similar to using the ‘-x’ command-line switch to GCC to specify a
language explicitly. For example:
A
Qc++

Says that .ZZ files are, in fact, C++ source files.

#name This causes an error messages saying:

name compiler not installed on this system.

GCC already has an extensive list of suffixes built into it. This directive will
add an entry to the end of the list of suffixes, but since the list is searched from
the end backwards, it is effectively possible to override earlier entries using this
technique.

GCC has the following spec strings built into it. Spec files can override these strings or
create their own. Note that individual targets can also add their own spec strings to this

list.

asm Options to pass to the assembler

asm_final Options to pass to the assembler post-processor

cpp Options to pass to the C preprocessor

ccl Options to pass to the C compiler

cclplus Options to pass to the C++ compiler

endfile Object files to include at the end of the link

link Options to pass to the linker

1ib Libraries to include on the command line to the linker

libgcc Decides which GCC support library to pass to the linker

linker Sets the name of the linker

predefines Defines to be passed to the C preprocessor

signed_char Defines to pass to CPP to say whether char is signed
by default

startfile Object files to include at the start of the link

Here is a small example of a spec file:

Jirenam

*1ib:

e 1ib old_1ib

--start-group -lgcc -lc -levall --end-group %(old_lib)

This example renames the spec called ‘1ib’ to ‘o1d_1ib’ and then overrides the previous
definition of ‘1ib’ with a new one. The new definition adds in some extra command-line
options before including the text of the old definition.

Spec strings are a list of command-line options to be passed to their corresponding pro-
gram. In addition, the spec strings can contain ‘%, -prefixed sequences to substitute variable

162

Using the GNU Compiler Collection (GCC)

text or to conditionally insert text into the command line. Using these constructs it is
possible to generate quite complex command lines.

Here is a table of all defined ‘%’-sequences for spec strings. Note that spaces are not
generated automatically around the results of expanding these sequences. Therefore you
can concatenate them together or combine them with constant text in a single argument.

yAA
%hi
%b
%B

hd

hgsuffix

Yusuffix

WUsuffix

hjsuffix

%|suffix
Ymsuffix

Substitute one ‘%’ into the program name or argument.
Substitute the name of the input file being processed.

Substitute the basename of the input file being processed. This is the substring
up to (and not including) the last period and not including the directory.

This is the same as ‘%b’, but include the file suffix (text after the last period).

Marks the argument containing or following the ‘%d’ as a temporary file name,
so that that file will be deleted if GCC exits successfully. Unlike ‘%g’, this
contributes no text to the argument.

Substitute a file name that has suffix suffix and is chosen once per compilation,
and mark the argument in the same way as ‘%d’. To reduce exposure to denial-
of-service attacks, the file name is now chosen in a way that is hard to predict
even when previously chosen file names are known. For example, ‘%g.s ...
%g.o ... %g.s’ might turn into ‘ccUVUUAU.s ccXYAXZ12.0 ccUVUUAU.s’. suffix
matches the regexp ‘[.A-Za-z]*’ or the special string ‘%0’, which is treated
exactly as if ‘%0’ had been preprocessed. Previously, ‘%g’ was simply substituted
with a file name chosen once per compilation, without regard to any appended
suffix (which was therefore treated just like ordinary text), making such attacks
more likely to succeed.

Like ‘%g’, but generates a new temporary file name even if ‘Yusuffix’ was
already seen.

Substitutes the last file name generated with ‘fusuffix’, generating a new one
if there is no such last file name. In the absence of any ‘fusuffix’, this is
just like ‘Y%gsuffix’, except they don’t share the same suffix space, so ‘%g.s
... %WU.s ... %g.s ... %U.s” would involve the generation of two distinct file
names, one for each ‘%g.s’ and another for each ‘%4U.s’. Previously, ‘AU’ was
simply substituted with a file name chosen for the previous ‘%u’, without regard
to any appended suffix.

Substitutes the name of the HOST_BIT_BUCKET, if any, and if it is writable, and
if save-temps is off; otherwise, substitute the name of a temporary file, just like
‘%u’. This temporary file is not meant for communication between processes,
but rather as a junk disposal mechanism.

Like ‘%g’, except if ‘-pipe’ is in effect. In that case ‘%]’ substitutes a single
dash and ‘%m’ substitutes nothing at all. These are the two most common
ways to instruct a program that it should read from standard input or write
to standard output. If you need something more elaborate you can use an
‘%{pipe:X}’ construct: see for example ‘f/lang-specs.h’.

Chapter 3: GCC Command Options 163

%.SUFFIX Substitutes .SUFFIX for the suffixes of a matched switch’s args when it is

yAYS

%o

%0

p

WP

I

%s

hT

%estr

% (name)

subsequently output with ‘%*’. SUFFIX is terminated by the next space or %.

Marks the argument containing or following the ‘%w’ as the designated output
file of this compilation. This puts the argument into the sequence of arguments
that ‘%o’ will substitute later.

Substitutes the names of all the output files, with spaces automatically placed
around them. You should write spaces around the ‘%0’ as well or the results are
undefined. ‘%o’ is for use in the specs for running the linker. Input files whose
names have no recognized suffix are not compiled at all, but they are included
among the output files, so they will be linked.

Substitutes the suffix for object files. Note that this is handled specially when
it immediately follows ‘%g, %u, or %U’, because of the need for those to form
complete file names. The handling is such that ‘%0’ is treated exactly as if it
had already been substituted, except that ‘%g, %u, and %U’ do not currently
support additional suffix characters following ‘%0’ as they would following, for

)

example, ‘.o .

Substitutes the standard macro predefinitions for the current target machine.
Use this when running cpp.

Like ‘%p’, but puts ‘__
except for macros that start with ‘__
letter. This is for ISO C.

" before and after the name of each predefined macro,
" or with ‘_L’, where L is an uppercase

Substitute any of ‘-iprefix’ (made from GCC_EXEC_PREFIX), ‘-isysroot’
(made from TARGET_SYSTEM_ROOT), ‘-isystem’ (made from COMPILER_PATH
and ‘-B’ options) and ‘-imultilib’ as necessary.

Current argument is the name of a library or startup file of some sort. Search
for that file in a standard list of directories and substitute the full name found.
The current working directory is included in the list of directories scanned.

Current argument is the name of a linker script. Search for that file in the
current list of directories to scan for libraries. If the file is located insert a
‘—-—script’ option into the command line followed by the full path name found.
If the file is not found then generate an error message. Note: the current
working directory is not searched.

Print str as an error message. str is terminated by a newline. Use this when
inconsistent options are detected.

Substitute the contents of spec string name at this point.

%x{option}

%X
WY
WZ

Accumulate an option for ‘%X’.
Output the accumulated linker options specified by ‘W1’ or a ‘%x’ spec string.
Output the accumulated assembler options specified by ‘-Wa’.

Output the accumulated preprocessor options specified by ‘-Wp’.

164

%a

A

hl

%D

%L

hG

hS

hE

hC

3

52

YA

%<S

Using the GNU Compiler Collection (GCC)

Process the asm spec. This is used to compute the switches to be passed to the
assembler.

Process the asm_final spec. This is a spec string for passing switches to an
assembler post-processor, if such a program is needed.

Process the 1ink spec. This is the spec for computing the command line passed
to the linker. Typically it will make use of the ‘%L %G %S %D and %E’ sequences.

Dump out a ‘-L’ option for each directory that GCC believes might contain
startup files. If the target supports multilibs then the current multilib directory
will be prepended to each of these paths.

Process the 1ib spec. This is a spec string for deciding which libraries should
be included on the command line to the linker.

Process the libgcc spec. This is a spec string for deciding which GCC support
library should be included on the command line to the linker.

Process the startfile spec. This is a spec for deciding which object files
should be the first ones passed to the linker. Typically this might be a file
named ‘crt0.0’.

Process the endfile spec. This is a spec string that specifies the last object
files that will be passed to the linker.

Process the cpp spec. This is used to construct the arguments to be passed to
the C preprocessor.

Process the cc1 spec. This is used to construct the options to be passed to the
actual C compiler (‘ccl’).

Process the cclplus spec. This is used to construct the options to be passed
to the actual C++ compiler (‘cciplus’).

Substitute the variable part of a matched option. See below. Note that each
comma in the substituted string is replaced by a single space.

Remove all occurrences of =S from the command line. Note—this command is
position dependent. ‘%’ commands in the spec string before this one will see -3,
‘% commands in the spec string after this one will not.

J:function (args)

Call the named function function, passing it args. args is first processed as a
nested spec string, then split into an argument vector in the usual fashion. The
function returns a string which is processed as if it had appeared literally as
part of the current spec.

The following built-in spec functions are provided:

getenv The getenv spec function takes two arguments: an environment
variable name and a string. If the environment variable is not
defined, a fatal error is issued. Otherwise, the return value is the
value of the environment variable concatenated with the string. For
example, if TOPDIR is defined as ‘/path/to/top’, then:

Chapter 3: GCC Command Options 165

%:getenv(TOPDIR /include)
expands to ‘/path/to/top/include’.
if-exists
The if-exists spec function takes one argument, an absolute
pathname to a file. If the file exists, if-exists returns the path-
name. Here is a small example of its usage:
*startfile:
crt0%0%s %:if-exists(crti0%s) crtbegin¥0%s
if-exists-else
The if-exists-else spec function is similar to the if-exists spec
function, except that it takes two arguments. The first argument is
an absolute pathname to a file. If the file exists, if-exists-else
returns the pathname. If it does not exist, it returns the second
argument. This way, if-exists-else can be used to select one
file or another, based on the existence of the first. Here is a small
example of its usage:
*startfile:
crt0%0%s %:if-exists(crti%0%s) \
%:if-exists-else(crtbeginT/0%s crtbegini0%s)
replace-outfile
The replace-outfile spec function takes two arguments. It looks
for the first argument in the outfiles array and replaces it with the
second argument. Here is a small example of its usage:
%{fgnu-runtime:%:replace-outfile(-lobjc -lobjc-gnu)}

remove-outfile
The remove-outfile spec function takes one argument. It looks
for the first argument in the outfiles array and removes it. Here is
a small example its usage:

% :remove-outfile (-1m)

pass—-through-1ibs
The pass-through-1libs spec function takes any number of argu-
ments. It finds any ‘-1’ options and any non-options ending in
".a" (which it assumes are the names of linker input library archive
files) and returns a result containing all the found arguments each
prepended by ‘-plugin-opt=-pass-through="and joined by spa-
ces. This list is intended to be passed to the LTO linker plugin.
%:pass—through-1ibs (%G %L %G)

print-asm-header
The print-asm-header function takes no arguments and simply
prints a banner like:

Assembler options

Use "-Wa,OPTION" to pass "OPTION" to the assembler.

It is used to separate compiler options from assembler options in
the ‘--target-help’ output.

166

%{s}

hw{s}

h{s*}

%{S*&T*}

%{S: X}
%{18:X}
%{S*:X}

%{.S:X}
%{!.S:X3}
h{,S: X}
h{!,S:X}
H{SIP:X}

Using the GNU Compiler Collection (GCC)

Substitutes the =S switch, if that switch was given to GCC. If that switch was
not specified, this substitutes nothing. Note that the leading dash is omitted
when specifying this option, and it is automatically inserted if the substitution
is performed. Thus the spec string ‘%{foo}’ would match the command-line
option ‘-foo’ and would output the command-line option ‘-foo’.

Like %{S} but mark last argument supplied within as a file to be deleted on
failure.

Substitutes all the switches specified to GCC whose names start with -S, but
which also take an argument. This is used for switches like ‘-o’, ‘-D’, ‘-I’,
etc. GCC considers ‘-o foo’ as being one switch whose names starts with ‘o’.
%{0*} would substitute this text, including the space. Thus two arguments
would be generated.

Like %{S*}, but preserve order of S and T options (the order of S and T in
the spec is not significant). There can be any number of ampersand-separated
variables; for each the wild card is optional. Useful for CPP as ‘%{D*&U*&Ax*}’.

Substitutes X, if the ‘=8’ switch was given to GCC.
Substitutes X, if the ‘=8’ switch was not given to GCC.

Substitutes X if one or more switches whose names start with -S are specified to
GCC. Normally X is substituted only once, no matter how many such switches
appeared. However, if %* appears somewhere in X, then X will be substituted
once for each matching switch, with the %* replaced by the part of that switch
that matched the *.

Substitutes X, if processing a file with suffix S.
Substitutes X, if not processing a file with suffix S.
Substitutes X, if processing a file for language S.
Substitutes X, if not processing a file for language S.

Substitutes X if either -S or -P was given to GCC. This may be combined with
o 4,7 and * sequences as well, although they have a stronger binding than
the “|’. If %* appears in X, all of the alternatives must be starred, and only the

first matching alternative is substituted.
For example, a spec string like this:
%{.c:-foo} %{!.c:-bar} %{.cld:-baz} %{!.cld:-boggle}
will output the following command-line options from the following input
command-line options:

fred.c -foo -baz

jim.d -bar -boggle

-d fred.c -foo -baz -boggle
-d jim.d -bar -baz -boggle

%{S:X; T:Y; :D}

If S was given to GCC, substitutes X; else if T was given to GCC, substitutes
Y; else substitutes D. There can be as many clauses as you need. This may be
combined with ., ,, !, |, and * as needed.

Chapter 3: GCC Command Options 167

The conditional text X in a %{S:X} or similar construct may contain other nested ‘%’
constructs or spaces, or even newlines. They are processed as usual, as described above.
Trailing white space in X is ignored. White space may also appear anywhere on the left side
of the colon in these constructs, except between . or * and the corresponding word.

The ‘-0°, ‘-f’, ‘-m’, and ‘-W switches are handled specifically in these constructs. If
another value of ‘-0’ or the negated form of a ‘-f’, ‘-m’, or ‘W’ switch is found later in
the command line, the earlier switch value is ignored, except with {S*} where S is just one
letter, which passes all matching options.

The character ‘|’ at the beginning of the predicate text is used to indicate that a command
should be piped to the following command, but only if ‘-pipe’ is specified.

It is built into GCC which switches take arguments and which do not. (You might think
it would be useful to generalize this to allow each compiler’s spec to say which switches
take arguments. But this cannot be done in a consistent fashion. GCC cannot even decide
which input files have been specified without knowing which switches take arguments, and
it must know which input files to compile in order to tell which compilers to run).

GCC also knows implicitly that arguments starting in ‘-1’ are to be treated as compiler
output files, and passed to the linker in their proper position among the other output files.

3.16 Specifying Target Machine and Compiler Version

The usual way to run GCC is to run the executable called gcc, or machine-gcc when
cross-compiling, or machine-gcc-version to run a version other than the one that was
installed last.

3.17 Hardware Models and Configurations

Each target machine types can have its own special options, starting with ‘-m’, to choose
among various hardware models or configurations—for example, 68010 vs 68020, floating
coprocessor or none. A single installed version of the compiler can compile for any model
or configuration, according to the options specified.

Some configurations of the compiler also support additional special options, usually for
compatibility with other compilers on the same platform.

3.17.1 Adapteva Epiphany Options
These ‘-m’ options are defined for Adapteva Epiphany:

-mhalf-reg-file
Don’t allocate any register in the range r32...r63. That allows code to run
on hardware variants that lack these registers.

-mprefer-short-insn-regs
Preferrentially allocate registers that allow short instruction generation. This
can result in increasesd instruction count, so if this reduces or increases code
size might vary from case to case.

-mbranch-cost=num
Set the cost of branches to roughly num “simple” instructions. This cost is only
a heuristic and is not guaranteed to produce consistent results across releases.

168 Using the GNU Compiler Collection (GCC)

-mcmove Enable the generation of conditional moves.

-mnops=num
Emit num nops before every other generated instruction.

-mno-soft-cmpst
For single-precision floating-point comparisons, emit an fsub instruction and
test the flags. This is faster than a software comparison, but can get incor-
rect results in the presence of NaNs, or when two different small numbers
are compared such that their difference is calculated as zero. The default is
‘-msoft-cmpst’, which uses slower, but IEEE-compliant, software comparisons.

-mstack-offset=num

Set the offset between the top of the stack and the stack pointer. E.g., a value
of 8 means that the eight bytes in the range sp+0. . .sp+7 can be used by leaf
functions without stack allocation. Values other than ‘8" or ‘16’ are untested
and unlikely to work. Note also that this option changes the ABI, compiling
a program with a different stack offset than the libraries have been compiled
with will generally not work. This option can be useful if you want to evaluate
if a different stack offset would give you better code, but to actually use a
different stack offset to build working programs, it is recommended to configure
the toolchain with the appropriate ‘--with-stack-offset=num’ option.

-mno-round-nearest
Make the scheduler assume that the rounding mode has been set to truncating.
The default is ‘-mround-nearest’.

-mlong-calls
If not otherwise specified by an attribute, assume all calls might be beyond the
offset range of the b / bl instructions, and therefore load the function address
into a register before performing a (otherwise direct) call. This is the default.

-mshort-calls
If not otherwise specified by an attribute, assume all direct calls are in the range
of the b / bl instructions, so use these instructions for direct calls. The default
is ‘-mlong-calls’.

-msmalll6
Assume addresses can be loaded as 16-bit unsigned values. This does not apply
to function addresses for which ‘-mlong-calls’ semantics are in effect.

-mfp-mode=mode
Set the prevailing mode of the floating-point unit. This determines the floating-
point mode that is provided and expected at function call and return time.
Making this mode match the mode you predominantly need at function start can
make your programs smaller and faster by avoiding unnecessary mode switches.

mode can be set to one the following values:
‘caller’ Any mode at function entry is valid, and retained or restored when

the function returns, and when it calls other functions. This mode
is useful for compiling libraries or other compilation units you might

Chapter 3: GCC Command Options 169

want to incorporate into different programs with different prevail-
ing FPU modes, and the convenience of being able to use a single
object file outweighs the size and speed overhead for any extra
mode switching that might be needed, compared with what would
be needed with a more specific choice of prevailing FPU mode.

‘truncate’
This is the mode used for floating-point calculations with truncating
(i.e. round towards zero) rounding mode. That includes conversion
from floating point to integer.

‘round-nearest’
This is the mode used for floating-point calculations with round-
to-nearest-or-even rounding mode.

This is the mode used to perform integer calculations in the FPU,
e.g. integer multiply, or integer multiply-and-accumulate.

int

The default is ‘-mfp-mode=caller’

-mnosplit-lohi

-mno-postinc

-mno-postmodify
Code generation tweaks that disable, respectively, splitting of 32-bit loads, gen-
eration of post-increment addresses, and generation of post-modify addresses.
The defaults are ‘msplit-lohi’, ‘-mpost-inc’, and ‘-mpost-modify’.

-mnovect-double
Change the preferred SIMD mode to SImode. The default is ‘-mvect-double’,
which uses DImode as preferred SIMD mode.

-max-vect-align=num
The maximum alignment for SIMD vector mode types. num may be 4 or 8.
The default is 8. Note that this is an ABI change, even though many library
function interfaces will be unaffected, if they don’t use SIMD vector modes in
places where they affect size and/or alignment of relevant types.

-msplit-vecmove-early
Split vector moves into single word moves before reload. In theory this could
give better register allocation, but so far the reverse seems to be generally the
case.

-mlreg-reg
Specify a register to hold the constant —1, which makes loading small negative
constants and certain bitmasks faster. Allowable values for reg are r43 and r63,
which specify to use that register as a fixed register, and none, which means
that no register is used for this purpose. The default is ‘-mireg-none’.

3.17.2 AArch64 Options

These options are defined for A Arch64 implementations:

170 Using the GNU Compiler Collection (GCC)

-mbig-endian
Generate big-endian code. This is the default when GCC is configured for an
‘aarch64_be-*-*’ target.

-mgeneral-regs-only
Generate code which uses only the general registers.

-mlittle-endian
Generate little-endian code. This is the default when GCC is configured for an
‘aarch64-*—*’ but not an ‘aarch64_be-*-x’ target.

-mcmodel=tiny
Generate code for the tiny code model. The program and its statically defined
symbols must be within 1GB of each other. Pointers are 64 bits. Programs can
be statically or dynamically linked. This model is not fully implemented and
mostly treated as "small".

-mcmodel=small
Generate code for the small code model. The program and its statically defined
symbols must be within 4GB of each other. Pointers are 64 bits. Programs can
be statically or dynamically linked. This is the default code model.

-mcmodel=large
Generate code for the large code model. This makes no assumptions about
addresses and sizes of sections. Pointers are 64 bits. Programs can be statically
linked only.

-mstrict-align
Do not assume that unaligned memory references will be handled by the system.

-momit-leaf-frame-pointer

-mno-omit-leaf-frame-pointer
Omit or keep the frame pointer in leaf functions. The former behaviour is the
default.

-mtls-dialect=desc
Use TLS descriptors as the thread-local storage mechanism for dynamic accesses
of TLS variables. This is the default.

-mtls-dialect=traditional
Use traditional TLS as the thread-local storage mechanism for dynamic accesses
of TLS variables.

-march=name
Specify the name of the target architecture, optionally suffixed by one or more
feature modifiers. This option has the form ‘-march=arch{+[no|feature}*’,
where the only value for arch is ‘armv8-a’. The possible values for feature are
documented in the sub-section below.

Where conflicting feature modifiers are specified, the right-most feature is used.

GCC uses this name to determine what kind of instructions it can emit when
generating assembly code. This option can be used in conjunction with or
instead of the ‘-mcpu=" option.

Chapter 3: GCC Command Options 171

-mcpu=name
Specify the name of the target processor, optionally suffixed by one or more fea-
ture modifiers. This option has the form ‘-mcpu=cpu{+[no|feature}*’, where
the possible values for cpu are ‘generic’, ‘large’. The possible values for fea-
ture are documented in the sub-section below.

Where conflicting feature modifiers are specified, the right-most feature is used.

GCC uses this name to determine what kind of instructions it can emit when
generating assembly code.

-mtune=name
Specify the name of the processor to tune the performance for. The code will
be tuned as if the target processor were of the type specified in this option,
but still using instructions compatible with the target processor specified by a
‘-mcpu=" option. This option cannot be suffixed by feature modifiers.

3.17.2.1 ‘-march’ and ‘-mcpu’ feature modifiers

Feature modifiers used with ‘-march’ and ‘-mcpu’ can be one the following:
‘crypto’ Enable Crypto extension. This implies Advanced SIMD is enabled.
Enable floating-point instructions.

‘simd’ Enable Advanced SIMD instructions. This implies floating-point instructions
are enabled. This is the default for all current possible values for options
‘-march’ and ‘-mcpu=’.

3.17.3 ARM Options
These ‘-m’ options are defined for Advanced RISC Machines (ARM) architectures:

-mabi=name
Generate code for the specified ABI. Permissible values are: ‘apcs-gnu’,
‘atpcs’, ‘aapcs’, ‘aapcs-linux’ and ‘iwmmxt’.

-mapcs-frame
Generate a stack frame that is compliant with the ARM Procedure Call Stan-
dard for all functions, even if this is not strictly necessary for correct execu-
tion of the code. Specifying ‘-fomit-frame-pointer’ with this option will
cause the stack frames not to be generated for leaf functions. The default is
‘-mno-apcs-frame’.

-mapcs This is a synonym for ‘-mapcs-frame’.

-mthumb-interwork
Generate code that supports calling between the ARM and Thumb
instruction sets. Without this option, on pre-v5 architectures, the two
instruction sets cannot be reliably used inside one program. The default
is ‘-mno-thumb-interwork’, since slightly larger code is generated when
‘-mthumb-interwork’ is specified. In AAPCS configurations this option is
meaningless.

172 Using the GNU Compiler Collection (GCC)

-mno-sched-prolog
Prevent the reordering of instructions in the function prologue, or the merging
of those instruction with the instructions in the function’s body. This means
that all functions will start with a recognizable set of instructions (or in fact one
of a choice from a small set of different function prologues), and this information
can be used to locate the start if functions inside an executable piece of code.
The default is ‘-msched-prolog’.

-mfloat—-abi=name
Specifies which floating-point ABI to use. Permissible values are: ‘soft’,
‘softfp’ and ‘hard’.

Specifying ‘soft’ causes GCC to generate output containing library calls for
floating-point operations. ‘softfp’ allows the generation of code using hard-
ware floating-point instructions, but still uses the soft-float calling conventions.
‘hard’ allows generation of floating-point instructions and uses FPU-specific
calling conventions.

The default depends on the specific target configuration. Note that the hard-
float and soft-float ABIs are not link-compatible; you must compile your entire
program with the same ABI, and link with a compatible set of libraries.

-mlittle-endian
Generate code for a processor running in little-endian mode. This is the default
for all standard configurations.

-mbig-endian
Generate code for a processor running in big-endian mode; the default is to
compile code for a little-endian processor.

-mwords—little-endian
This option only applies when generating code for big-endian processors. Gen-
erate code for a little-endian word order but a big-endian byte order. That is,
a byte order of the form ‘32107654’. Note: this option should only be used if
you require compatibility with code for big-endian ARM processors generated
by versions of the compiler prior to 2.8. This option is now deprecated.

-mcpu=name
This specifies the name of the target ARM processor. GCC uses this name to
determine what kind of instructions it can emit when generating assembly code.
Permissible names are: ‘arm2’, ‘arm250’, ‘arm3’, ‘arm6’, ‘arm60’, ‘arm600’,
‘arm610’, ‘arm620’, ‘arm7’, ‘arm7m’, ‘arm7d’, ‘arm7dm’, ‘arm7di’, ‘arm7dmi’,
‘arm70’, ‘arm700’, ‘arm700i’, ‘arm710’, ‘arm710c’, ‘arm7100’, ‘arm720’,
‘arm7500’, ‘arm7500fe’, ‘arm7tdmi’, ‘arm7tdmi-s’, ‘arm710t’, ‘arm720t’,
‘arm740t’, ‘strongarm’, ‘strongarm110’, ‘strongarm1100’, ‘strongarm1110’,
‘arm8’, ‘arm810’, ‘arm9’, ‘arm9e’, ‘arm920’, ‘arm920t’, ‘arm922t’, ‘arm946e-s’,
‘arm966e-s’, ‘arm968e-s’, ‘arm926ej-s’, ‘arm940t’, ‘arm9tdmi’, ‘arm10tdmi’,
‘arm1020t’, ‘arm1026ej-s’, ‘arml0e’, ‘arm1020e’, ‘arm1022e’, ‘arm1136j-s’,
‘arm1136jf-s’, ‘mpcore’, ‘mpcorenovfp’, ‘arml1156t2-s’, ‘arml156t2f-s’,
‘arm1176jz-s’, ‘arml176jzf-s’, ‘cortex-ab’, ‘cortex-a7’, ‘cortex-a8’,
‘cortex-a9’, ‘cortex-alb’, ‘cortex-rd’, ‘cortex-r4f’, ‘cortex-rb’,

Chapter 3: GCC Command Options 173

‘cortex-m4’, ‘cortex-m3’, ‘cortex-ml’, ‘cortex-mQ’, ‘xscale’, ‘iwmmxt’,
“Gummxt2’, ‘ep9312’, ‘fab26’, ‘fab26’, ‘fa606te’, ‘fab626te’, ‘fmp626’,
‘fa726te’.

‘-mcpu=generic-arch’ is also permissible, and is equivalent to
-mtune=generic-arch’. See ‘-mtune’ for more information.

‘-march=arch

‘-mcpu=native’ causes the compiler to auto-detect the CPU of the build com-
puter. At present, this feature is only supported on Linux, and not all archi-
tectures are recognized. If the auto-detect is unsuccessful the option has no
effect.

-mtune=name

This option is very similar to the ‘-mcpu=’ option, except that instead of speci-
fying the actual target processor type, and hence restricting which instructions
can be used, it specifies that GCC should tune the performance of the code
as if the target were of the type specified in this option, but still choosing the
instructions that it will generate based on the CPU specified by a ‘-mcpu=’
option. For some ARM implementations better performance can be obtained
by using this option.

‘-mtune=generic-arch’ specifies that GCC should tune the performance for a
blend of processors within architecture arch. The aim is to generate code that
run well on the current most popular processors, balancing between optimiza-
tions that benefit some CPUs in the range, and avoiding performance pitfalls
of other CPUs. The effects of this option may change in future GCC versions
as CPU models come and go.

‘-mtune=native’ causes the compiler to auto-detect the CPU of the build com-
puter. At present, this feature is only supported on Linux, and not all archi-
tectures are recognized. If the auto-detect is unsuccessful the option has no
effect.

-march=name

This specifies the name of the target ARM architecture. GCC uses this name
to determine what kind of instructions it can emit when generating assembly
code. This option can be used in conjunction with or instead of the ‘-mcpu=’
option. Permissible names are: ‘armv2’, ‘armv2a’, ‘armv3’, ‘armv3m’, ‘armv4’,
‘armv4t’, ‘armvb’, ‘armvbt’, ‘armvbe’, ‘armvbte’, ‘armv6’, ‘armv6j’, ‘armv6t2’,
‘armv6z’, ‘armv6zk’, ‘armv6-m’, ‘armv?’, ‘armv7-a’, ‘armv7-r’, ‘armv7-m’
‘iwmmxt’, ‘iwmmxt2’) ‘ep9312’.

‘-march=native’ causes the compiler to auto-detect the architecture of the
build computer. At present, this feature is only supported on Linux, and not
all architectures are recognized. If the auto-detect is unsuccessful the option
has no effect.

-mfpu=name

-mfpe=number

-mfp=number
This specifies what floating-point hardware (or hardware emulation) is
available on the target. Permissible names are: ‘fpa’, ‘fpe2’, ‘fpe3’,
‘maverick’, ‘vip’, ‘vfpv3’, ‘vfpv3-fpl6’, ‘vipv3-di16’, ‘vipv3-d16-fpl6’,

174

Using the GNU Compiler Collection (GCC)

‘vipv3xd’, ‘vfpv3xd-fpl6’, ‘neon’, ‘neon-fpl6’, ‘vifpv4’, ‘vipv4-di6é’,
‘fpvd-sp-d16’ and ‘neon-vfpv4’. ‘-mfp’ and ‘-mfpe’ are synonyms for
‘-mfpu’=‘fpe’number, for compatibility with older versions of GCC.

If ‘-msoft-float’ is specified this specifies the format of floating-point values.

If the selected floating-point hardware includes the NEON extension (e.g.
‘-mfpu’=‘neon’), note that floating-point operations will not be used by
GCC’s auto-vectorization pass unless ‘-funsafe-math-optimizations’ is
also specified. This is because NEON hardware does not fully implement the
IEEE 754 standard for floating-point arithmetic (in particular denormal values
are treated as zero), so the use of NEON instructions may lead to a loss of
precision.

-mfpl6-format=name

Specify the format of the __fp16 half-precision floating-point type. Permissible
names are ‘none’, ‘ieee’, and ‘alternative’; the default is ‘none’, in which case
the __fp16 type is not defined. See Section 6.12 [Half-Precision], page 323, for
more information.

-mstructure-size-boundary=n

The size of all structures and unions will be rounded up to a multiple of the
number of bits set by this option. Permissible values are 8, 32 and 64. The
default value varies for different toolchains. For the COFF targeted toolchain
the default value is 8. A value of 64 is only allowed if the underlying ABI
supports it.

Specifying the larger number can produce faster, more efficient code, but can
also increase the size of the program. Different values are potentially incompati-
ble. Code compiled with one value cannot necessarily expect to work with code
or libraries compiled with another value, if they exchange information using
structures or unions.

-mabort-on-noreturn

Generate a call to the function abort at the end of a noreturn function. It
will be executed if the function tries to return.

-mlong-calls
-mno-long-calls

Tells the compiler to perform function calls by first loading the address of the
function into a register and then performing a subroutine call on this register.
This switch is needed if the target function will lie outside of the 64 megabyte
addressing range of the offset based version of subroutine call instruction.

Even if this switch is enabled, not all function calls will be turned into long calls.
The heuristic is that static functions, functions that have the ‘short-call’
attribute, functions that are inside the scope of a ‘#pragma no_long_calls’
directive and functions whose definitions have already been compiled within
the current compilation unit, will not be turned into long calls. The exception
to this rule is that weak function definitions, functions with the ‘long-call’
attribute or the ‘section’ attribute, and functions that are within the scope of
a ‘#pragma long_calls’ directive, will always be turned into long calls.

Chapter 3: GCC Command Options 175

This feature is not enabled by default. Specifying ‘-mno-long-calls’ will re-
store the default behavior, as will placing the function calls within the scope of
a ‘#pragma long_calls_off’ directive. Note these switches have no effect on
how the compiler generates code to handle function calls via function pointers.

-msingle-pic-base
Treat the register used for PIC addressing as read-only, rather than loading
it in the prologue for each function. The runtime system is responsible for
initializing this register with an appropriate value before execution begins.

-mpic-register=reg
Specify the register to be used for PIC addressing. The default is R10 unless
stack-checking is enabled, when R9 is used.

-mcirrus-fix-invalid-insns

Insert NOPs into the instruction stream to in order to work around problems
with invalid Maverick instruction combinations. This option is only valid if the
‘-mcpu=ep9312’ option has been used to enable generation of instructions for
the Cirrus Maverick floating-point co-processor. This option is not enabled by
default, since the problem is only present in older Maverick implementations.
The default can be re-enabled by use of the ‘-mno-cirrus-fix-invalid-insns’
switch.

-mpoke-function-name
Write the name of each function into the text section, directly preceding the
function prologue. The generated code is similar to this:
t0
.ascii "arm_poke_function_name", O
.align
t1

.word 0xff000000 + (t1 - t0)
arm_poke_function_name

mov ip, sp
stmfd sp!, {fp, ip, lr, pc}
sub fp, ip, #4

When performing a stack backtrace, code can inspect the value of pc stored at
fp + 0. If the trace function then looks at location pc - 12 and the top 8 bits
are set, then we know that there is a function name embedded immediately
preceding this location and has length ((pc[-3]) & 0x££000000).

-mthumb
-marm

Select between generating code that executes in ARM and Thumb states.
The default for most configurations is to generate code that executes in
ARM state, but the default can be changed by configuring GCC with the
‘--with-mode=’state configure option.

-mtpcs-frame
Generate a stack frame that is compliant with the Thumb Procedure Call Stan-
dard for all non-leaf functions. (A leaf function is one that does not call any
other functions.) The default is ‘-mno-tpcs-frame’.

176 Using the GNU Compiler Collection (GCC)

-mtpcs-leaf-frame
Generate a stack frame that is compliant with the Thumb Procedure Call Stan-
dard for all leaf functions. (A leaf function is one that does not call any other
functions.) The default is ‘-mno-apcs-leaf-frame’.

-mcallee-super-interworking
Gives all externally visible functions in the file being compiled an ARM in-
struction set header which switches to Thumb mode before executing the rest
of the function. This allows these functions to be called from non-interworking
code. This option is not valid in AAPCS configurations because interworking
is enabled by default.

-mcaller-super-interworking
Allows calls via function pointers (including virtual functions) to execute cor-
rectly regardless of whether the target code has been compiled for interworking
or not. There is a small overhead in the cost of executing a function pointer
if this option is enabled. This option is not valid in AAPCS configurations
because interworking is enabled by default.

-mtp=name
Specify the access model for the thread local storage pointer. The valid models
are ‘soft’, which generates calls to __aeabi_read_tp, ‘cp15’, which fetches the
thread pointer from cp15 directly (supported in the arm6k architecture), and
‘auto’, which uses the best available method for the selected processor. The
default setting is ‘auto’.

-mtls-dialect=dialect

Specify the dialect to use for accessing thread local storage. Two dialects are
supported — ‘gnu’ and ‘gnu2’. The ‘gnu’ dialect selects the original GNU
scheme for supporting local and global dynamic TLS models. The ‘gnu2’ di-
alect selects the GNU descriptor scheme, which provides better performance for
shared libraries. The GNU descriptor scheme is compatible with the original
scheme, but does require new assembler, linker and library support. Initial and
local exec TLS models are unaffected by this option and always use the original
scheme.

-mword-relocations
Only generate absolute relocations on word-sized values (i.e. R_ARM_ABS32).
This is enabled by default on targets (uClinux, SymbianOS) where the runtime
loader imposes this restriction, and when ‘~fpic’ or ‘~fPIC’ is specified.

-mfix-cortex-m3-1drd
Some Cortex-M3 cores can cause data corruption when 1ldrd instructions
with overlapping destination and base registers are used. This option
avoids generating these instructions. This option is enabled by default when
‘-mcpu=cortex-m3’ is specified.

-munaligned-access

-mno-unaligned-access
Enables (or disables) reading and writing of 16- and 32- bit values from ad-
dresses that are not 16- or 32- bit aligned. By default unaligned access is

Chapter 3: GCC Command Options 177

-mneon-for-64bits

—mmcu=mcu

disabled for all pre-ARMv6 and all ARMv6-M architectures, and enabled for
all other architectures. If unaligned access is not enabled then words in packed
data structures will be accessed a byte at a time.

The ARM attribute Tag_CPU_unaligned_access will be set in the generated
object file to either true or false, depending upon the setting of this option.
If unaligned access is enabled then the preprocessor symbol __ARM_FEATURE_
UNALIGNED will also be defined.

Enables using Neon to handle scalar 64-bits operations. This is disabled by
default since the cost of moving data from core registers to Neon is high.

3.17.4 AVR Options

Specify Atmel AVR instruction set architectures (ISA) or MCU type.
The default for this option is avr2.
GCC supports the following AVR devices and ISAs:

avr2

avr2b

avr3

avr31l

avr35

avrd

avrb

“Classic” devices with up to 8 KiB of program memory.

mcu = attiny22, attiny26, at90c8534, at90s2313, at90s2323,
at90s2333, at90s2343, at90s4414, at90s4433, at90s4434,
at90s8515, at90s8535.

“Classic” devices with up to 8 KiB of program memory and with
the MOVW instruction.

mcu = ata6289, attinyl3, attinyl3a, attiny2313,
attiny2313a, attiny24, attiny24a, attiny25, attiny261,
attiny26la, attiny43u, attiny4313, attiny44, attinyé44a,
attiny45, attiny461, attiny46la, attiny48, attiny84,
attiny84a, attiny85, attiny861, attiny86la, attiny87,
attiny88, at86rf401.

“Classic” devices with 16 KiB up to 64 KiB of program memory.
mcu = at43usb355, at76c711.

“Classic” devices with 128 KiB of program memory.
mcu = atmegal03, at43usb320.

“Classic” devices with 16 KiB up to 64 KiB of program memory
and with the MOVW instruction.

mcu = atmegal6bu2, atmega32u2, atmega8u2, attinyl67,
at90usb162, at90usb82.

“Enhanced” devices with up to 8 KiB of program memory.

mcu = atmega4d8, atmega48a, atmega48p, atmega8, atmega8hva,
atmega8515, atmega8535, atmega88, atmega88a, atmega88p,
atmega88pa, at90pwml, at90pwm2, at90pwm2b, at90pwm3,
at90pwm3b, at90pwm81.

“Enhanced” devices with 16 KiB up to 64 KiB of program
memory.

178

avrbl

avr6

avrxmega?2

avrxmegaé

avrxmegab

avrxmegab

avrxmega’

Using the GNU Compiler Collection (GCC)

mcu = atmegal6, atmegal6a, atmegal6hva, atmegal6hva2,
atmegal6hvb, atmegal6bml, atmegal6u4d, atmegal6l, atmegal62,
atmegal63, atmegal64a, atmegal64p, atmegal6b, atmegal6ba,
atmegal6bp, atmegal68, atmegal68a, atmegal68p, atmegal69,
atmegal69a, atmegal69p, atmegal69pa, atmega32, atmega3d2cl,
atmega32hvb, atmega32ml, atmega32u4, atmega32ub, atmega323,
atmega324a, atmega324p, atmega324pa, atmega3d2b, atmega325a,
atmega325p, atmega3250, atmega3250a, atmega3250p,
atmega328, atmega328p, atmega329, atmega329a, atmega329p,
atmega329pa, atmega3290, atmega3290a, atmega3290p,
atmegad406, atmega64, atmega64cl, atmega64hve, atmega64ml,
atmega640, atmega644, atmega644a, atmega644p, atmega644pa,
atmega645, atmega645a, atmega645p, atmega6450, atmega6450a,
atmega6450p, atmegab649, atmega649a, atmegab49p, atmegab490,
at90can32, at90can64, at90pwm216, at90pwm316, at90scri00,
at90usb646, at90usb647, at94k, m3000.

“Enhanced” devices with 128 KiB of program memory.
mcu = atmegal28, atmegal28rfal, atmegal280, atmegal28l,
atmegal284p, at90canl128, at90usb1286, at90usb1287.

“Enhanced” devices with 3-byte PC, i.e. with more than 128 KiB
of program memory.
mcu = atmega2560, atmega2561.

“XMEGA” devices with more than 8 KiB and up to 64 KiB of
program memaory.

mcu = atxmegal6a4, atxmegal6d4, atxmegal6xl, atxmega32a4,
atxmega32d4, atxmega32x1.

“XMEGA” devices with more than 64 KiB and up to 128 KiB of
program memory.
mcu = atxmega64a3, atxmega64d3.

“XMEGA” devices with more than 64 KiB and up to 128 KiB of
program memory and more than 64 KiB of RAM.
mcu = atxmega64al, atxmega64alu.

“XMEGA” devices with more than 128 KiB of program memory.
mcu = atxmegal28a3, atxmegal28d3, atxmegal92a3,
atxmegal92d3, atxmega256a3, atxmega2b6a3b, atxmega256a3bu,
atxmega256d3.

“XMEGA” devices with more than 128 KiB of program memory
and more than 64 KiB of RAM.
mcu = atxmegal28al, atxmegal28alu.

Chapter 3: GCC Command Options 179

avrl This ISA is implemented by the minimal AVR core and supported
for assembler only.
mcu = attinyll, attinyl2, attinyl5, attiny28, at90s1200.

-maccumulate-args

Accumulate outgoing function arguments and acquire/release the needed stack
space for outgoing function arguments once in function prologue/epilogue.
Without this option, outgoing arguments are pushed before calling a function
and popped afterwards.

Popping the arguments after the function call can be expensive on AVR so
that accumulating the stack space might lead to smaller executables because
arguments need not to be removed from the stack after such a function call.

This option can lead to reduced code size for functions that perform several

calls to functions that get their arguments on the stack like calls to printf-like
functions.

-mbranch-cost=cost

Set the branch costs for conditional branch instructions to cost. Reasonable
values for cost are small, non-negative integers. The default branch cost is 0.

-mcall-prologues

-mint8

Functions prologues/epilogues are expanded as calls to appropriate subroutines.
Code size is smaller.

Assume int to be 8-bit integer. This affects the sizes of all types: a char is 1
byte, an int is 1 byte, a long is 2 bytes, and long long is 4 bytes. Please note
that this option does not conform to the C standards, but it results in smaller
code size.

-mno-interrupts

-mrelax

Generated code is not compatible with hardware interrupts. Code size is
smaller.

Try to replace CALL resp. JMP instruction by the shorter RCALL resp. RJMP in-
struction if applicable. Setting -mrelax just adds the --relax option to the
linker command line when the linker is called.

Jump relaxing is performed by the linker because jump offsets are not known
before code is located. Therefore, the assembler code generated by the compiler
is the same, but the instructions in the executable may differ from instructions
in the assembler code.

Relaxing must be turned on if linker stubs are needed, see the section on EIND
and linker stubs below.

-mshort-calls

-msp8

This option has been deprecated and will be removed in GCC 4.8. See -mrelax
for a replacement.

Use RCALL/RJMP instructions even on devices with 16 KiB or more of program
memory, i.e. on devices that have the CALL and JMP instructions.

Treat the stack pointer register as an 8-bit register, i.e. assume the high byte of
the stack pointer is zero. In general, you don’t need to set this option by hand.

180 Using the GNU Compiler Collection (GCC)

This option is used internally by the compiler to select and build multilibs for
architectures avr2 and avr25. These architectures mix devices with and with-
out SPH. For any setting other than -mmcu=avr2 or -mmcu=avr25 the compiler
driver will add or remove this option from the compiler proper’s command line,
because the compiler then knows if the device or architecture has an 8-bit stack
pointer and thus no SPH register or not.

-mstrict-X
Use address register X in a way proposed by the hardware. This means that X
is only used in indirect, post-increment or pre-decrement addressing.

Without this option, the X register may be used in the same way as Y or Z which
then is emulated by additional instructions. For example, loading a value with
X+const addressing with a small non-negative const < 64 to a register Rn is
performed as

adiw r26, const ; X += const
1d Rn, X ; Rm = xX
sbiw r26, const ; X -= const

-mtiny-stack
Only change the lower 8 bits of the stack pointer.

3.17.4.1 EIND and Devices with more than 128 Ki Bytes of Flash

Pointers in the implementation are 16 bits wide. The address of a function or label is
represented as word address so that indirect jumps and calls can target any code address
in the range of 64 Ki words.

In order to facilitate indirect jump on devices with more than 128 Ki bytes of program
memory space, there is a special function register called EIND that serves as most significant
part of the target address when EICALL or EIJMP instructions are used.

Indirect jumps and calls on these devices are handled as follows by the compiler and are
subject to some limitations:

e The compiler never sets EIND.

e The compiler uses EIND implicitely in EICALL/EIJMP instructions or might read EIND
directly in order to emulate an indirect call/jump by means of a RET instruction.

e The compiler assumes that EIND never changes during the startup code or during the
application. In particular, EIND is not saved/restored in function or interrupt service
routine prologue/epilogue.

e For indirect calls to functions and computed goto, the linker generates stubs. Stubs are
jump pads sometimes also called trampolines. Thus, the indirect call/jump jumps to
such a stub. The stub contains a direct jump to the desired address.

e Linker relaxation must be turned on so that the linker will generate the stubs correctly
an all situaltion. See the compiler option -mrelax and the linler option -—relax. There
are corner cases where the linker is supposed to generate stubs but aborts without
relaxation and without a helpful error message.

e The default linker script is arranged for code with EIND = 0. If code is supposed to
work for a setup with EIND !'= 0, a custom linker script has to be used in order to place

Chapter 3: GCC Command Options 181

the sections whose name start with .trampolines into the segment where EIND points
to.

e The startup code from libgce never sets EIND. Notice that startup code is a blend
of code from libgce and AVR-LibC. For the impact of AVR-LibC on EIND, see the
AVR-LibC user manual.

e [t is legitimate for user-specific startup code to set up EIND early, for example by means
of initialization code located in section .init3. Such code runs prior to general startup
code that initializes RAM and calls constructors, but after the bit of startup code from
AVR-LibC that sets EIND to the segment where the vector table is located.

#include <avr/io.h>

static void
__attribute__((section(".init3") ,naked,used,no_instrument_function))
init3_set_eind (void)
{
__asm volatile ("1di r24,pm_hh8(__trampolines_start)\n\t"

"out %i0,r24" :: "n" (&EIND) : "r24","memory");
}

The __trampolines_start symbol is defined in the linker script.
e Stubs are generated automatically by the linker if the following two conditions are met:

— The address of a label is taken by means of the gs modifier (short for generate
stubs) like so:

LDI r24, lo8(gs(func))
LDI r25, hi8(gs(func))

— The final location of that label is in a code segment outside the segment where the
stubs are located.

e The compiler emits such gs modifiers for code labels in the following situations:
— Taking address of a function or code label.
— Computed goto.
— If prologue-save function is used, see ‘-mcall-prologues’ command-line option.
— Switch/case dispatch tables. If you do not want such dispatch tables you can
specify the ‘~fno-jump-tables’ command-line option.
— C and C++ constructors/destructors called during startup/shutdown.
— If the tools hit a gs() modifier explained above.
e Jumping to non-symbolic addresses like so is nmot supported:

int main (void)

{
/* Call function at word address 0x2 */
return ((int(*) (void)) 0x2) ();

}

Instead, a stub has to be set up, i.e. the function has to be called through a symbol
(func_4 in the example):

http://nongnu.org/avr-libc/user-manual

182 Using the GNU Compiler Collection (GCC)

int main (void)

{
extern int func_4 (void);
/* Call function at byte address 0x4 */
return func_4();

+

and the application be linked with -W1,--defsym,func_4=0x4. Alternatively, func_4
can be defined in the linker script.

3.17.4.2 Handling of the RAMPD, RAMPX, RAMPY and RAMPZ Special
Function Registers

Some AVR devices support memories larger than the 64 KiB range that can be accessed with
16-bit pointers. To access memory locations outside this 64 KiB range, the contentent of a
RAMP register is used as high part of the address: The X, Y, Z address register is concatenated
with the RAMPX, RAMPY, RAMPZ special function register, respectively, to get a wide address.
Similarly, RAMPD is used together with direct addressing.

e The startup code initializes the RAMP special function registers with zero.

e If a [AVR Named Address Spaces|, page 326 other than generic or __flash is used,
then RAMPZ is set as needed before the operation.

e If the device supports RAM larger than 64 KiB and the compiler needs to change RAMPZ
to accomplish an operation, RAMPZ is reset to zero after the operation.

e If the device comes with a specific RAMP register, the ISR prologue/epilogue
saves/restores that SFR and initializes it with zero in case the ISR code might
(implicitly) use it.

e RAM larger than 64 KiB is not supported by GCC for AVR targets. If you use inline
assembler to read from locations outside the 16-bit address range and change one of
the RAMP registers, you must reset it to zero after the access.

3.17.4.3 AVR Built-in Macros

GCC defines several built-in macros so that the user code can test for the presence or
absence of features. Almost any of the following built-in macros are deduced from device
capabilities and thus triggered by the -mmcu= command-line option.

For even more AVR-specific built-in macros see [AVR Named Address Spaces|, page 326
and Section 6.55.4 [AVR Built-in Functions], page 537.

__AVR_ARCH__
Build-in macro that resolves to a decimal number that identifies the architecture
and depends on the -mmcu=mcu option. Possible values are:

2, 25, 3, 31, 35, 4, 5, 51, 6, 102, 104, 105, 106, 107
for mcu=avr2, avr25, avr3, avr3l, avr35, avr4, avrb, avrbl, avr6,
avrxmega?2, avrxmegad, avrxmegab, avrxmega6, avrxmega7, respectively. If

mcu specifies a device, this built-in macro is set accordingly. For example,
with -mmcu=atmega8 the macro will be defined to 4.

Chapter 3: GCC Command Options 183

__AVR_Device__
Setting -mmcu=device defines this built-in macro which reflects the
device’s name. For example, -mmcu=atmega8 defines the built-in macro
__AVR_ATmega8__, -mmcu=attiny261a defines __AVR_ATtiny261A__, etc.

The built-in macros’ names follow the scheme __AVR_Device__ where Device is
the device name as from the AVR user manual. The difference between Device
in the built-in macro and device in -mmcu=device is that the latter is always
lowercase.

If device is not a device but only a core architecture like avr51, this macro will
not be defined.

__AVR_XMEGA__
The device/architecture belongs to the XMEGA family of devices.

__AVR_HAVE_ELPM__
The device has the the ELPM instruction.

__AVR_HAVE_ELPMX__
The device has the ELPM Rn,Z and ELPM Rn, Z+ instructions.

__AVR_HAVE_MOVW__
The device has the MOVW instruction to perform 16-bit register-register moves.

__AVR_HAVE_LPMX__
The device has the LPM Rn,Z and LPM Rn,Z+ instructions.

__AVR_HAVE_MUL__
The device has a hardware multiplier.

__AVR_HAVE_JMP_CALL__
The device has the JMP and CALL instructions. This is the case for devices with
at least 16 KiB of program memory and if -mshort-calls is not set.

__AVR_HAVE_EIJMP_EICALL__

__AVR_3_BYTE_PC__
The device has the EIJMP and EICALL instructions. This is the case for devices
with more than 128 KiB of program memory. This also means that the program
counter (PC) is 3 bytes wide.

__AVR_2_BYTE_PC__
The program counter (PC) is 2 bytes wide. This is the case for devices with up
to 128 KiB of program memory.

__AVR_HAVE_8BIT_SP__

__AVR_HAVE_16BIT_SP__
The stack pointer (SP) register is treated as 8-bit respectively 16-bit register
by the compiler. The definition of these macros is affected by -mtiny-stack.

__AVR_HAVE_SPH__

__AVR_SP8__
The device has the SPH (high part of stack pointer) special function register
or has an 8-bit stack pointer, respectively. The definition of these macros is
affected by -mmcu= and in the cases of -mmcu=avr2 and -mmcu=avr25 also by
-msp8.

184 Using the GNU Compiler Collection (GCC)

__AVR_HAVE_RAMPD__

__AVR_HAVE_RAMPX__

__AVR_HAVE_RAMPY__

__AVR_HAVE_RAMPZ__
The device has the RAMPD, RAMPX, RAMPY, RAMPZ special function register, re-
spectively.

__NO_INTERRUPTS__
This macro reflects the -mno-interrupts command line option.

__AVR_ERRATA_SKIP__

__AVR_ERRATA_SKIP_JMP_CALL__
Some AVR devices (AT90S8515, ATmegal03) must not skip 32-bit instructions
because of a hardware erratum. Skip instructions are SBRS, SBRC, SBIS, SBIC
and CPSE. The second macro is only defined if __AVR_HAVE_JMP_CALL__ is also
set.

__AVR_SFR_OFFSET__=offset
Instructions that can address I/O special function registers directly like IN, OUT,
SBI, etc. may use a different address as if addressed by an instruction to access
RAM like LD or STS. This offset depends on the device architecture and has to
be subtracted from the RAM address in order to get the respective I/O address.

__WITH_AVRLIBC__
The compiler is configured to be used together with AVR-Libc. See the --
with-avrlibc configure option.

3.17.5 Blackfin Options

-mcpu=cpu|-sirevision]

Specifies the name of the target Blackfin processor. Currently, cpu can be
one of ‘bf512’, ‘bf514’, ‘bf516’, ‘b£518’, ‘b£522’, ‘bf523’, ‘bf524’, ‘b£525,
‘D£526°, ‘b£5277, ‘Df531’, ‘b£532’, ‘bf533’, ‘b£534’, ‘bf536’, ‘b£537’, ‘bf538’,
‘bf539°, ‘bfb42’, ‘bf544’, ‘bfb47’, ‘bf548’, ‘bf549’, ‘bf542m’, ‘bf544m’,
‘bf547m’, ‘bf548m’, ‘bf549m’, ‘bf561’, ‘bf592". The optional sirevision
specifies the silicon revision of the target Blackfin processor. Any workarounds
available for the targeted silicon revision will be enabled. If sirevision is
‘none’, no workarounds are enabled. If sirevision is ‘any’, all workarounds for
the targeted processor will be enabled. The __SILICON_REVISION__ macro is
defined to two hexadecimal digits representing the major and minor numbers
in the silicon revision. If sirevision is ‘none’, the __SILICON_REVISION__ is
not defined. If sirevision is ‘any’, the __SILICON_REVISION__ is defined to be
Oxffff. If this optional sirevision is not used, GCC assumes the latest known
silicon revision of the targeted Blackfin processor.

Support for ‘bf561’ is incomplete. For ‘bf561’, Only the processor macro is
defined. Without this option, ‘bf532’ is used as the processor by default. The
corresponding predefined processor macros for cpu is to be defined. And for
‘bfin-elf’ toolchain, this causes the hardware BSP provided by libgloss to be
linked in if ‘-msim’ is not given.

Chapter 3: GCC Command Options 185

-msim Specifies that the program will be run on the simulator. This causes the simu-
lator BSP provided by libgloss to be linked in. This option has effect only for
‘bfin-elf’ toolchain. Certain other options, such as ‘-mid-shared-library’
and ‘-mfdpic’, imply ‘-msim’.

-momit-leaf-frame-pointer
Don’t keep the frame pointer in a register for leaf functions. This avoids the
instructions to save, set up and restore frame pointers and makes an extra reg-
ister available in leaf functions. The option ‘~fomit-frame-pointer’ removes
the frame pointer for all functions, which might make debugging harder.

-mspecld-anomaly
When enabled, the compiler will ensure that the generated code does not contain
speculative loads after jump instructions. If this option is used, __WORKAROUND_
SPECULATIVE_LOADS is defined.

Pp——

-mno-specld-anomaly
Don’t generate extra code to prevent speculative loads from occurring.

-mcsync-anomaly
When enabled, the compiler will ensure that the generated code does not contain
CSYNC or SSYNC instructions too soon after conditional branches. If this
option is used, __WORKAROUND_SPECULATIVE_SYNCS is defined.

[J——

-mno-csync-anomaly
Don’t generate extra code to prevent CSYNC or SSYNC instructions from
occurring too soon after a conditional branch.

-mlow-64k
When enabled, the compiler is free to take advantage of the knowledge that the
entire program fits into the low 64k of memory.

-mno-low-64k
Assume that the program is arbitrarily large. This is the default.

-mstack-check-11
Do stack checking using information placed into L1 scratchpad memory by the
uClinux kernel.

-mid-shared-library
Generate code that supports shared libraries via the library ID method. This
allows for execute in place and shared libraries in an environment without vir-
tual memory management. This option implies ‘~fPIC’. With a ‘bfin-elf’
target, this option implies ‘-msim’.

-mno-id-shared-library
Generate code that doesn’t assume ID based shared libraries are being used.
This is the default.

-mleaf-id-shared-library
Generate code that supports shared libraries via the library ID method, but
assumes that this library or executable won’t link against any other ID shared
libraries. That allows the compiler to use faster code for jumps and calls.

186 Using the GNU Compiler Collection (GCC)

-mno-leaf-id-shared-library
Do not assume that the code being compiled won’t link against any ID shared
libraries. Slower code will be generated for jump and call insns.

-mshared-library-id=n
Specified the identification number of the ID based shared library being com-
piled. Specifying a value of 0 will generate more compact code, specifying other
values will force the allocation of that number to the current library but is no
more space or time efficient than omitting this option.

-msep-data
Generate code that allows the data segment to be located in a different area of
memory from the text segment. This allows for execute in place in an environ-
ment without virtual memory management by eliminating relocations against
the text section.

-mno-sep-data
Generate code that assumes that the data segment follows the text segment.
This is the default.

-mlong-calls

-mno-long-calls
Tells the compiler to perform function calls by first loading the address of the
function into a register and then performing a subroutine call on this register.
This switch is needed if the target function lies outside of the 24-bit addressing
range of the offset-based version of subroutine call instruction.

This feature is not enabled by default. Specifying ‘-mno-long-calls’ will re-
store the default behavior. Note these switches have no effect on how the
compiler generates code to handle function calls via function pointers.

-mfast-fp
Link with the fast floating-point library. This library relaxes some of the
IEEE floating-point standard’s rules for checking inputs against Not-a-Number
(NAN), in the interest of performance.

-minline-plt
Enable inlining of PLT entries in function calls to functions that are not known
to bind locally. It has no effect without ‘-mfdpic’.

-mmulticore

Build standalone application for multicore Blackfin processor. Proper start files
and link scripts will be used to support multicore. This option defines __BFIN_
MULTICORE. It can only be used with ‘-mcpu=bf561[-sirevision]’. It can be
used with ‘-mcorea’ or ‘-mcoreb’. If it’s used without ‘-mcorea’ or ‘-mcoreb’,
single application/dual core programming model is used. In this model, the
main function of Core B should be named as coreb_main. If it’s used with
‘-mcorea’ or ‘-mcoreb’, one application per core programming model is used.
If this option is not used, single core application programming model is used.

-mcorea Build standalone application for Core A of BF561 when using one application
per core programming model. Proper start files and link scripts will be used

Chapter 3: GCC Command Options 187

to support Core A. This option defines __BFIN_COREA. It must be used with
‘-mmulticore’.

-mcoreb Build standalone application for Core B of BF561 when using one applica-
tion per core programming model. Proper start files and link scripts will be
used to support Core B. This option defines __BFIN_COREB. When this option
is used, coreb_main should be used instead of main. It must be used with
‘-mmulticore’.

-msdram Build standalone application for SDRAM. Proper start files and link scripts will
be used to put the application into SDRAM. Loader should initialize SDRAM
before loading the application into SDRAM. This option defines __BFIN_SDRAM.

-micplb Assume that ICPLBs are enabled at run time. This has an effect on certain
anomaly workarounds. For Linux targets, the default is to assume ICPLBs are
enabled; for standalone applications the default is off.

3.17.6 C6X Options

-march=name
This specifies the name of the target architecture. GCC uses this name to
determine what kind of instructions it can emit when generating assembly code.
Permissible names are: ‘c62x’, ‘c64x’, ‘c64x+’, ‘c67x’, ‘c67x+’, ‘c674x’ .

-mbig-endian
Generate code for a big-endian target.

-mlittle-endian
Generate code for a little-endian target. This is the default.

-msim Choose startup files and linker script suitable for the simulator.

-msdata=default
Put small global and static data in the ‘.neardata’ section, which is pointed
to by register B14. Put small uninitialized global and static data in the ‘.bss’
section, which is adjacent to the ‘.neardata’ section. Put small read-only data
into the ‘.rodata’ section. The corresponding sections used for large pieces of
data are ‘.fardata’, ‘.far’ and ‘.const’.

¢

-msdata=all
Put all data, not just small objets, into the sections reserved for small data,
and use addressing relative to the B14 register to access them.

-msdata=none
Make no use of the sections reserved for small data, and use absolute addresses
to access all data. Put all initialized global and static data in the ‘.fardata’
section, and all uninitialized data in the ‘.far’ section. Put all constant data
into the ‘.const’ section.

3.17.7 CRIS Options
These options are defined specifically for the CRIS ports.

188 Using the GNU Compiler Collection (GCC)

-march=architecture-type

-mcpu=architecture-type
Generate code for the specified architecture. The choices for architecture-
type are ‘v3’, ‘v8" and ‘v10’ for respectively ETRAX 4, ETRAX 100, and
ETRAX 100 LX. Default is ‘vO’ except for cris-axis-linux-gnu, where the de-
fault is ‘v10’.

-mtune=architecture-type
Tune to architecture-type everything applicable about the generated code,
except for the ABI and the set of available instructions. The choices for
architecture-type are the same as for ‘-march=architecture-type’.

-mmax-stack-frame=n
Warn when the stack frame of a function exceeds n bytes.

-metrax4

-metrax100
The options ‘-metrax4’ and ‘-metrax100’ are synonyms for
‘-march=v8’ respectively.

4 ¢

-march=v3’ and

-mmul-bug-workaround

-mno-mul-bug-workaround
Work around a bug in the muls and mulu instructions for CPU models where
it applies. This option is active by default.

-mpdebug Enable CRIS-specific verbose debug-related information in the assembly code.
This option also has the effect to turn off the ‘#NO_APP’ formatted-code indicator
to the assembler at the beginning of the assembly file.

-mcc-init
Do not use condition-code results from previous instruction; always emit com-
pare and test instructions before use of condition codes.

-mno-side-effects
Do not emit instructions with side-effects in addressing modes other than post-
increment.

-mstack-align

-mno-stack-align

-mdata-align

-mno-data-align

-mconst-align

-mno-const-align
These options (no-options) arranges (eliminate arrangements) for the stack-
frame, individual data and constants to be aligned for the maximum single
data access size for the chosen CPU model. The default is to arrange for 32-
bit alignment. ABI details such as structure layout are not affected by these
options.

Chapter 3: GCC Command Options 189

-m32-bit

-m16-bit

-m8-bit Similar to the stack- data- and const-align options above, these options arrange
for stack-frame, writable data and constants to all be 32-bit, 16-bit or 8-bit
aligned. The default is 32-bit alignment.

-mno-prologue-epilogue

-mprologue-epilogue
With ‘-mno-prologue-epilogue’, the normal function prologue and epilogue
which set up the stack frame are omitted and no return instructions or return
sequences are generated in the code. Use this option only together with visual
inspection of the compiled code: no warnings or errors are generated when
call-saved registers must be saved, or storage for local variable needs to be
allocated.

-mno-gotplt

-mgotplt With ‘~fpic’ and ‘~fPIC’, don’t generate (do generate) instruction sequences
that load addresses for functions from the PLT part of the GOT rather than
(traditional on other architectures) calls to the PLT. The default is ‘-mgotplt’.

-melf Legacy no-op option only recognized with the cris-axis-elf and cris-axis-linux-
gnu targets.

-mlinux Legacy no-op option only recognized with the cris-axis-linux-gnu target.

-sim This option, recognized for the cris-axis-elf arranges to link with input-output
functions from a simulator library. Code, initialized data and zero-initialized
data are allocated consecutively.

-sim2 Like ‘=sim’, but pass linker options to locate initialized data at 0x40000000 and
zero-initialized data at 0x80000000.

3.17.8 CR16 Options
These options are defined specifically for the CR16 ports.

-mmac Enable the use of multiply-accumulate instructions. Disabled by default.

-mcrl6cplus

-mcri6c Generate code for CR16C or CR16C+ architecture. CR16C+ architecture is
default.

-msim Links the library libsim.a which is in compatible with simulator. Applicable to

elf compiler only.
-mint32 Choose integer type as 32-bit wide.

-mbit-ops
Generates sbit/cbit instructions for bit manipulations.

-mdata-model=model
Choose a data model. The choices for model are ‘near’, ‘far’ or ‘medium’.
‘medium’ is default. However, ‘far’ is not valid when -mcrl6¢ option is chosen
as CR16C architecture does not support far data model.

190 Using the GNU Compiler Collection (GCC)

3.17.9 Darwin Options

These options are defined for all architectures running the Darwin operating system.

FSF GCC on Darwin does not create “fat” object files; it will create an object file for
the single architecture that it was built to target. Apple’s GCC on Darwin does create
“fat” files if multiple ‘-~arch’ options are used; it does so by running the compiler or linker
multiple times and joining the results together with ‘lipo’.

The subtype of the file created (like ‘ppc7400’ or ‘ppc970’ or ‘i686’) is determined
by the flags that specify the ISA that GCC is targetting, like ‘-mcpu’ or ‘-march’. The
‘~force_cpusubtype_ALL’ option can be used to override this.

The Darwin tools vary in their behavior when presented with an ISA mismatch. The
assembler, ‘as’, will only permit instructions to be used that are valid for the subtype of
the file it is generating, so you cannot put 64-bit instructions in a ‘ppc750’ object file. The
linker for shared libraries, ‘/usr/bin/libtool’; will fail and print an error if asked to create
a shared library with a less restrictive subtype than its input files (for instance, trying to
put a ‘ppc970’ object file in a ‘ppc7400’ library). The linker for executables, ‘1d’, will
quietly give the executable the most restrictive subtype of any of its input files.

-Fdir Add the framework directory dir to the head of the list of directories to be
searched for header files. These directories are interleaved with those specified
by ‘=TI’ options and are scanned in a left-to-right order.

A framework directory is a directory with frameworks in it. A framework is a
directory with a ‘"Headers"’ and/or ‘"PrivateHeaders"’ directory contained
directly in it that ends in ‘".framework"’. The name of a framework is the
name of this directory excluding the ‘" .framework"’. Headers associated with
the framework are found in one of those two directories, with ‘"Headers"’
being searched first. A subframework is a framework directory that is in a
framework’s ‘"Frameworks"’ directory. Includes of subframework headers can
only appear in a header of a framework that contains the subframework,
or in a sibling subframework header. Two subframeworks are siblings if
they occur in the same framework. A subframework should not have the
same name as a framework, a warning will be issued if this is violated.
Currently a subframework cannot have subframeworks, in the future, the
mechanism may be extended to support this. The standard frameworks can be
found in ‘"/System/Library/Frameworks"’ and ‘"/Library/Frameworks"’.
An example include looks like #include <Framework/header.h>, where
‘Framework’ denotes the name of the framework and header.h is found in the
‘"PrivateHeaders"’ or ‘"Headers"’ directory.

-iframeworkdir
Like ‘-F’ except the directory is a treated as a system directory. The main
difference between this ‘~iframework’ and ‘-F’ is that with ‘~iframework’ the
compiler does not warn about constructs contained within header files found
via dir. This option is valid only for the C family of languages.

-gused Emit debugging information for symbols that are used. For STABS debugging
format, this enables ‘~feliminate-unused-debug-symbols’. This is by default
ON.

Chapter 3: GCC Command Options 191

-gfull Emit debugging information for all symbols and types.

-mmacosx-version-min=version
The earliest version of MacOS X that this executable will run on is version.
Typical values of version include 10.1, 10.2, and 10.3.9.

If the compiler was built to use the system’s headers by default, then the default
for this option is the system version on which the compiler is running, otherwise
the default is to make choices that are compatible with as many systems and
code bases as possible.

-mkernel Enable kernel development mode. The ‘-mkernel’ option sets
‘-static’, ‘~fno-common’, ‘~fno-cxa-atexit’, ‘~fno-exceptions’,
‘~fno-non-call-exceptions’, ‘-fapple-kext’, ‘~fno-weak’ and ‘-fno-rtti’
where applicable. This mode also sets ‘-mno-altivec’, ‘-msoft-float’,

‘~fno-builtin’ and ‘-mlong-branch’ for PowerPC targets.

-mone-byte-bool
Override the defaults for ‘bool’ so that ‘sizeof(bool)==1’. By default
‘sizeof (bool)’ is ‘4’ when compiling for Darwin/PowerPC and ‘1’ when
compiling for Darwin/x86, so this option has no effect on x86.

¢

Warning: The ‘-mone-byte-bool’ switch causes GCC to generate code that
is not binary compatible with code generated without that switch. Using this
switch may require recompiling all other modules in a program, including sys-
tem libraries. Use this switch to conform to a non-default data model.

-mfix-and-continue

-ffix-and-continue

-findirect-data
Generate code suitable for fast turn around development. Needed to enable gdb
to dynamically load .o files into already running programs. ‘-findirect-data’
and ‘-ffix-and-continue’ are provided for backwards compatibility.

-all_load
Loads all members of static archive libraries. See man 1d(1) for more informa-
tion.

—arch_errors_fatal
Cause the errors having to do with files that have the wrong architecture to be
fatal.

-bind_at_load
Causes the output file to be marked such that the dynamic linker will bind all
undefined references when the file is loaded or launched.

-bundle Produce a Mach-o bundle format file. See man 1d(1) for more information.

-bundle_loader executable
This option specifies the executable that will be loading the build output file
being linked. See man 1d(1) for more information.

—dynamiclib
When passed this option, GCC will produce a dynamic library instead of an
executable when linking, using the Darwin ‘1ibtool’ command.

192 Using the GNU Compiler Collection (GCC)

-force_cpusubtype_ALL
This causes GCC’s output file to have the ALL subtype, instead of one con-
trolled by the ‘-mcpu’ or ‘-march’ option.

-allowable_client client_name
—-client_name
-compatibility_version
-current_version

—-dead_strip

—dependency-file

-dylib_file
—dylinker_install_name
—-dynamic
—exported_symbols_list
-filelist

-flat_namespace
—-force_flat_namespace
-headerpad_max_install_names
-image_base

-init

—-install_name
-keep_private_externs
-multi_module
-multiply_defined

-multiply_defined_unused
-noall_load

-no_dead_strip_inits_and_terms
-nofixprebinding

-nomultidefs

-noprebind

-noseglinkedit

-pagezero_size

-prebind
-prebind_all_twolevel_modules
-private_bundle

Chapter 3: GCC Command Options 193

-read_only_relocs
-sectalign
-sectobjectsymbols
-whyload

-segladdr

—-sectcreate
-sectobjectsymbols
-sectorder

-segaddr
-segs_read_only_addr
-segs_read_write_addr
-seg_addr_table
-seg_addr_table_filename
-seglinkedit

-segprot
-segs_read_only_addr
-segs_read_write_addr
-single_module
-static

-sub_library
-sub_umbrella

-twolevel_namespace

-umbrella

-undefined

-unexported_symbols_list

-weak_reference_mismatches

-whatsloaded
These options are passed to the Darwin linker. The Darwin linker man page
describes them in detail.

3.17.10 DEC Alpha Options
These ‘-m’ options are defined for the DEC Alpha implementations:

-mno-soft-float

-msoft-float
Use (do not use) the hardware floating-point instructions for floating-point op-
erations. When ‘-msoft-float’ is specified, functions in ‘libgcc.a’ will be
used to perform floating-point operations. Unless they are replaced by routines
that emulate the floating-point operations, or compiled in such a way as to call
such emulations routines, these routines will issue floating-point operations. If
you are compiling for an Alpha without floating-point operations, you must
ensure that the library is built so as not to call them.

Note that Alpha implementations without floating-point operations are required
to have floating-point registers.

194 Using the GNU Compiler Collection (GCC)

-mfp-reg

-mno-fp-regs
Generate code that uses (does not use) the floating-point register set.
‘-mno-fp-regs’ implies ‘-msoft-float’. If the floating-point register set is
not used, floating-point operands are passed in integer registers as if they were
integers and floating-point results are passed in $0 instead of $£f0. This is a
non-standard calling sequence, so any function with a floating-point argument
or return value called by code compiled with ‘-mno-fp-regs’ must also be
compiled with that option.

A typical use of this option is building a kernel that does not use, and hence
need not save and restore, any floating-point registers.

-mieee The Alpha architecture implements floating-point hardware optimized for max-
imum performance. It is mostly compliant with the IEEE floating-point stan-
dard. However, for full compliance, software assistance is required. This option
generates code fully IEEE-compliant code except that the inexact-flag is not
maintained (see below). If this option is turned on, the preprocessor macro
_IEEE_FP is defined during compilation. The resulting code is less efficient but
is able to correctly support denormalized numbers and exceptional IEEE values
such as not-a-number and plus/minus infinity. Other Alpha compilers call this
option ‘-ieee_with_no_inexact’.

-mieee-with-inexact
This is like ‘-mieee’ except the generated code also maintains the IEEE inexact-
flag. Turning on this option causes the generated code to implement fully-
compliant IEEE math. In addition to _TEEE_FP, _TEEE_FP_EXACT is defined as
a preprocessor macro. On some Alpha implementations the resulting code may
execute significantly slower than the code generated by default. Since there is
very little code that depends on the inexact-flag, you should normally not spec-
ify this option. Other Alpha compilers call this option ‘~ieee_with_inexact’.

-mfp-trap-mode=trap-mode
This option controls what floating-point related traps are enabled. Other Alpha
compilers call this option ‘~fptm trap-mode’. The trap mode can be set to one
of four values:

n This is the default (normal) setting. The only traps that are en-
abled are the ones that cannot be disabled in software (e.g., division
by zero trap).

‘u’ In addition to the traps enabled by ‘n’, underflow traps are enabled
as well.
‘su’ Like ‘u’, but the instructions are marked to be safe for software

completion (see Alpha architecture manual for details).

‘sui’ Like ‘su’, but inexact traps are enabled as well.

-mfp-rounding-mode=rounding-mode
Selects the IEEE rounding mode. Other Alpha compilers call this option ‘~fprm
rounding-mode’. The rounding-mode can be one of:

Chapter 3:

GCC Command Options 195

n Normal IEEE rounding mode. Floating-point numbers are rounded
towards the nearest machine number or towards the even machine
number in case of a tie.

‘m’ Round towards minus infinity.

‘c’ Chopped rounding mode. Floating-point numbers are rounded to-
wards zero.

ek Dynamic rounding mode. A field in the floating-point control reg-

ister (fpcr, see Alpha architecture reference manual) controls the
rounding mode in effect. The C library initializes this register for
rounding towards plus infinity. Thus, unless your program modifies
the fpcr, ‘d’ corresponds to round towards plus infinity.

-mtrap-precision=trap-precision

In the Alpha architecture, floating-point traps are imprecise. This means with-
out software assistance it is impossible to recover from a floating trap and
program execution normally needs to be terminated. GCC can generate code
that can assist operating system trap handlers in determining the exact loca-
tion that caused a floating-point trap. Depending on the requirements of an
application, different levels of precisions can be selected:

‘p’ Program precision. This option is the default and means a trap
handler can only identify which program caused a floating-point
exception.

‘£ Function precision. The trap handler can determine the function

that caused a floating-point exception.

i Instruction precision. The trap handler can determine the exact
instruction that caused a floating-point exception.

Other Alpha compilers provide the equivalent options called ‘-scope_safe’ and
‘~-resumption_safe’.

-mieee-conformant

This option marks the generated code as IEEE conformant. You must not
use this option unless you also specify ‘-mtrap-precision=i’ and either
‘-mfp-trap-mode=su’ or ‘-mfp-trap-mode=sui’. Its only effect is to emit the
line ‘.eflag 48’ in the function prologue of the generated assembly file. Under
DEC Unix, this has the effect that IEEE-conformant math library routines
will be linked in.

-mbuild-constants

Normally GCC examines a 32- or 64-bit integer constant to see if it can construct
it from smaller constants in two or three instructions. If it cannot, it will output
the constant as a literal and generate code to load it from the data segment at
run time.

Use this option to require GCC to construct all integer constants using code,
even if it takes more instructions (the maximum is six).

196 Using the GNU Compiler Collection (GCC)

You would typically use this option to build a shared library dynamic loader.
Itself a shared library, it must relocate itself in memory before it can find the
variables and constants in its own data segment.

-malpha-as
-mgas Select whether to generate code to be assembled by the vendor-supplied assem-
bler (‘-malpha-as’) or by the GNU assembler ‘-mgas’.

-mbwx

-mno-bwx

-mcix

-mno-cix

-mfix

-mno-fix

-mmax

-mno-max Indicate whether GCC should generate code to use the optional BWX, CIX, FIX
and MAX instruction sets. The default is to use the instruction sets supported
by the CPU type specified via ‘-mcpu=" option or that of the CPU on which
GCC was built if none was specified.

-mfloat-vax

-mfloat-ieee
Generate code that uses (does not use) VAX F and G floating-point arithmetic
instead of IEEE single and double precision.

-mexplicit-relocs

-mno-explicit-relocs
Older Alpha assemblers provided no way to generate symbol relocations except
via assembler macros. Use of these macros does not allow optimal instruction
scheduling. GNU binutils as of version 2.12 supports a new syntax that al-
lows the compiler to explicitly mark which relocations should apply to which
instructions. This option is mostly useful for debugging, as GCC detects the
capabilities of the assembler when it is built and sets the default accordingly.

-msmall-data

-mlarge-data
When ‘-mexplicit-relocs’ is in effect, static data is accessed via gp-relative
relocations. When ‘-msmall-data’ is used, objects 8 bytes long or smaller are
placed in a small data area (the .sdata and .sbss sections) and are accessed
via 16-bit relocations off of the $gp register. This limits the size of the small
data area to 64KB, but allows the variables to be directly accessed via a single
instruction.

The default is ‘-mlarge-data’. With this option the data area is limited to just
below 2GB. Programs that require more than 2GB of data must use malloc or
mmap to allocate the data in the heap instead of in the program’s data segment.

When generating code for shared libraries, ‘~fpic’ implies ‘-msmall-data’ and
‘~fPIC’ implies ‘-mlarge-data’.

Chapter 3: GCC Command Options 197

-msmall-text

-mlarge-text
When ‘-msmall-text’ is used, the compiler assumes that the code of the entire
program (or shared library) fits in 4MB, and is thus reachable with a branch in-
struction. When ‘-msmall-data’ is used, the compiler can assume that all local
symbols share the same $gp value, and thus reduce the number of instructions
required for a function call from 4 to 1.

The default is ‘-mlarge-text’.

-mcpu=cpu_type
Set the instruction set and instruction scheduling parameters for machine type
cpu_type. You can specify either the ‘EV’ style name or the corresponding chip
number. GCC supports scheduling parameters for the EV4, EV5 and EV6
family of processors and will choose the default values for the instruction set
from the processor you specify. If you do not specify a processor type, GCC
will default to the processor on which the compiler was built.

Supported values for cpu_type are

‘evd’

‘ev4b’

‘21064’ Schedules as an EV4 and has no instruction set extensions.

‘evh’

‘21164’ Schedules as an EV5 and has no instruction set extensions.

‘evb6’

‘21164a’ Schedules as an EV5 and supports the BWX extension.

‘pcab6’

‘21164pc’

‘21164PC’ Schedules as an EV5 and supports the BWX and MAX extensions.

‘eve’

‘21264’ Schedules as an EV6 and supports the BWX, FIX, and MAX ex-
tensions.

‘ev67’

‘21264a’ Schedules as an EV6 and supports the BWX, CIX, FIX, and MAX
extensions.

Native toolchains also support the value ‘native’, which selects the best ar-
chitecture option for the host processor. ‘-mcpu=native’ has no effect if GCC
does not recognize the processor.

-mtune=cpu_type
Set only the instruction scheduling parameters for machine type cpu_type. The
instruction set is not changed.

Native toolchains also support the value ‘native’, which selects the best archi-
tecture option for the host processor. ‘-mtune=native’ has no effect if GCC
does not recognize the processor.

198 Using the GNU Compiler Collection (GCC)

-mmemory-latency=time
Sets the latency the scheduler should assume for typical memory references
as seen by the application. This number is highly dependent on the memory
access patterns used by the application and the size of the external cache on
the machine.

Valid options for time are

‘number’ A decimal number representing clock cycles.

4L17

LL27

4L37

‘main’ The compiler contains estimates of the number of clock cycles for
“typical” EV4 & EV5 hardware for the Level 1, 2 & 3 caches (also

called Dcache, Scache, and Bcache), as well as to main memory.
Note that L3 is only valid for EV5.

3.17.11 DEC Alpha/VMS Options
These ‘-m’ options are defined for the DEC Alpha/VMS implementations:

-mvms-return-codes
Return VMS condition codes from main. The default is to return POSIX style
condition (e.g. error) codes.

-mdebug-main=prefix
Flag the first routine whose name starts with prefix as the main routine for the
debugger.

-mmalloc64

Default to 64-bit memory allocation routines.
3.17.12 FR30 Options
These options are defined specifically for the FR30 port.

-msmall-model
Use the small address space model. This can produce smaller code, but it does
assume that all symbolic values and addresses will fit into a 20-bit range.

-mno-lsim
Assume that runtime support has been provided and so there is no need to
include the simulator library (‘1ibsim.a’) on the linker command line.

3.17.13 FRV Options

-mgpr-32

Only use the first 32 general-purpose registers.
-mgpr-64

Use all 64 general-purpose registers.
-mfpr-32

Use only the first 32 floating-point registers.

Chapter 3: GCC Command Options 199

-mfpr-64
Use all 64 floating-point registers.

-mhard-float
Use hardware instructions for floating-point operations.

-msoft-float
Use library routines for floating-point operations.

-malloc-cc
Dynamically allocate condition code registers.

-mfixed-cc
Do not try to dynamically allocate condition code registers, only use iccO and
fccO.

-mdword
Change ABI to use double word insns.

-mno-dword
Do not use double word instructions.

-mdouble
Use floating-point double instructions.

-mno—-double
Do not use floating-point double instructions.

-mmedia
Use media instructions.

-mno-media
Do not use media instructions.

-mmuladd
Use multiply and add/subtract instructions.

-mno-muladd
Do not use multiply and add/subtract instructions.

-mfdpic
Select the FDPIC ABI, which uses function descriptors to represent pointers
to functions. Without any PIC/PIE-related options, it implies ‘~fPIE’. With
‘~fpic’ or ‘-fpie’, it assumes GOT entries and small data are within a 12-bit
range from the GOT base address; with ‘~fPIC’ or ‘-fPIE’, GOT offsets are
computed with 32 bits. With a ‘bfin-elf’ target, this option implies ‘-msim’.

-minline-plt
Enable inlining of PLT entries in function calls to functions that are not known
to bind locally. It has no effect without ‘-mfdpic’. It’s enabled by default if
optimizing for speed and compiling for shared libraries (i.e., ‘~fPIC’ or ‘-fpic’),
or when an optimization option such as ‘-03’ or above is present in the command
line.

200 Using the GNU Compiler Collection (GCC)

-mTLS

Assume a large TLS segment when generating thread-local code.
-mtls

Do not assume a large TLS segment when generating thread-local code.
-mgprel-ro

Enable the use of GPREL relocations in the FDPIC ABI for data that is known to
be in read-only sections. It’s enabled by default, except for ‘~fpic’ or ‘-fpie’:
even though it may help make the global offset table smaller, it trades 1 in-
struction for 4. With ‘-~fPIC’ or ‘-fPIE’, it trades 3 instructions for 4, one of
which may be shared by multiple symbols, and it avoids the need for a GOT
entry for the referenced symbol, so it’s more likely to be a win. If it is not,
‘-mno-gprel-ro’ can be used to disable it.

-multilib-library-pic
Link with the (library, not FD) pic libraries. It’s implied by ‘-mlibrary-pic’,
as well as by ‘~fPIC” and ‘-fpic’ without ‘-mfdpic’. You should never have to
use it explicitly.

-mlinked-fp
Follow the EABI requirement of always creating a frame pointer whenever a
stack frame is allocated. This option is enabled by default and can be disabled
with ‘-mno-linked-fp’.

-mlong-calls
Use indirect addressing to call functions outside the current compilation unit.
This allows the functions to be placed anywhere within the 32-bit address space.

-malign-labels
Try to align labels to an 8-byte boundary by inserting nops into the previous
packet. This option only has an effect when VLIW packing is enabled. It
doesn’t create new packets; it merely adds nops to existing ones.

-mlibrary-pic
Generate position-independent EABI code.

-macc-4
Use only the first four media accumulator registers.
-macc-8
Use all eight media accumulator registers.
-mpack
Pack VLIW instructions.
-mno-pack

Do not pack VLIW instructions.

-mno-eflags
Do not mark ABI switches in e_flags.

Chapter 3: GCC Command Options 201

-mcond-move
Enable the use of conditional-move instructions (default).

This switch is mainly for debugging the compiler and will likely be removed in
a future version.

-mno-cond-move
Disable the use of conditional-move instructions.

This switch is mainly for debugging the compiler and will likely be removed in
a future version.

-mscc
Enable the use of conditional set instructions (default).
This switch is mainly for debugging the compiler and will likely be removed in
a future version.

-mno-scc

Disable the use of conditional set instructions.
This switch is mainly for debugging the compiler and will likely be removed in
a future version.

-mcond-exec
Enable the use of conditional execution (default).
This switch is mainly for debugging the compiler and will likely be removed in
a future version.

-mno-cond-exec
Disable the use of conditional execution.
This switch is mainly for debugging the compiler and will likely be removed in
a future version.

-mvliw-branch
Run a pass to pack branches into VLIW instructions (default).
This switch is mainly for debugging the compiler and will likely be removed in
a future version.

-mno-vliw-branch
Do not run a pass to pack branches into VLIW instructions.
This switch is mainly for debugging the compiler and will likely be removed in
a future version.

-mmulti-cond-exec
Enable optimization of && and || in conditional execution (default).
This switch is mainly for debugging the compiler and will likely be removed in
a future version.

-mno-multi-cond-exec
Disable optimization of && and || in conditional execution.

This switch is mainly for debugging the compiler and will likely be removed in
a future version.

202 Using the GNU Compiler Collection (GCC)

-mnested-cond-exec
Enable nested conditional execution optimizations (default).

This switch is mainly for debugging the compiler and will likely be removed in
a future version.

-mno-nested-cond-exec
Disable nested conditional execution optimizations.

This switch is mainly for debugging the compiler and will likely be removed in
a future version.

-moptimize-membar
This switch removes redundant membar instructions from the compiler generated
code. It is enabled by default.

-mno-optimize-membar
This switch disables the automatic removal of redundant membar instructions
from the generated code.

-mtomcat-stats
Cause gas to print out tomcat statistics.

-mcpu=cpu
Select the processor type for which to generate code. Possible values are ‘frv’,
‘fr550’, ‘tomcat’, ‘fr500’, ‘fr450’, ‘frd405’, ‘fr400’, ‘fr300’ and ‘simple’.

3.17.14 GNU/Linux Options
These ‘-m’ options are defined for GNU/Linux targets:

-mglibc Use the GNU C library. This is the default except on ‘*—*-1linux-*uclibc*’
and ‘*—*-linux-*android*’ targets.

-muclibc Use uClibc C library. This is the default on ‘*-*-linux-*uclibc*’ targets.
-mbionic Use Bionic C library. This is the default on ‘*-*-linux-*android*’ targets.

-mandroid
Compile code compatible with Android platform. This is the default on
“*-x-1inux-*android*’ targets.

When compiling, this option enables ‘-mbionic’, ‘-fPIC’, ‘~fno-exceptions’
and ‘~fno-rtti’ by default. When linking, this option makes the GCC driver
pass Android-specific options to the linker. Finally, this option causes the
preprocessor macro __ANDROID__ to be defined.

-tno-android-cc
Disable compilation effects of ‘-mandroid’, i.e., do not enable
‘~-fPIC’, ‘~fno-exceptions’ and ‘-fno-rtti’ by default.

‘“-mbionic’,

-tno-android-1d
Disable linking effects of ‘-mandroid’, i.e., pass standard Linux linking options
to the linker.

Chapter 3: GCC Command Options 203

3.17.15 H8/300 Options
These ‘-m’ options are defined for the H8/300 implementations:

-mrelax Shorten some address references at link time, when possible; uses the linker
option ‘-relax’. See Section “ld and the H8/300” in Using Id, for a fuller

description.
-mh Generate code for the H8/300H.
-ms Generate code for the H8S.
-mn Generate code for the H8S and H8/300H in the normal mode. This switch must

be used either with ‘-mh’ or ‘-ms’.
-ms2600 Generate code for the H8S/2600. This switch must be used with ‘-ms’.
-mint32 Make int data 32 bits by default.

-malign-300
On the H8/300H and H8S, use the same alignment rules as for the H8/300.
The default for the H8/300H and HS8S is to align longs and floats on 4-byte
boundaries. ‘-malign-300’ causes them to be aligned on 2-byte boundaries.
This option has no effect on the H8/300.

3.17.16 HPPA Options
These ‘-m’ options are defined for the HPPA family of computers:

-march=architecture-type
Generate code for the specified architecture. The choices for architecture-type
are ‘1.0” for PA 1.0, ‘1.1’ for PA 1.1, and ‘2.0’ for PA 2.0 processors. Refer
to ‘/usr/lib/sched.models’ on an HP-UX system to determine the proper
architecture option for your machine. Code compiled for lower numbered ar-
chitectures will run on higher numbered architectures, but not the other way
around.

-mpa-risc-1-0
-mpa-risc-1-1
-mpa-risc-2-0
Synonyms for ‘-march=1.0’; ‘-march=1.1", and ‘-march=2.0’ respectively.

-mbig-switch
Generate code suitable for big switch tables. Use this option only if the assem-
bler/linker complain about out of range branches within a switch table.

-mjump-in-delay
Fill delay slots of function calls with unconditional jump instructions by modi-
fying the return pointer for the function call to be the target of the conditional
jump.

-mdisable-fpregs
Prevent floating-point registers from being used in any manner. This is neces-
sary for compiling kernels that perform lazy context switching of floating-point
registers. If you use this option and attempt to perform floating-point opera-
tions, the compiler aborts.

204 Using the GNU Compiler Collection (GCC)

-mdisable-indexing
Prevent the compiler from using indexing address modes. This avoids some
rather obscure problems when compiling MIG generated code under MACH.

-mno-space-regs
Generate code that assumes the target has no space registers. This allows GCC
to generate faster indirect calls and use unscaled index address modes.

Such code is suitable for level 0 PA systems and kernels.

-mfast-indirect-calls
Generate code that assumes calls never cross space boundaries. This allows
GCC to emit code that performs faster indirect calls.

This option will not work in the presence of shared libraries or nested functions.

-mfixed-range=register-range
Generate code treating the given register range as fixed registers. A fixed
register is one that the register allocator can not use. This is useful when
compiling kernel code. A register range is specified as two registers separated
by a dash. Multiple register ranges can be specified separated by a comma.

-mlong-load-store
Generate 3-instruction load and store sequences as sometimes required by the
HP-UX 10 linker. This is equivalent to the ‘+k’ option to the HP compilers.

-mportable-runtime
Use the portable calling conventions proposed by HP for ELF systems.

-mgas Enable the use of assembler directives only GAS understands.

-mschedule=cpu-type
Schedule code according to the constraints for the machine type cpu-type. The
choices for cpu-type are ‘700’ ‘7100’°, ‘7100LC’, ‘7200°, ‘7300’ and ‘8000°. Refer
to ‘/usr/lib/sched.models’ on an HP-UX system to determine the proper
scheduling option for your machine. The default scheduling is ‘8000’.

-mlinker-opt
Enable the optimization pass in the HP-UX linker. Note this makes symbolic
debugging impossible. It also triggers a bug in the HP-UX 8 and HP-UX 9
linkers in which they give bogus error messages when linking some programs.

-msoft-float
Generate output containing library calls for floating point. Warning: the req-
uisite libraries are not available for all HPPA targets. Normally the facilities of
the machine’s usual C compiler are used, but this cannot be done directly in
cross-compilation. You must make your own arrangements to provide suitable
library functions for cross-compilation.

‘-msoft-float’ changes the calling convention in the output file; therefore, it
is only useful if you compile all of a program with this option. In particu-
lar, you need to compile ‘libgcc.a’, the library that comes with GCC, with
‘-msoft-float’ in order for this to work.

Chapter 3: GCC Command Options 205

-msio

-mgnu-1d

-mhp-1d

Generate the predefine, _SI0, for server IO. The default is ‘-mwsio’. This gen-
erates the predefines, __hp9000s700, __hp9000s700__ and _WSIO, for worksta-
tion 10. These options are available under HP-UX and HI-UX.

[

Use GNU 1d specific options. This passes ‘-shared’ to ld when building a shared
library. It is the default when GCC is configured, explicitly or implicitly, with
the GNU linker. This option does not have any affect on which Id is called, it
only changes what parameters are passed to that ld. The ld that is called is
determined by the ‘--with-1d’ configure option, GCC’s program search path,
and finally by the user’s PATH. The linker used by GCC can be printed using
‘which ‘gcc -print-prog-name=1d¢’. This option is only available on the 64-
bit HP-UX GCC, i.e. configured with ‘hppa*64*-*-hpux*’.

Use HP 1d specific options. This passes ‘~b’ to Id when building a shared library
and passes ‘+Accept TypeMismatch’ to ld on all links. It is the default when
GCC is configured, explicitly or implicitly, with the HP linker. This option does
not have any affect on which Id is called, it only changes what parameters are
passed to that 1d. The Id that is called is determined by the ‘--with-1d’ con-
figure option, GCC’s program search path, and finally by the user’s PATH. The
linker used by GCC can be printed using ‘which ‘gcc -print-prog-name=1d°’.
This option is only available on the 64-bit HP-UX GCC, i.e. configured with
‘hppa*64*—*—hpuxx*’.

-mlong-calls

Generate code that uses long call sequences. This ensures that a call is always
able to reach linker generated stubs. The default is to generate long calls
only when the distance from the call site to the beginning of the function or
translation unit, as the case may be, exceeds a predefined limit set by the
branch type being used. The limits for normal calls are 7,600,000 and 240,000
bytes, respectively for the PA 2.0 and PA 1.X architectures. Sibcalls are always
limited at 240,000 bytes.

Distances are measured from the beginning of functions when using
the ‘-ffunction-sections’ option, or when using the ‘-mgas’ and
‘-mno-portable-runtime’ options together under HP-UX with the SOM
linker.

It is normally not desirable to use this option as it will degrade performance.
However, it may be useful in large applications, particularly when partial linking
is used to build the application.

The types of long calls used depends on the capabilities of the assembler and
linker, and the type of code being generated. The impact on systems that
support long absolute calls, and long pic symbol-difference or pc-relative calls
should be relatively small. However, an indirect call is used on 32-bit ELF
systems in pic code and it is quite long.

-munix=unix-std

Generate compiler predefines and select a startfile for the specified UNIX stan-
dard. The choices for unix-std are ‘93’, ‘95’ and ‘98’. ‘93’ is supported on all
HP-UX versions. ‘95’ is available on HP-UX 10.10 and later. ‘98’ is available

206

-nolibdld

-static

—-threads

Using the GNU Compiler Collection (GCC)

on HP-UX 11.11 and later. The default values are ‘93’ for HP-UX 10.00, ‘95’
for HP-UX 10.10 though to 11.00, and ‘98’ for HP-UX 11.11 and later.

‘-munix=93’ provides the same predefines as GCC 3.3 and 3.4. ‘-munix=95’
provides additional predefines for XOPEN_UNIX and _XOPEN_SOURCE_EXTENDED,
and the startfile ‘unix95.0’. ‘-munix=98’ provides additional predefines for
_XOPEN_UNIX, _XOPEN_SOURCE_EXTENDED, _INCLUDE__STDC_A1_SOURCE and _
INCLUDE_XOPEN_SOURCE_500, and the startfile ‘unix98.0’.

It is important to note that this option changes the interfaces for various library
routines. It also affects the operational behavior of the C library. Thus, extreme
care is needed in using this option.

Library code that is intended to operate with more than one UNIX standard
must test, set and restore the variable __xpg4_extended_mask as appropriate.
Most GNU software doesn’t provide this capability.

Suppress the generation of link options to search libdld.sl when the ‘-static’
option is specified on HP-UX 10 and later.

The HP-UX implementation of setlocale in libc has a dependency on libdld.sl.
There isn’t an archive version of libdld.sl. Thus, when the ‘-static’ option is
specified, special link options are needed to resolve this dependency.

On HP-UX 10 and later, the GCC driver adds the necessary options to link
with libdld.sl when the ‘-static’ option is specified. This causes the resulting
binary to be dynamic. On the 64-bit port, the linkers generate dynamic binaries
by default in any case. The ‘-nolibdld’ option can be used to prevent the GCC
driver from adding these link options.

Add support for multithreading with the dce thread library under HP-UX. This
option sets flags for both the preprocessor and linker.

3.17.17 Intel 386 and AMD x86-64 Options
These ‘-m’ options are defined for the i386 and x86-64 family of computers:

-mtune=cpu-type

Tune to cpu-type everything applicable about the generated code, except for
the ABI and the set of available instructions. The choices for cpu-type are:

generic Produce code optimized for the most common IA32/AMD64/
EM64T processors. If you know the CPU on which your code
will run, then you should use the corresponding ‘-mtune’ option
instead of ‘-mtune=generic’. But, if you do not know exactly
what CPU users of your application will have, then you should use
this option.

As new processors are deployed in the marketplace, the behavior
of this option will change. Therefore, if you upgrade to a newer
version of GCC, the code generated option will change to reflect
the processors that were most common when that version of GCC
was released.

Chapter 3: GCC Command Options 207

4 ¢

There is no ‘-march=generic’ option because ‘-march’ indicates
the instruction set the compiler can use, and there is no generic
instruction set applicable to all processors. In contrast, ‘-mtune’
indicates the processor (or, in this case, collection of processors) for
which the code is optimized.

native This selects the CPU to tune for at compilation time by
determining the processor type of the compiling machine. Using
‘-mtune=native’ will produce code optimized for the local machine
under the constraints of the selected instruction set. Using
‘-march=native’ will enable all instruction subsets supported by
the local machine (hence the result might not run on different

machines).
1386 Original Intel’s 1386 CPU.
1486 Intel’s 1486 CPU. (No scheduling is implemented for this chip.)

1586, pentium
Intel Pentium CPU with no MMX support.

pentium-mmz
Intel PentiumMMX CPU based on Pentium core with MMX in-
struction set support.

pentiumpro
Intel PentiumPro CPU.

1686 Same as generic, but when used as march option, PentiumPro
instruction set will be used, so the code will run on all 1686 family
chips.

pentium2 Intel Pentium2 CPU based on PentiumPro core with MMX instruc-
tion set support.

pentiums, pentium3m
Intel Pentium3 CPU based on PentiumPro core with MMX and
SSE instruction set support.

pentium-m
Low power version of Intel Pentium3 CPU with MMX, SSE and
SSE2 instruction set support. Used by Centrino notebooks.

pentiumy, pentium4m
Intel Pentium4 CPU with MMX, SSE and SSE2 instruction set
support.

prescott Improved version of Intel Pentium4 CPU with MMX, SSE, SSE2
and SSE3 instruction set support.

nocona Improved version of Intel Pentium4 CPU with 64-bit extensions,
MMX, SSE, SSE2 and SSE3 instruction set support.
core2 Intel Core2 CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3

and SSSE3 instruction set support.

208

Using the GNU Compiler Collection (GCC)

corei’? Intel Core i7 CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3,
SSSE3, SSE4.1 and SSE4.2 instruction set support.

corei7-ave Intel Core i7 CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3,
SSSE3, SSE4.1, SSE4.2, AVX, AES and PCLMUL instruction set
support.

core-avz-i Intel Core CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3,
SSSE3, SSE4.1, SSE4.2, AVX, AES, PCLMUL, FSGSBASE,
RDRND and F16C instruction set support.

atom Intel Atom CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3
and SSSE3 instruction set support.
k6 AMD K6 CPU with MMX instruction set support.

k6-2, k6-3 Improved versions of AMD K6 CPU with MMX and 3DNow! in-
struction set support.

athlon, athlon-tbird
AMD Athlon CPU with MMX, 3dNOW!, enhanced 3DNow! and

SSE prefetch instructions support.

athlon-4, athlon-xp, athlon-mp
Improved AMD Athlon CPU with MMX, 3DNow!, enhanced
3DNow! and full SSE instruction set support.

k8, opteron, athlon6, athlon-fx
AMD K8 core based CPUs with x86-64 instruction set support.
(This supersets MMX, SSE, SSE2, 3DNow!, enhanced 3DNow! and
64-bit instruction set extensions.)

k8-sse3, opteron-sses3, athlon6j-sse3
Improved versions of k8, opteron and athlon64 with SSE3 instruc-
tion set support.

amdfam10, barcelona
AMD Family 10h core based CPUs with x86-64 instruction set sup-
port. (This supersets MMX, SSE, SSE2, SSE3, SSE4A, 3DNow!,
enhanced 3DNow!, ABM and 64-bit instruction set extensions.)

bdvert AMD Family 15h core based CPUs with x86-64 instruction set sup-
port. (This supersets FMA4, AVX, XOP, LWP, AES, PCL_MUL,
CX16, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2,
ABM and 64-bit instruction set extensions.)

bdver2 AMD Family 15h core based CPUs with x86-64 instruction set sup-
port. (This supersets BMI, TBM, F16C, FMA, AVX, XOP, LWP,
AES, PCL_MUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3,
SSE4.1, SSE4.2, ABM and 64-bit instruction set extensions.)

btverl AMD Family 14h core based CPUs with x86-64 instruction set sup-
port. (This supersets MMX, SSE, SSE2, SSE3, SSSE3, SSE4A,
CX16, ABM and 64-bit instruction set extensions.)

Chapter 3: GCC Command Options 209

winchip-c6

winchip2

c3

c3-2

geode

IDT Winchip C6 CPU, dealt in same way as 1486 with additional
MMX instruction set support.

IDT Winchip2 CPU, dealt in same way as i486 with additional
MMX and 3DNow! instruction set support.

Via C3 CPU with MMX and 3DNow! instruction set support. (No
scheduling is implemented for this chip.)

Via C3-2 CPU with MMX and SSE instruction set support. (No
scheduling is implemented for this chip.)

Embedded AMD CPU with MMX and 3DNow! instruction set sup-
port.

While picking a specific cpu-type will schedule things appropriately for that
particular chip, the compiler will not generate any code that does not run on the

default machine type without the
example, if GCC is configured for i686-pc-linux-gnu then

¢

-march=cpu-type’ option being used. For
‘-mtune=pentiumé’

will generate code that is tuned for Pentium4 but will still run on i686 machines.

-march=cpu-type

Generate instructions for the machine type cpu-type. The choices for cpu-type
are the same as for ‘-mtune’. Moreover, specifying ‘-march=cpu-type’ implies
‘-mtune=cpu-type’.

-mcpu=cpu-type

A deprecated synonym for ‘-mtune’.

-mfpmath=unit

Generate floating-point arithmetic for selected unit unit. The choices for unit

are:

‘387’

sse

Use the standard 387 floating-point coprocessor present on the ma-
jority of chips and emulated otherwise. Code compiled with this
option runs almost everywhere. The temporary results are com-
puted in 80-bit precision instead of the precision specified by the
type, resulting in slightly different results compared to most of other
chips. See ‘~ffloat-store’ for more detailed description.

This is the default choice for 1386 compiler.

Use scalar floating-point instructions present in the SSE instruction
set. This instruction set is supported by Pentium3 and newer chips,
in the AMD line by Athlon-4, Athlon-xp and Athlon-mp chips. The
earlier version of SSE instruction set supports only single-precision
arithmetic, thus the double and extended-precision arithmetic are
still done using 387. A later version, present only in Pentium4 and
the future AMD x86-64 chips, supports double-precision arithmetic
too.

For the 1386 compiler, you need to use ‘-march=cpu-type’, ‘-msse’
or ‘-msse2’ switches to enable SSE extensions and make this option

210

Using the GNU Compiler Collection (GCC)

effective. For the x86-64 compiler, these extensions are enabled by
default.

The resulting code should be considerably faster in the majority of
cases and avoid the numerical instability problems of 387 code, but
may break some existing code that expects temporaries to be 80
bits.

This is the default choice for the x86-64 compiler.

‘sse, 387’

‘sse+387’

‘both’ Attempt to utilize both instruction sets at once. This effectively
double the amount of available registers and on chips with sepa-
rate execution units for 387 and SSE the execution resources too.
Use this option with care, as it is still experimental, because the
GCC register allocator does not model separate functional units
well resulting in instable performance.

-masm=dialect

-mieee-fp

Output asm instructions using selected dialect. Supported choices are ‘intel’
or ‘att’ (the default one). Darwin does not support ‘intel’.

-mno-ieee-fp

Control whether or not the compiler uses IEEE floating-point comparisons.
These handle correctly the case where the result of a comparison is unordered.

-msoft-float

Generate output containing library calls for floating point. Warning: the req-
uisite libraries are not part of GCC. Normally the facilities of the machine’s
usual C compiler are used, but this can’t be done directly in cross-compilation.
You must make your own arrangements to provide suitable library functions
for cross-compilation.

On machines where a function returns floating-point results in the 80387 register
stack, some floating-point opcodes may be emitted even if ‘-msoft-float’ is
used.

-mno-fp-ret-in-387

Do not use the FPU registers for return values of functions.

The usual calling convention has functions return values of types float and
double in an FPU register, even if there is no FPU. The idea is that the
operating system should emulate an FPU.

The option ‘-mno-fp-ret-in-387’ causes such values to be returned in ordinary
CPU registers instead.

-mno-fancy-math-387

Some 387 emulators do not support the sin, cos and sqrt instructions for the
387. Specify this option to avoid generating those instructions. This option
is the default on FreeBSD, OpenBSD and NetBSD. This option is overridden
when ‘-march’ indicates that the target CPU will always have an FPU and so

Chapter 3: GCC Command Options 211

the instruction will not need emulation. As of revision 2.6.1, these instructions
are not generated unless you also use the ‘-funsafe-math-optimizations’
switch.

-malign-double
-mno-align-double

Control whether GCC aligns double, long double, and long long variables on
a two-word boundary or a one-word boundary. Aligning double variables on
a two-word boundary produces code that runs somewhat faster on a ‘Pentium’
at the expense of more memory.

On x86-64, ‘-malign-double’ is enabled by default.

¢

Warning: if you use the ‘-malign-double’ switch, structures containing the
above types will be aligned differently than the published application binary
interface specifications for the 386 and will not be binary compatible with struc-
tures in code compiled without that switch.

-m96bit-long-double
-m128bit-long-double

These switches control the size of long double type. The i386 application
binary interface specifies the size to be 96 bits, so ‘-m96bit-long-double’ is
the default in 32-bit mode.

Modern architectures (Pentium and newer) prefer long double to be aligned
to an 8- or 16-byte boundary. In arrays or structures conforming to the ABI,
this is not possible. So specifying ‘-m128bit-long-double’ aligns long double
to a 16-byte boundary by padding the long double with an additional 32-bit
Z€ero.

In the x86-64 compiler, ‘-m128bit-long-double’ is the default choice as its
ABI specifies that long double is to be aligned on 16-byte boundary.

Notice that neither of these options enable any extra precision over the x87
standard of 80 bits for a long double.

Warning: if you override the default value for your target ABI, the structures
and arrays containing long double variables will change their size as well as
function calling convention for function taking long double will be modified.
Hence they will not be binary compatible with arrays or structures in code
compiled without that switch.

-mlarge-data-threshold=number

-mrtd

When ‘-mcmodel=medium’ is specified, the data greater than threshold are
placed in large data section. This value must be the same across all object
linked into the binary and defaults to 65535.

Use a different function-calling convention, in which functions that take a fixed
number of arguments return with the ret num instruction, which pops their
arguments while returning. This saves one instruction in the caller since there
is no need to pop the arguments there.

You can specify that an individual function is called with this calling sequence
with the function attribute ‘stdcall’. You can also override the ‘-mrtd’ option

212

Using the GNU Compiler Collection (GCC)

by using the function attribute ‘cdecl’. See Section 6.30 [Function Attributes],
page 336.

Warning: this calling convention is incompatible with the one normally used on
Unix, so you cannot use it if you need to call libraries compiled with the Unix
compiler.

Also, you must provide function prototypes for all functions that take variable
numbers of arguments (including printf); otherwise incorrect code will be
generated for calls to those functions.

In addition, seriously incorrect code will result if you call a function with too
many arguments. (Normally, extra arguments are harmlessly ignored.)

—mregparm=num

Control how many registers are used to pass integer arguments. By default, no
registers are used to pass arguments, and at most 3 registers can be used. You
can control this behavior for a specific function by using the function attribute
‘regparm’. See Section 6.30 [Function Attributes], page 336.

Warning: if you use this switch, and num is nonzero, then you must build all
modules with the same value, including any libraries. This includes the system
libraries and startup modules.

-msseregparm

Use SSE register passing conventions for float and double arguments and return
values. You can control this behavior for a specific function by using the func-
tion attribute ‘sseregparm’. See Section 6.30 [Function Attributes], page 336.

Warning: if you use this switch then you must build all modules with the same
value, including any libraries. This includes the system libraries and startup
modules.

-mvect8-ret-in-mem

-mpc32
-mpc64
-mpc80

Return 8-byte vectors in memory instead of MMX registers. This is the default
on Solaris 8 and 9 and VxWorks to match the ABI of the Sun Studio compilers
until version 12. Later compiler versions (starting with Studio 12 Update 1)
follow the ABI used by other x86 targets, which is the default on Solaris 10 and
later. Only use this option if you need to remain compatible with existing code
produced by those previous compiler versions or older versions of GCC.

Set 80387 floating-point precision to 32, 64 or 80 bits. When ‘-mpc32’ is speci-
fied, the significands of results of floating-point operations are rounded to 24 bits
(single precision); ‘-mpc64’ rounds the significands of results of floating-point
operations to 53 bits (double precision) and ‘-mpc80’ rounds the significands
of results of floating-point operations to 64 bits (extended double precision),
which is the default. When this option is used, floating-point operations in
higher precisions are not available to the programmer without setting the FPU
control word explicitly.

Chapter 3: GCC Command Options 213

Setting the rounding of floating-point operations to less than the default 80 bits
can speed some programs by 2% or more. Note that some mathematical libraries
assume that extended-precision (80-bit) floating-point operations are enabled
by default; routines in such libraries could suffer significant loss of accuracy,
typically through so-called "catastrophic cancellation", when this option is used
to set the precision to less than extended precision.

-mstackrealign
Realign the stack at entry. On the Intel x86, the ‘-mstackrealign’ option will
generate an alternate prologue and epilogue that realigns the run-time stack if
necessary. This supports mixing legacy codes that keep a 4-byte aligned stack
with modern codes that keep a 16-byte stack for SSE compatibility. See also
the attribute force_align_arg_pointer, applicable to individual functions.

-mpreferred-stack-boundary=num
Attempt to keep the stack boundary aligned to a 2 raised to num byte boundary.
If ‘-mpreferred-stack-boundary’ is not specified, the default is 4 (16 bytes or
128 bits).

-mincoming-stack-boundary=num
Assume the incoming stack is aligned to a 2 raised to num byte boundary.
If ‘-mincoming-stack-boundary’ is not specified, the one specified by
‘-mpreferred-stack-boundary’ will be used.

On Pentium and PentiumPro, double and long double values should be
aligned to an 8-byte boundary (see ‘-malign-double’) or suffer significant run
time performance penalties. On Pentium III, the Streaming SIMD Extension
(SSE) data type __m128 may not work properly if it is not 16-byte aligned.

To ensure proper alignment of this values on the stack, the stack boundary must
be as aligned as that required by any value stored on the stack. Further, every
function must be generated such that it keeps the stack aligned. Thus calling
a function compiled with a higher preferred stack boundary from a function
compiled with a lower preferred stack boundary will most likely misalign the
stack. It is recommended that libraries that use callbacks always use the default
setting.

This extra alignment does consume extra stack space, and generally increases
code size. Code that is sensitive to stack space usage, such as embedded systems
and operating system kernels, may want to reduce the preferred alignment to
‘-mpreferred-stack-boundary=2’.

214

-mmmx
-mno-mmx
-msse
-mno-sse
-msse2
-mno-sse2
-msse3
-mno-sse3
-mssse3
-mno-ssse3

-msse4.1
-mno-sse4.1

-msse4.2
-mno-sse4.?2
-msseéd
-mno-sse4
-mavx
-mno-avx
-mavx?2
-mno-avx2
-maes
-mno-aes

-mpclmul
-mno-pclmul

-mfsgsbase
-mno-fsgsbase
-mrdrnd
-mno-rdrnd
-mf16¢c
-mno-f16¢
-mfma
-mno-fma
-msseda
-mno-sse4a
-mfma4d

Using the GNU Compiler Collection (GCC)

Chapter 3: GCC Command Options 215

-mno-fma4d

-mxop

~Mno-xop

-mlwp

-mno-lwp
-m3dnow
-mno-3dnow
-mpopcnt

-mno-popcnt

—-mabm

-mno-abm

-mbmi

-mbmi?2
-mno-bmi
-mno-bmi?2
-mlzcnt
-mno-lzcnt

-mtbm

-mno-tbm These switches enable or disable the use of instructions in the MMX, SSE,

-mcld

SSE2, SSE3, SSSE3, SSE4.1, AVX, AVX2, AES, PCLMUL, FSGSBASE,
RDRND, F16C, FMA, SSE4A, FMA4, XOP, LWP, ABM, BMI, BMI2,
LZCNT or 3DNow! extended instruction sets. These extensions are also
available as built-in functions: see Section 6.55.7 [X86 Built-in Functions],
page 542, for details of the functions enabled and disabled by these switches.

To have SSE/SSE2 instructions generated automatically from floating-point
code (as opposed to 387 instructions), see ‘-mfpmath=sse’.

GCC depresses SSEx instructions when ‘-mavx’ is used. Instead, it gener-
ates new AVX instructions or AVX equivalence for all SSEx instructions when
needed.

These options will enable GCC to use these extended instructions in generated
code, even without ‘-mfpmath=sse’. Applications that perform run-time CPU
detection must compile separate files for each supported architecture, using the
appropriate flags. In particular, the file containing the CPU detection code
should be compiled without these options.

This option instructs GCC to emit a c1d instruction in the prologue of functions
that use string instructions. String instructions depend on the DF flag to select
between autoincrement or autodecrement mode. While the ABI specifies the
DF flag to be cleared on function entry, some operating systems violate this
specification by not clearing the DF flag in their exception dispatchers. The
exception handler can be invoked with the DF flag set, which leads to wrong
direction mode when string instructions are used. This option can be enabled
by default on 32-bit x86 targets by configuring GCC with the ‘--enable-cld’
configure option. Generation of cld instructions can be suppressed with the
‘-mno-cld’ compiler option in this case.

216

Using the GNU Compiler Collection (GCC)

-mvzeroupper

This option instructs GCC to emit a vzeroupper instruction before a transfer
of control flow out of the function to minimize AVX to SSE transition penalty
as well as remove unnecessary zeroupper intrinsics.

-mprefer-avx128

-mcx16

-msahf

-mmovbe

-mcrc32

-mrecip

This option instructs GCC to use 128-bit AVX instructions instead of 256-bit
AVX instructions in the auto-vectorizer.

This option will enable GCC to use CMPXCHG16B instruction in generated
code. CMPXCHG16B allows for atomic operations on 128-bit double quadword
(or oword) data types. This is useful for high resolution counters that could
be updated by multiple processors (or cores). This instruction is generated as
part of atomic built-in functions: see Section 6.51 [__sync Builtins], page 430
or Section 6.52 [__atomic Builtins|, page 432 for details.

This option will enable GCC to use SAHF instruction in generated 64-bit code.
Early Intel CPUs with Intel 64 lacked LAHF and SAHF instructions supported
by AMDG64 until introduction of Pentium 4 G1 step in December 2005. LAHF
and SAHF are load and store instructions, respectively, for certain status flags.
In 64-bit mode, SAHF instruction is used to optimize fmod, drem or remainder
built-in functions: see Section 6.54 [Other Builtins|, page 438 for details.

This option will enable GCC to use movbe instruction to implement
__builtin_bswap32 and __builtin_bswap64.

This option will enable built-in functions, __builtin_ia32_crc32qi,
__builtin_ia32_crc32hi. __builtin_ia32_crc32si and __builtin_ia32_
crc32di to generate the crc32 machine instruction.

This option will enable GCC to use RCPSS and RSQRTSS instructions (and
their vectorized variants RCPPS and RSQRTPS) with an additional Newton-
Raphson step to increase precision instead of DIVSS and SQRTSS (and their
vectorized variants) for single-precision floating-point arguments. These in-
structions are generated only when ‘-funsafe-math-optimizations’ is en-
abled together with ‘~-finite-math-only’ and ‘-fno-trapping-math’. Note
that while the throughput of the sequence is higher than the throughput of the
non-reciprocal instruction, the precision of the sequence can be decreased by
up to 2 ulp (i.e. the inverse of 1.0 equals 0.99999994).

Note that GCC implements 1.0f/sqrtf(x) in terms of RSQRTSS (or
RSQRTPS) already with ‘~ffast-math’ (or the above option combination),
and doesn’t need ‘-mrecip’.

Also note that GCC emits the above sequence with additional Newton-Raphson
step for vectorized single-float division and vectorized sqrtf (x) already with
‘~ffast-math’ (or the above option combination), and doesn’t need ‘-mrecip’.

-mrecip=opt

This option allows to control which reciprocal estimate instructions may be
used. opt is a comma separated list of options, which may be preceded by a !
to invert the option: all: enable all estimate instructions, default: enable the

Chapter 3: GCC Command Options 217

default instructions, equivalent to ‘-mrecip’, none: disable all estimate instruc-
tions, equivalent to ‘-mno-recip’, div: enable the approximation for scalar di-
vision, vec-div: enable the approximation for vectorized division, sqrt: enable
the approximation for scalar square root, vec-sqrt: enable the approximation
for vectorized square root.

So for example, ‘-mrecip=all, !sqrt’ would enable all of the reciprocal ap-
proximations, except for square root.

-mveclibabi=type
Specifies the ABI type to use for vectorizing intrinsics using an external
library. Supported types are svml for the Intel short vector math library and
acml for the AMD math core library style of interfacing. GCC will currently
emit calls to vmldExp2, vmldLn2, vmldLogl02, vmldLogl02, vmldPow2,
vmldTanh2, vmldTan2, vmldAtan2, vmldAtanh2, wvmldCbrt2, vmldSinh2,
vmldSin2, vmldAsinh2, vmldAsin2, vmldCosh2, vmldCos2, vmldAcosh2,
vmldAcos2, vmlsExp4, vmlsLn4, vmlsLoglO4, vmlsLoglO04, vmlsPow4,
vmlsTanh4, vmlsTan4, vmlsAtan4, vmlsAtanh4, vmlsCbrt4, vmlsSinh4,
vmlsSind, vmlsAsinh4, vmlsAsind, vmlsCosh4, vmlsCos4, vmlsAcoshd and
vmlsAcos4 for corresponding function type when ‘-mveclibabi=svml’ is
used and __vrd2_sin, __vrd2_cos, __vrd2_exp, __vrd2_log, __vrd2_log2,
__vrd2_logl0, __vrs4_sinf, __vrs4_cosf, __vrsd4_expf, __vrs4_logf,
vrs4_log2f, __vrs4_loglOf and __vrs4_powf for corresponding function
type when ‘-mveclibabi=acml’ is used. Both ‘-ftree-vectorize’ and
‘~funsafe-math-optimizations’ have to be enabled. A SVML or ACML
ABI compatible library will have to be specified at link time.

-mabi=name
Generate code for the specified calling convention. Permissible values are:
‘sysv’ for the ABI used on GNU/Linux and other systems and ‘ms’ for the Mi-
crosoft ABI. The default is to use the Microsoft ABI when targeting Windows.
On all other systems, the default is the SYSV ABI. You can control this behav-
ior for a specific function by using the function attribute ‘ms_abi’/‘sysv_abi’.
See Section 6.30 [Function Attributes|, page 336.

-mtls-dialect=type
Generate code to access thread-local storage using the ‘gnu’ or ‘gnu2’ conven-
tions. ‘gnu’ is the conservative default; ‘gnu2’ is more efficient, but it may add
compile- and run-time requirements that cannot be satisfied on all systems.

-mpush-args

-mno-push-args
Use PUSH operations to store outgoing parameters. This method is shorter
and usually equally fast as method using SUB/MOV operations and is enabled
by default. In some cases disabling it may improve performance because of
improved scheduling and reduced dependencies.

-maccumulate-outgoing-args
If enabled, the maximum amount of space required for outgoing arguments will
be computed in the function prologue. This is faster on most modern CPUs
because of reduced dependencies, improved scheduling and reduced stack usage

218 Using the GNU Compiler Collection (GCC)

when preferred stack boundary is not equal to 2. The drawback is a notable
increase in code size. This switch implies ‘-mno-push-args’.

-mthreads
Support thread-safe exception handling on ‘Mingw32’. Code that relies on
thread-safe exception handling must compile and link all code with the
‘-mthreads’ option. When compiling, ‘-mthreads’ defines ‘-D_MT’; when
linking, it links in a special thread helper library ‘~lmingwthrd’ which cleans
up per thread exception handling data.

-mno-align-stringops
Do not align destination of inlined string operations. This switch reduces code
size and improves performance in case the destination is already aligned, but
GCC doesn’t know about it.

-minline-all-stringops
By default GCC inlines string operations only when the destination is known
to be aligned to least a 4-byte boundary. This enables more inlining, increase
code size, but may improve performance of code that depends on fast memcpy,
strlen and memset for short lengths.

-minline-stringops-dynamically
For string operations of unknown size, use run-time checks with inline code for
small blocks and a library call for large blocks.

-mstringop-strategy=alg
Overwrite internal decision heuristic about particular algorithm to inline string
operation with. The allowed values are rep_byte, rep_4byte, rep_8byte for
expanding using 1386 rep prefix of specified size, byte_loop, loop, unrolled_
loop for expanding inline loop, 1ibcall for always expanding library call.

-momit-leaf-frame-pointer
Don’t keep the frame pointer in a register for leaf functions. This avoids the
instructions to save, set up and restore frame pointers and makes an extra reg-
ister available in leaf functions. The option ‘~fomit-frame-pointer’ removes
the frame pointer for all functions, which might make debugging harder.

-mtls-direct-seg-refs

-mno-tls-direct-seg-refs
Controls whether TLS variables may be accessed with offsets from the TLS
segment register (%gs for 32-bit, %fs for 64-bit), or whether the thread base
pointer must be added. Whether or not this is legal depends on the operating
system, and whether it maps the segment to cover the entire TLS area.

For systems that use GNU libc, the default is on.

-msse2avx

-mno-sse2avx
Specify that the assembler should encode SSE instructions with VEX prefix.
The option ‘-mavx’ turns this on by default.

Chapter 3: GCC Command Options 219

-mfentry

-mno-fentry
If profiling is active ‘-pg’ put the profiling counter call before prologue. Note:
On x86 architectures the attribute ms_hook_prologue isn’t possible at the mo-
ment for ‘-mfentry’ and ‘-pg’.

-m8bit-idiv

-mno-8bit-idiv
On some processors, like Intel Atom, 8-bit unsigned integer divide is much faster
than 32-bit/64-bit integer divide. This option generates a run-time check. If
both dividend and divisor are within range of 0 to 255, 8-bit unsigned integer
divide is used instead of 32-bit/64-bit integer divide.

-mavx25b6-split-unaligned-load
-mavx256-split-unaligned-store
Split 32-byte AVX unaligned load and store.

These ‘-m’ switches are supported in addition to the above on AMD x86-64 processors in
64-bit environments.

-m32

-m64

-mx32 Generate code for a 32-bit or 64-bit environment. The ‘-m32’ option sets int,
long and pointer to 32 bits and generates code that runs on any 1386 system.
The ‘-m64’ option sets int to 32 bits and long and pointer to 64 bits and gen-
erates code for AMD’s x86-64 architecture. The ‘-mx32’ option sets int, long
and pointer to 32 bits and generates code for AMD’s x86-64 architecture. For
darwin only the ‘-m64’ option turns off the ‘~fno-pic’ and ‘-mdynamic-no-pic’
options.

¢

-mno-red-zone
Do not use a so called red zone for x86-64 code. The red zone is mandated by the
x86-64 ABI, it is a 128-byte area beyond the location of the stack pointer that
will not be modified by signal or interrupt handlers and therefore can be used for
temporary data without adjusting the stack pointer. The flag ‘-mno-red-zone’
disables this red zone.

-mcmodel=small
Generate code for the small code model: the program and its symbols must be
linked in the lower 2 GB of the address space. Pointers are 64 bits. Programs
can be statically or dynamically linked. This is the default code model.

-mcmodel=kernel
Generate code for the kernel code model. The kernel runs in the negative 2 GB
of the address space. This model has to be used for Linux kernel code.

-mcmodel=medium
Generate code for the medium model: The program is linked in the lower 2 GB
of the address space. Small symbols are also placed there. Symbols with sizes
larger than ‘-mlarge-data-threshold’ are put into large data or bss sections
and can be located above 2GB. Programs can be statically or dynamically
linked.

220 Using the GNU Compiler Collection (GCC)

-mcmodel=large
Generate code for the large model: This model makes no assumptions about
addresses and sizes of sections.

3.17.18 i386 and x86-64 Windows Options

These additional options are available for Windows targets:

-mconsole
This option is available for Cygwin and MinGW targets. It specifies that a
console application is to be generated, by instructing the linker to set the PE
header subsystem type required for console applications. This is the default
behavior for Cygwin and MinGW targets.

-md1ll This option is available for Cygwin and MinGW targets. It specifies that a
DLL - a dynamic link library - is to be generated, enabling the selection of the
required runtime startup object and entry point.

-mnop-fun-dllimport
This option is available for Cygwin and MinGW targets. It specifies that the
dllimport attribute should be ignored.

-mthread This option is available for MinGW targets. It specifies that MinGW-specific
thread support is to be used.

-municode
This option is available for mingw-w64 targets. It specifies that the UNICODE
macro is getting pre-defined and that the unicode capable runtime startup code
is chosen.

-mwin32 This option is available for Cygwin and MinGW targets. It specifies that the
typical Windows pre-defined macros are to be set in the pre-processor, but does
not influence the choice of runtime library/startup code.

-mwindows
This option is available for Cygwin and MinGW targets. It specifies that a GUI
application is to be generated by instructing the linker to set the PE header
subsystem type appropriately.

-fno-set-stack-executable
This option is available for MinGW targets. It specifies that the executable
flag for stack used by nested functions isn’t set. This is necessary for binaries
running in kernel mode of Windows, as there the user32 API, which is used to
set executable privileges, isn’t available.

-mpe-aligned-commons
This option is available for Cygwin and MinGW targets. It specifies that the
GNU extension to the PE file format that permits the correct alignment of
COMMON variables should be used when generating code. It will be enabled
by default if GCC detects that the target assembler found during configuration
supports the feature.

See also under Section 3.17.17 [i386 and x86-64 Options|, page 206 for standard options.

Chapter 3: GCC Command Options 221

3.17.19 TA-64 Options
These are the ‘-m’ options defined for the Intel IA-64 architecture.

-mbig-endian
Generate code for a big-endian target. This is the default for HP-UX.

-mlittle-endian
Generate code for a little-endian target. This is the default for AIX5 and
GNU/Linux.

-mgnu-as
-mno-gnu-as
Generate (or don’t) code for the GNU assembler. This is the default.

-mgnu-1d
-mno-gnu-1d
Generate (or don’t) code for the GNU linker. This is the default.

-mno-pic Generate code that does not use a global pointer register. The result is not
position independent code, and violates the IA-64 ABI.

-mvolatile-asm-stop

-mno-volatile-asm-stop
Generate (or don’t) a stop bit immediately before and after volatile asm state-
ments.

-mregister-names

-mno-register-names
Generate (or don’t) ‘in’, ‘loc’, and ‘out’ register names for the stacked registers.
This may make assembler output more readable.

-mno-sdata
-msdata Disable (or enable) optimizations that use the small data section. This may be
useful for working around optimizer bugs.

-mconstant-gp
Generate code that uses a single constant global pointer value. This is useful
when compiling kernel code.

-mauto-pic
Generate code that is self-relocatable. This implies ‘-mconstant-gp’. This is
useful when compiling firmware code.

-minline-float-divide-min-latency
Generate code for inline divides of floating-point values using the minimum
latency algorithm.

-minline-float-divide-max-throughput
Generate code for inline divides of floating-point values using the maximum
throughput algorithm.

-mno-inline-float-divide
Do not generate inline code for divides of floating-point values.

222 Using the GNU Compiler Collection (GCC)

-minline-int-divide-min-latency
Generate code for inline divides of integer values using the minimum latency
algorithm.

-minline-int-divide-max-throughput
Generate code for inline divides of integer values using the maximum through-
put algorithm.

-mno-inline-int-divide
Do not generate inline code for divides of integer values.

-minline-sqrt-min-latency
Generate code for inline square roots using the minimum latency algorithm.

-minline-sqrt-max-throughput
Generate code for inline square roots using the maximum throughput algorithm.

-mno-inline-sqrt
Do not generate inline code for sqrt.

-mfused-madd

-mno-fused-madd
Do (don’t) generate code that uses the fused multiply /add or multiply /subtract
instructions. The default is to use these instructions.

-mno-dwarf2-asm

-mdwarf2-asm
Don’t (or do) generate assembler code for the DWARF2 line number debugging
info. This may be useful when not using the GNU assembler.

-mearly-stop-bits

-mno-early-stop-bits
Allow stop bits to be placed earlier than immediately preceding the instruction
that triggered the stop bit. This can improve instruction scheduling, but does
not always do so.

-mfixed-range=register-range
Generate code treating the given register range as fixed registers. A fixed
register is one that the register allocator can not use. This is useful when
compiling kernel code. A register range is specified as two registers separated
by a dash. Multiple register ranges can be specified separated by a comma.

-mtls-size=tls-size
Specify bit size of immediate TLS offsets. Valid values are 14, 22, and 64.

-mtune=cpu-type
Tune the instruction scheduling for a particular CPU, Valid values are itanium,
itaniuml1, merced, itanium?2, and mckinley.

-milp32

-mlp64 Generate code for a 32-bit or 64-bit environment. The 32-bit environment sets
int, long and pointer to 32 bits. The 64-bit environment sets int to 32 bits and
long and pointer to 64 bits. These are HP-UX specific flags.

Chapter 3: GCC Command Options 223

-mno-sched-br-data-spec

-msched-br-data-spec
(Dis/En)able data speculative scheduling before reload. This will result in
generation of the ld.a instructions and the corresponding check instructions
(Id.c / chk.a). The default is 'disable’.

-msched-ar-data-spec

-mno-sched-ar-data-spec
(En/Dis)able data speculative scheduling after reload. This will result in gen-
eration of the ld.a instructions and the corresponding check instructions (Id.c
/ chk.a). The default is ’enable’.

-mno-sched-control-spec

-msched-control-spec
(Dis/En)able control speculative scheduling. This feature is available only dur-
ing region scheduling (i.e. before reload). This will result in generation of the
ld.s instructions and the corresponding check instructions chk.s . The default
is ’disable’.

-msched-br-in-data-spec

-mno-sched-br-in-data-spec
(En/Dis)able speculative scheduling of the instructions that are dependent
on the data speculative loads before reload. This is effective only with
‘-msched-br-data-spec’ enabled. The default is ’enable’

-msched-ar-in-data-spec

-mno-sched-ar-in-data-spec
(En/Dis)able speculative scheduling of the instructions that are dependent
on the data speculative loads after reload. This is effective only with
‘-msched-ar-data-spec’ enabled. The default is ’enable’

-msched-in-control-spec

-mno-sched-in-control-spec
(En/Dis)able speculative scheduling of the instructions that are de-
pendent on the control speculative loads. This is effective only with
‘-msched-control-spec’ enabled. The default is ’enable’

-mno-sched-prefer-non-data-spec-insns

-msched-prefer-non-data-spec-insns
If enabled, data speculative instructions will be chosen for schedule only if
there are no other choices at the moment. This will make the use of the data
speculation much more conservative. The default is ’disable’.

-mno-sched-prefer-non-control-spec-insns
-msched-prefer-non-control-spec-insns
If enabled, control speculative instructions will be chosen for schedule only if
there are no other choices at the moment. This will make the use of the control
speculation much more conservative. The default is ’disable’.

224 Using the GNU Compiler Collection (GCC)

-mno-sched-count-spec-in-critical-path

-msched-count-spec-in-critical-path
If enabled, speculative dependencies will be considered during computation of
the instructions priorities. This will make the use of the speculation a bit more
conservative. The default is ’disable’.

-msched-spec-1ldc
Use a simple data speculation check. This option is on by default.

-msched-control-spec-1ldc
Use a simple check for control speculation. This option is on by default.

-msched-stop-bits-after-every-cycle
Place a stop bit after every cycle when scheduling. This option is on by default.

-msched-fp-mem-deps-zero-cost
Assume that floating-point stores and loads are not likely to cause a conflict
when placed into the same instruction group. This option is disabled by default.

-msel-sched-dont-check-control-spec
Generate checks for control speculation in selective scheduling. This flag is
disabled by default.

-msched-max-memory-insns=max-insns
Limit on the number of memory insns per instruction group, giving lower prior-
ity to subsequent memory insns attempting to schedule in the same instruction
group. Frequently useful to prevent cache bank conflicts. The default value is
1.

-msched-max-memory-insns-hard-limit
Disallow more than ‘msched-max-memory-insns’ in instruction group. Other-
wise, limit is ‘soft’ meaning that we would prefer non-memory operations when
limit is reached but may still schedule memory operations.

3.17.20 TA-64/VMS Options
These ‘-m’ options are defined for the IA-64/VMS implementations:

-mvms-return-codes
Return VMS condition codes from main. The default is to return POSIX style
condition (e.g. error) codes.

-mdebug-main=prefix
Flag the first routine whose name starts with prefix as the main routine for the
debugger.

-mmalloc64
Default to 64-bit memory allocation routines.

3.17.21 LM32 Options
These ‘-m’ options are defined for the Lattice Mico32 architecture:

-mbarrel-shift-enabled
Enable barrel-shift instructions.

Chapter 3: GCC Command Options 225

-mdivide—-enabled
Enable divide and modulus instructions.

-mmultiply-enabled
Enable multiply instructions.

-msign-extend-enabled
Enable sign extend instructions.

-muser—-enabled
Enable user-defined instructions.

3.17.22 M32C Options

-mcpu=name
Select the CPU for which code is generated. name may be one of ‘r8c’ for
the R8C/Tiny series, ‘m16¢’ for the M16C (up to /60) series, ‘m32cm’ for the
M16C/80 series, or ‘m32c’ for the M32C/80 series.

-msim Specifies that the program will be run on the simulator. This causes an alternate
runtime library to be linked in which supports, for example, file I/O. You must
not use this option when generating programs that will run on real hardware;
you must provide your own runtime library for whatever I/O functions are
needed.

-memregs=number

Specifies the number of memory-based pseudo-registers GCC will use during
code generation. These pseudo-registers will be used like real registers, so there
is a tradeoff between GCC’s ability to fit the code into available registers, and
the performance penalty of using memory instead of registers. Note that all
modules in a program must be compiled with the same value for this option.
Because of that, you must not use this option with the default runtime libraries
gee builds.

3.17.23 M32R/D Options

These ‘-m’ options are defined for Renesas M32R/D architectures:
-m32r2 Generate code for the M32R /2.

-m32rx Generate code for the M32R/X.

-m32r Generate code for the M32R. This is the default.

-mmodel=small
Assume all objects live in the lower 16MB of memory (so that their addresses
can be loaded with the 1d24 instruction), and assume all subroutines are reach-
able with the bl instruction. This is the default.

The addressability of a particular object can be set with the model attribute.

-mmodel=medium
Assume objects may be anywhere in the 32-bit address space (the compiler
will generate seth/add3 instructions to load their addresses), and assume all
subroutines are reachable with the bl instruction.

226

Using the GNU Compiler Collection (GCC)

-mmodel=large

Assume objects may be anywhere in the 32-bit address space (the compiler will
generate seth/add3 instructions to load their addresses), and assume subrou-
tines may not be reachable with the bl instruction (the compiler will generate
the much slower seth/add3/j1 instruction sequence).

-msdata=none

Disable use of the small data area. Variables will be put into one of ‘.data’,
‘bss’, or ‘.rodata’ (unless the section attribute has been specified). This is
the default.

The small data area consists of sections ‘.sdata’ and ‘.sbss’. Objects may be
explicitly put in the small data area with the section attribute using one of
these sections.

-msdata=sdata

Put small global and static data in the small data area, but do not generate
special code to reference them.

-msdata=use

-G num

-mdebug

Put small global and static data in the small data area, and generate special
instructions to reference them.

Put global and static objects less than or equal to num bytes into the small
data or bss sections instead of the normal data or bss sections. The default
value of num is 8. The ‘-msdata’ option must be set to one of ‘sdata’ or ‘use’
for this option to have any effect.

All modules should be compiled with the same ‘-G num’ value. Compiling with
different values of num may or may not work; if it doesn’t the linker will give
an error message—incorrect code will not be generated.

Makes the M32R specific code in the compiler display some statistics that might
help in debugging programs.

-malign-loops

Align all loops to a 32-byte boundary.

-mno-align-loops

Do not enforce a 32-byte alignment for loops. This is the default.

-missue-rate=number

Issue number instructions per cycle. number can only be 1 or 2.

-mbranch-cost=number

number can only be 1 or 2. If it is 1 then branches will be preferred over
conditional code, if it is 2, then the opposite will apply.

-mflush-trap=number

Specifies the trap number to use to flush the cache. The default is 12. Valid
numbers are between 0 and 15 inclusive.

-mno-flush-trap

Specifies that the cache cannot be flushed by using a trap.

Chapter 3: GCC Command Options 227

-mflush-func=name
Specifies the name of the operating system function to call to flush the cache.
The default is _flush_cache, but a function call will only be used if a trap is not
available.

-mno—flush-func
Indicates that there is no OS function for flushing the cache.

3.17.24 M680x0 Options

These are the ‘-m’ options defined for M680x0 and ColdFire processors. The default settings
depend on which architecture was selected when the compiler was configured; the defaults
for the most common choices are given below.

-march=arch

Generate code for a specific M680x0 or ColdFire instruction set architecture.
Permissible values of arch for M680x0 architectures are: ‘68000°, ‘68010’,
‘68020°, ‘68030°, ‘68040°, ‘68060" and ‘cpu32’. ColdFire architectures are
selected according to Freescale’s ISA classification and the permissible values
are: ‘isaa’, ‘isaaplus’, ‘isab’ and ‘isac’.

gce defines a macro ‘__mcfarch__’ whenever it is generating code for a ColdFire
target. The arch in this macro is one of the ‘-march’ arguments given above.

When used together, ‘-march’ and ‘-mtune’ select code that runs on a family
of similar processors but that is optimized for a particular microarchitecture.

-mcpu=cpu
Generate code for a specific M680x0 or ColdFire processor. The M680x0 cpus
are: ‘68000’, ‘68010’, ‘68020, ‘68030’, ‘68040°, ‘68060°, ‘68302’, ‘68332’ and
‘cpu32’. The ColdFire cpus are given by the table below, which also classifies
the CPUs into families:

Family ‘-mcpu’ arguments

‘51’ ‘61’ ‘6lac’ ‘blcn’ ‘blem’ ‘51qe’

‘5206’ ‘6202’ ‘6204’ ‘6206’

‘6206¢e’ ‘6206¢e’

‘5208’ ‘6207’ ‘6208’

‘6211a’ ‘6210a’ ‘6211a’

‘5213’ ‘6211’ ‘6212’ ‘6213’

‘5216’ ‘6214’ ‘5216’

‘52235’ ‘62230’ ‘62231’ ‘562232’ ‘52233’ ‘52234’ ‘562235’
‘5225’ ‘6224’ ‘56225’

‘52259’ ‘52252’ ‘52254’ ‘52255’ ‘562256’ ‘62258’ ‘52259’
‘5235’ ‘6232’ ‘6233’ ‘56234’ ‘5235’ ‘523x’

‘5249’ ‘5249’

‘5250’ ‘5250’

‘5271’ ‘6270’ ‘6271’

‘5272’ ‘5272’

‘5275’ ‘6274’ ‘6275’

‘5282’ ‘6280’ ‘6281’ ‘56282’ ‘528x%’

‘53017’ ‘63011’ ‘63012’ ‘53013’ ‘563014’ ‘63015’ ‘53016’ ‘63017’

228 Using the GNU Compiler Collection (GCC)

‘6307’ ‘6307’

‘6329’ ‘6327’ ‘6328’ ‘6329’ ‘632x’

‘5373’ ‘6372’ ‘6373’ ‘637x’

‘5407’ ‘5407’

‘5475’ ‘BAT0’ ‘BAT1’ ‘B4T2’ ‘BAT3’ ‘BAT4’ ‘BATH’ ‘BATx’ ‘5480’ ‘5481’ ‘56482’

‘6483’ ‘56484’ ‘5485’

3

‘-mcpu=cpu’ overrides ‘-march=arch’ if arch is compatible with cpu. Other
combinations of ‘-mcpu’ and ‘-march’ are rejected.

gce defines the macro *

It also defines °

the table above.

__mcf_cpu_cpu’ when ColdFire target cpu is selected.
_mcf_family_family’, where the value of family is given by

-mtune=tune

Tune the code for a particular microarchitecture, within the constraints set by
‘-march’ and ‘-mcpu’. The M680x0 microarchitectures are: ‘68000°, ‘68010’,
‘68020’, ‘68030, ‘68040’, ‘68060’ and ‘cpu32’. The ColdFire microarchitectures
are: ‘cfvl’, ‘cfv2’, ‘cfvd’, ‘cfvd’ and ‘cfvde’.

You can also use ‘-mtune=68020-40’ for code that needs to run relatively well
on 68020, 68030 and 68040 targets. ‘-mtune=68020-60’ is similar but includes
68060 targets as well. These two options select the same tuning decisions as
‘-m68020-40’ and ‘-m68020-60’ respectively.

gee defines the macros ‘__mcarch’ and ‘__mcarch__’" when tuning for 680x0
architecture arch. It also defines ‘mcarch’ unless either ‘~ansi’ or a non-GNU
‘-std’ option is used. If gcc is tuning for a range of architectures, as selected
by ‘-mtune=68020-40’ or ‘-mtune=68020-60’, it defines the macros for every
architecture in the range.

_ __" when tuning for ColdFire microarchi-

tecture uarch, where uarch is one of the arguments given above.

gce also defines the macro ‘__muarch

-m68000
-mc68000 Generate output for a 68000. This is the default when the compiler is configured
for 68000-based systems. It is equivalent to ‘-march=68000’.

Use this option for microcontrollers with a 68000 or EC000 core, including the
68008, 68302, 68306, 68307, 68322, 68328 and 68356.

-m68010 Generate output for a 68010. This is the default when the compiler is configured
for 68010-based systems. It is equivalent to ‘-march=68010’.

-m68020
-mc68020 Generate output for a 68020. This is the default when the compiler is configured
for 68020-based systems. It is equivalent to ‘-march=68020’.

-m68030 Generate output for a 68030. This is the default when the compiler is configured
for 68030-based systems. It is equivalent to ‘-march=68030’.

-m68040 Generate output for a 68040. This is the default when the compiler is configured
for 68040-based systems. It is equivalent to ‘-march=68040’.

This option inhibits the use of 68881/68882 instructions that have to be em-
ulated by software on the 68040. Use this option if your 68040 does not have
code to emulate those instructions.

Chapter 3:

-m68060

-mcpu32

-m5200

-m5206e

-m528x

-m5307

-m5407

-mcfvide

GCC Command Options 229

Generate output for a 68060. This is the default when the compiler is configured
for 68060-based systems. It is equivalent to ‘-march=68060’.

This option inhibits the use of 68020 and 68881/68882 instructions that have
to be emulated by software on the 68060. Use this option if your 68060 does
not have code to emulate those instructions.

Generate output for a CPU32. This is the default when the compiler is config-
ured for CPU32-based systems. It is equivalent to ‘-march=cpu32’.

Use this option for microcontrollers with a CPU32 or CPU32+ core, including
the 68330, 68331, 68332, 68333, 68334, 68336, 68340, 68341, 68349 and 68360.

Generate output for a 520X ColdFire CPU. This is the default when the com-
piler is configured for 520X-based systems. It is equivalent to ‘-mcpu=5206’,
and is now deprecated in favor of that option.

Use this option for microcontroller with a 5200 core, including the MCF5202,
MCF5203, MCF5204 and MCF5206.

Generate output for a 5206e ColdFire CPU. The option is now deprecated in
favor of the equivalent ‘-mcpu=5206e’.

Generate output for a member of the ColdFire 528X family. The option is now
deprecated in favor of the equivalent ‘-mcpu=528x’.

Generate output for a ColdFire 5307 CPU. The option is now deprecated in
favor of the equivalent ‘-mcpu=5307’.

Generate output for a ColdFire 5407 CPU. The option is now deprecated in
favor of the equivalent ‘-mcpu=5407".

Generate output for a ColdFire V4e family CPU (e.g. 547x/548x). This in-
cludes use of hardware floating-point instructions. The option is equivalent to
‘-mcpu=547%’, and is now deprecated in favor of that option.

-m68020-40

Generate output for a 68040, without using any of the new instructions. This
results in code that can run relatively efficiently on either a 68020/68881 or a
68030 or a 68040. The generated code does use the 68881 instructions that are
emulated on the 68040.

The option is equivalent to ‘-march=68020" ‘-mtune=68020-40’.

-m68020-60

Generate output for a 68060, without using any of the new instructions. This
results in code that can run relatively efficiently on either a 68020/68881 or a
68030 or a 68040. The generated code does use the 68881 instructions that are
emulated on the 68060.

The option is equivalent to ‘-march=68020" ‘-mtune=68020-60’.

-mhard-float

-m68881

Generate floating-point instructions. This is the default for 68020 and
above, and for ColdFire devices that have an FPU. It defines the macro
‘__HAVE_68881__" on M680x0 targets and ‘__mcffpu__’ on ColdFire targets.

230 Using the GNU Compiler Collection (GCC)

-msoft-float
Do not generate floating-point instructions; use library calls instead. This is the
default for 68000, 68010, and 68832 targets. It is also the default for ColdFire
devices that have no FPU.

-mdiv

-mno-div Generate (do not generate) ColdFire hardware divide and remainder instruc-
tions. If ‘-march’ is used without ‘-mcpu’, the default is “on” for ColdFire ar-
chitectures and “off” for M680x0 architectures. Otherwise, the default is taken
from the target CPU (either the default CPU, or the one specified by ‘-mcpu’).
For example, the default is “off” for ‘-mcpu=5206" and “on” for ‘-mcpu=5206e’.

gce defines the macro ‘__mcfhwdiv__’ when this option is enabled.

-mshort Consider type int to be 16 bits wide, like short int. Additionally, parameters
passed on the stack are also aligned to a 16-bit boundary even on targets whose
API mandates promotion to 32-bit.

-mno-short
Do not consider type int to be 16 bits wide. This is the default.

-mnobitfield

-mno-bitfield
Do not use the bit-field instructions. The ‘-m68000’, ‘-mcpu32’ and ‘-m5200’
options imply ‘-mnobitfield’.

-mbitfield
Do use the bit-field instructions. The ‘-m68020° option implies ‘-mbitfield’.
This is the default if you use a configuration designed for a 68020.

-mrtd Use a different function-calling convention, in which functions that take a fixed
number of arguments return with the rtd instruction, which pops their argu-
ments while returning. This saves one instruction in the caller since there is no
need to pop the arguments there.

This calling convention is incompatible with the one normally used on Unix, so
you cannot use it if you need to call libraries compiled with the Unix compiler.

Also, you must provide function prototypes for all functions that take variable
numbers of arguments (including printf); otherwise incorrect code will be
generated for calls to those functions.

In addition, seriously incorrect code will result if you call a function with too
many arguments. (Normally, extra arguments are harmlessly ignored.)

The rtd instruction is supported by the 68010, 68020, 68030, 68040, 68060 and
CPU32 processors, but not by the 68000 or 5200.

-mno-rtd Do not use the calling conventions selected by ‘-mrtd’. This is the default.

-malign-int

-mno-align-int
Control whether GCC aligns int, long, long long, float, double, and long
double variables on a 32-bit boundary (‘-malign-int’) or a 16-bit boundary
(‘-mno-align-int’). Aligning variables on 32-bit boundaries produces code

Chapter 3: GCC Command Options 231

that runs somewhat faster on processors with 32-bit busses at the expense of
more memory.

Warning: if you use the ‘-malign-int’ switch, GCC will align structures con-
taining the above types differently than most published application binary in-
terface specifications for the m68k.

-mpcrel Use the pc-relative addressing mode of the 68000 directly, instead of using a
global offset table. At present, this option implies ‘~fpic’, allowing at most a
16-bit offset for pc-relative addressing. ‘~fPIC’ is not presently supported with
‘-mpcrel’, though this could be supported for 68020 and higher processors.

-mno-strict-align

-mstrict-align
Do not (do) assume that unaligned memory references will be handled by the
system.

-msep-data
Generate code that allows the data segment to be located in a different area of
memory from the text segment. This allows for execute in place in an environ-
ment without virtual memory management. This option implies ‘-fPIC’.

-mno-sep-data
Generate code that assumes that the data segment follows the text segment.
This is the default.

-mid-shared-library
Generate code that supports shared libraries via the library ID method. This al-
lows for execute in place and shared libraries in an environment without virtual
memory management. This option implies ‘-fPIC’.

-mno-id-shared-library
Generate code that doesn’t assume ID based shared libraries are being used.
This is the default.

-mshared-library-id=n
Specified the identification number of the ID based shared library being com-
piled. Specifying a value of 0 will generate more compact code, specifying other
values will force the allocation of that number to the current library but is no
more space or time efficient than omitting this option.

-mxgot

-mno-xgot
When generating position-independent code for ColdFire, generate code that
works if the GOT has more than 8192 entries. This code is larger and slower
than code generated without this option. On M680x0 processors, this option is
not needed; ‘~fPIC’ suffices.
GCC normally uses a single instruction to load values from the GOT. While
this is relatively efficient, it only works if the GOT is smaller than about 64k.
Anything larger causes the linker to report an error such as:

relocation truncated to fit: R_68K_GOT160 foobar

232 Using the GNU Compiler Collection (GCC)

If this happens, you should recompile your code with ‘-mxgot’. It should then
work with very large GOTs. However, code generated with ‘-mxgot’ is less
efficient, since it takes 4 instructions to fetch the value of a global symbol.

Note that some linkers, including newer versions of the GNU linker, can create
multiple GOTs and sort GOT entries. If you have such a linker, you should
only need to use ‘-mxgot’ when compiling a single object file that accesses more
than 8192 GOT entries. Very few do.

These options have no effect unless GCC is generating position-independent
code.

3.17.25 MCore Options

These are the ‘-m’ options defined for the Motorola M*Core processors.

-mhardlit

-mno-hardlit
Inline constants into the code stream if it can be done in two instructions or
less.

-mdiv
-mno-div Use the divide instruction. (Enabled by default).

-mrelax-immediate
-mno-relax-immediate
Allow arbitrary sized immediates in bit operations.

-mwide-bitfields
-mno-wide-bitfields
Always treat bit-fields as int-sized.

-m4byte-functions
-mno-4byte-functions
Force all functions to be aligned to a 4-byte boundary.

-mcallgraph-data
-mno-callgraph-data
Emit callgraph information.

-mslow-bytes
-mno-slow-bytes
Prefer word access when reading byte quantities.

-mlittle-endian

-mbig-endian
Generate code for a little-endian target.

-m210

-m340 Generate code for the 210 processor.

-mno-lsim
Assume that runtime support has been provided and so omit the simulator
library (‘libsim.a)’ from the linker command line.

Chapter 3: GCC Command Options 233

-mstack-increment=size
Set the maximum amount for a single stack increment operation. Large values
can increase the speed of programs that contain functions that need a large
amount of stack space, but they can also trigger a segmentation fault if the
stack is extended too much. The default value is 0x1000.

3.17.26 MeP Options

-mabsdiff
Enables the abs instruction, which is the absolute difference between two reg-
isters.

-mall-opts
Enables all the optional instructions - average, multiply, divide, bit operations,
leading zero, absolute difference, min/max, clip, and saturation.

-maverage
Enables the ave instruction, which computes the average of two registers.

-mbased=n
Variables of size n bytes or smaller will be placed in the .based section by
default. Based variables use the $tp register as a base register, and there is a
128-byte limit to the .based section.

-mbitops Enables the bit operation instructions - bit test (btstm), set (bsetm), clear
(bclrm), invert (bnotm), and test-and-set (tas).

-mc=name Selects which section constant data will be placed in. name may be tiny, near,
or far.

-mclip Enables the clip instruction. Note that -mclip is not useful unless you also
provide -mminmax.

-mconfig=name
Selects one of the build-in core configurations. Each MeP chip has one or
more modules in it; each module has a core CPU and a variety of coprocessors,
optional instructions, and peripherals. The MeP-Integrator tool, not part of
GCC, provides these configurations through this option; using this option is
the same as using all the corresponding command-line options. The default
configuration is default.

-mcop Enables the coprocessor instructions. By default, this is a 32-bit coprocessor.
Note that the coprocessor is normally enabled via the -mconfig= option.

-mcop32 Enables the 32-bit coprocessor’s instructions.

-mcop64 Enables the 64-bit coprocessor’s instructions.

-mivc?2 Enables IVC2 scheduling. IVC2 is a 64-bit VLIW coprocessor.
-mdc Causes constant variables to be placed in the .near section.
-mdiv Enables the div and divu instructions.

-meb Generate big-endian code.

234 Using the GNU Compiler Collection (GCC)

-mel Generate little-endian code.

-mio-volatile
Tells the compiler that any variable marked with the io attribute is to be
considered volatile.

-ml Causes variables to be assigned to the .far section by default.
-mleadz Enables the leadz (leading zero) instruction.

—mm Causes variables to be assigned to the .near section by default.
-mminmax Knables the min and max instructions.

-mmult Enables the multiplication and multiply-accumulate instructions.

-mno-opts
Disables all the optional instructions enabled by -mall-opts.

-mrepeat FEnables the repeat and erepeat instructions, used for low-overhead looping.

-ms Causes all variables to default to the .tiny section. Note that there is a 65536-
byte limit to this section. Accesses to these variables use the %gp base register.

-msatur Enables the saturation instructions. Note that the compiler does not currently
generate these itself, but this option is included for compatibility with other
tools, like as.

-msdram Link the SDRAM-based runtime instead of the default ROM-based runtime.
-msim Link the simulator runtime libraries.

-msimnovec
Link the simulator runtime libraries, excluding built-in support for reset and
exception vectors and tables.

-mtf Causes all functions to default to the .far section. Without this option, func-
tions default to the .near section.

-mtiny=n Variables that are n bytes or smaller will be allocated to the .tiny section.
These variables use the $gp base register. The default for this option is 4, but
note that there’s a 65536-byte limit to the .tiny section.

3.17.27 MicroBlaze Options

-msoft-float
Use software emulation for floating point (default).

-mhard-float
Use hardware floating-point instructions.

-mmemcpy Do not optimize block moves, use memcpy.

-mno-clearbss
This option is deprecated. Use ‘~fno-zero-initialized-in-bss’ instead.

-mcpu=cpu-type
Use features of and schedule code for given CPU. Supported values are in the
format ‘vX.YY.Z’, where X is a major version, YY is the minor version, and

Chapter 3: GCC Command Options

235

Z is compatibility code. Example values are ‘v3.00.a’;, ‘v4.00.b’, ‘v5.00.a’,

“v5.00.b’, ‘v5.00.b’, ‘v6.00.2’.

-mx1-soft-mul

Use software multiply emulation (default).
-mx1-soft-div

Use software emulation for divides (default).

-mxl-barrel-shift
Use the hardware barrel shifter.

-mxl-pattern-compare
Use pattern compare instructions.

-msmall-divides
Use table lookup optimization for small signed integer divisions.

-mxl-stack-check

This option is deprecated. Use -fstack-check instead.
-mx1l-gp-opt

Use GP relative sdata/sbss sections.
-mxl-multiply-high

Use multiply high instructions for high part of 32x32 multiply.

-mxl-float-convert
Use hardware floating-point conversion instructions.

-mxl-float-sqrt
Use hardware floating-point square root instruction.

-mxl-mode-app-model
Select application model app-model. Valid models are

‘executable’
normal executable (default), uses startup code ‘crt0.0’.

‘xmdstub’ for use with Xilinx Microprocessor Debugger (XMD) based soft-

ware intrusive debug agent called xmdstub. This uses startup file
‘crtl.0’ and sets the start address of the program to be 0x800.

‘bootstrap’
for applications that are loaded using a bootloader. This model uses
startup file ‘crt2.0’” which does not contain a processor reset vector
handler. This is suitable for transferring control on a processor reset
to the bootloader rather than the application.

‘novectors’
for applications that do not require any of the MicroBlaze vectors.
This option may be useful for applications running within a moni-
toring application. This model uses ‘crt3.0’ as a startup file.

Option ‘-x1-mode-app-model’ is a deprecated alias for ‘-mxl-mode-app-
model’.

236 Using the GNU Compiler Collection (GCC)

3.17.28 MIPS Options

-EB Generate big-endian code.
-EL Generate little-endian code. This is the default for ‘mips*el-*-%’ configura-
tions.

-march=arch

Generate code that will run on arch, which can be the name of a generic MIPS
ISA, or the name of a particular processor. The ISA names are: ‘mipsl’,
‘mips2’, ‘mips3’, ‘mips4’, ‘mips32’, ‘mips32r2’, ‘mips64’ and ‘mips64r2’.
The processor names are: ‘4kc’, ‘4km’, ‘4kp’, ‘dksc’, ‘dkec’, ‘dkem’, ‘4dkep’,
‘4ksd’, ‘Bkc’, ‘Bkf’, ‘20kc’, ‘24kc’, ‘24kf2_1°, ‘24kf1_1’, ‘24kec’, ‘24kef2_1’,
‘“Ddkefl_1’, ‘34kc’, ‘34kf2_1°, ‘34kfl_1’, ‘Tdkc’, ‘7T4kf2_1’, ‘T4kfl_1’,
“74kf3_2’) ‘1004kc’, ‘1004kf2_1’, ‘1004kf1_1’, ‘loongson2e’, ‘loongson2f’,
‘loongson3a’, ‘mé4k’, ‘octeon’, ‘octeont’, ‘octeon2’, ‘orion’, ‘r2000’, ‘r3000’,
‘r3900°, ‘r4000’, ‘r4400’, ‘r4600’, ‘r4650’, ‘r6000’, ‘r8000’, ‘rm7000’,
‘rm9000’, ‘r10000’, ‘r12000’, ‘r14000’, ‘r16000’, ‘sb1l’, ‘sr71000’, ‘vr4100’,
‘vr4a111’, ‘vr4120’, ‘vr4130’, ‘vr4300’, ‘vr5000’, ‘vr5400°, ‘vr5500’ and ‘x1r’.
The special value ‘from-abi’ selects the most compatible architecture for the
selected ABI (that is, ‘mips1’ for 32-bit ABIs and ‘mips3’ for 64-bit ABISs).

Native Linux/GNU and IRIX toolchains also support the value ‘native’, which
selects the best architecture option for the host processor. ‘-march=native’ has
no effect if GCC does not recognize the processor.

In processor names, a final ‘000’ can be abbreviated as ‘k’ (for example,
‘-march=r2k’). Prefixes are optional, and ‘vr’ may be written ‘r’.

Names of the form ‘nf2_1’ refer to processors with FPUs clocked at half the rate
of the core, names of the form ‘nf1_1’ refer to processors with FPUs clocked
at the same rate as the core, and names of the form ‘nf3_2’ refer to processors
with FPUs clocked a ratio of 3:2 with respect to the core. For compatibility
reasons, ‘nf’ is accepted as a synonym for ‘nf2_1’ while ‘nx’ and ‘bfx’ are
accepted as synonyms for ‘nf1_1’.

GCC defines two macros based on the value of this option. The first is
‘_MIPS_ARCH’, which gives the name of target architecture, as a string. The
second has the form ‘_MIPS_ARCH_foo’, where foo is the capitalized value
of ‘_MIPS_ARCH. For example, ‘-march=r2000’ will set ‘_MIPS_ARCH’ to
‘"r2000"" and define the macro ‘_MIPS_ARCH_R2000’.

Note that the ‘_MIPS_ARCH’ macro uses the processor names given above. In
other words, it will have the full prefix and will not abbreviate ‘000’ as ‘k’.
In the case of ‘from-abi’, the macro names the resolved architecture (either
“"mips1"’ or ‘"mips3"’). It names the default architecture when no ‘-march’
option is given.

-mtune=arch
Optimize for arch. Among other things, this option controls the way instruc-
tions are scheduled, and the perceived cost of arithmetic operations. The list
of arch values is the same as for ‘-march’.

Chapter 3: GCC Command Options 237

-mipsl
-mips2
-mips3
-mips4
-mips32
-mips32r2

-mips64
-mips64r2

-mips16
-mno-mipsl

When this option is not used, GCC will optimize for the processor specified by
‘-march’. By using ‘-march’ and ‘-mtune’ together, it is possible to generate
code that will run on a family of processors, but optimize the code for one
particular member of that family.

‘-mtune’ defines the macros ‘_MIPS_TUNE’ and ‘_MIPS_TUNE_foo’, which work
in the same way as the ‘-march’ ones described above

Equivalent to ‘-march=mips1’.
Equivalent to ‘-march=mips2’.
Equivalent to ‘-march=mips3’.
Equivalent to ‘-march=mips4’.

Equivalent to ‘-march=mips32’.

Equivalent to ‘-march=mips32r2’.

Equivalent to ‘-march=mips64’.
Equivalent to ‘-march=mips64r2’.

6
Generate (do not generate) MIPS16 code. If GCC is targetting a MIPS32 or
MIPS64 architecture, it will make use of the MIPS16e ASE.

MIPS16 code generation can also be controlled on a per-function basis by means
of mips16 and nomips16 attributes. See Section 6.30 [Function Attributes],
page 336, for more information.

-mflip-mips16

Generate MIPS16 code on alternating functions. This option is provided for
regression testing of mixed MIPS16/non-MIPS16 code generation, and is not
intended for ordinary use in compiling user code.

-minterlink-mipsi16
-mno-interlink-mipsi16

-mabi=32
-mabi=064
-mabi=n32
-mabi=64
-mabi=eabi

Require (do not require) that non-MIPS16 code be link-compatible with
MIPS16 code.

For example, non-MIPS16 code cannot jump directly to MIPS16 code; it must
either use a call or an indirect jump. ‘-minterlink-mips16’ therefore disables
direct jumps unless GCC knows that the target of the jump is not MIPS16.

Generate code for the given ABI.

238

-mabicalls

Using the GNU Compiler Collection (GCC)

Note that the EABI has a 32-bit and a 64-bit variant. GCC normally generates
64-bit code when you select a 64-bit architecture, but you can use ‘-mgp32’ to
get 32-bit code instead.

For information about the O64 ABI, see http://gcc.gnu.org/projects/
mipso64-abi.html.

GCC supports a variant of the 032 ABI in which floating-point registers are
64 rather than 32 bits wide. You can select this combination with ‘-mabi=32’
‘-mfp64’. This ABI relies on the ‘mthcl’ and ‘mfhcl’ instructions and is there-
fore only supported for MIPS32R2 processors.

The register assignments for arguments and return values remain the same, but
each scalar value is passed in a single 64-bit register rather than a pair of 32-bit
registers. For example, scalar floating-point values are returned in ‘$£0’ only,
not a ‘$£0’/‘$£1’ pair. The set of call-saved registers also remains the same,
but all 64 bits are saved.

-mno-abicalls

-mshared

Generate (do not generate) code that is suitable for SVR4-style dynamic ob-
jects. ‘-mabicalls’ is the default for SVR4-based systems.

-mno-shared

-mplt
-mno-plt

-mxgot
-mno-xgot

Generate (do not generate) code that is fully position-independent, and that can
therefore be linked into shared libraries. This option only affects ‘-mabicalls’.

All ‘-mabicalls’ code has traditionally been position-independent, regardless of
options like ‘-fPIC’ and ‘-fpic’. However, as an extension, the GNU toolchain
allows executables to use absolute accesses for locally-binding symbols. It can
also use shorter GP initialization sequences and generate direct calls to locally-
defined functions. This mode is selected by ‘-mno-shared’.

‘-mno-shared’ depends on binutils 2.16 or higher and generates objects that
can only be linked by the GNU linker. However, the option does not affect the
ABI of the final executable; it only affects the ABI of relocatable objects. Using
‘-mno-shared’ will generally make executables both smaller and quicker.

‘-mshared’ is the default.

Assume (do not assume) that the static and dynamic linkers support PLTs and
copy relocations. This option only affects ‘-mno-shared -mabicalls’. For the
n64 ABI, this option has no effect without ‘-msym32’.

You can make ‘-mplt’ the default by configuring GCC with ‘--with-mips-plt’.
The default is ‘-mno-plt’ otherwise.

Lift (do not lift) the usual restrictions on the size of the global offset table.
GCC normally uses a single instruction to load values from the GOT. While
this is relatively efficient, it will only work if the GOT is smaller than about
64k. Anything larger will cause the linker to report an error such as:

http://gcc.gnu.org/projects/mipso64-abi.html
http://gcc.gnu.org/projects/mipso64-abi.html

Chapter 3: GCC Command Options 239

relocation truncated to fit: R_MIPS_GOT16 foobar
If this happens, you should recompile your code with ‘-mxgot’. It should then
work with very large GOTs, although it will also be less efficient, since it will
take three instructions to fetch the value of a global symbol.
Note that some linkers can create multiple GOTs. If you have such a linker,
you should only need to use ‘-mxgot’ when a single object file accesses more
than 64k’s worth of GOT entries. Very few do.

These options have no effect unless GCC is generating position independent

code.
-mgp32 Assume that general-purpose registers are 32 bits wide.
-mgp64 Assume that general-purpose registers are 64 bits wide.

-mfp32 Assume that floating-point registers are 32 bits wide.
-mfp64 Assume that floating-point registers are 64 bits wide.

-mhard-float
Use floating-point coprocessor instructions.

-msoft-float
Do not use floating-point coprocessor instructions. Implement floating-point
calculations using library calls instead.

-msingle-float
Assume that the floating-point coprocessor only supports single-precision oper-
ations.

-mdouble-float

Assume that the floating-point coprocessor supports double-precision opera-
tions. This is the default.

-mllsc

-mno-1llsc
Use (do not use) ‘11’, ‘sc’, and ‘sync’ instructions to implement atomic mem-
ory built-in functions. When neither option is specified, GCC will use the
instructions if the target architecture supports them.

‘-mllsc’ is useful if the runtime environment can emulate the instructions and
‘-mno-1lsc’ can be useful when compiling for nonstandard ISAs. You can
make either option the default by configuring GCC with ‘--with-11sc’ and
‘——without-11lsc’ respectively. ‘-—with-11lsc’ is the default for some configu-
rations; see the installation documentation for details.

-mdsp

-mno-dsp Use (do not use) revision 1 of the MIPS DSP ASE. See Section 6.55.8 [MIPS
DSP Built-in Functions|, page 562. This option defines the preprocessor macro
‘__mips_dsp’. It also defines ‘__mips_dsp_rev’ to 1.

-mdspr2

-mno-dspr2
Use (do not use) revision 2 of the MIPS DSP ASE. See Section 6.55.8 [MIPS
DSP Built-in Functions|, page 562. This option defines the preprocessor macros
‘__mips_dsp’ and ‘__mips_dspr2’. It also defines ‘__mips_dsp_rev’ to 2.

240 Using the GNU Compiler Collection (GCC)

-msmartmips
-mno-smartmips

Use (do not use) the MIPS SmartMIPS ASE.

-mpaired-single

-mno-paired-single
Use (do not use) paired-single floating-point instructions. See Section 6.55.9
[MIPS Paired-Single Support], page 566. This option requires hardware
floating-point support to be enabled.

-mdmx

-mno-mdmx
Use (do not use) MIPS Digital Media Extension instructions. This option can
only be used when generating 64-bit code and requires hardware floating-point
support to be enabled.

-mips3d

-mno-mips3d
Use (do not use) the MIPS-3D ASE. See Section 6.55.10.3 [MIPS-3D Built-in
Functions], page 570. The option ‘-mips3d’ implies ‘-mpaired-single’.

-mmt
-mno-mt Use (do not use) MT Multithreading instructions.

-mlong64 Force long types to be 64 bits wide. See ‘-mlong32’ for an explanation of the
default and the way that the pointer size is determined.

-mlong32 Force long, int, and pointer types to be 32 bits wide.

The default size of ints, longs and pointers depends on the ABI. All the
supported ABIs use 32-bit ints. The n64 ABI uses 64-bit longs, as does the
64-bit EABI; the others use 32-bit longs. Pointers are the same size as longs,
or the same size as integer registers, whichever is smaller.

-msym32

-mno-sym32
Assume (do not assume) that all symbols have 32-bit values, regardless of
the selected ABI. This option is useful in combination with ‘-mabi=64’" and
‘-mno-abicalls’ because it allows GCC to generate shorter and faster refer-
ences to symbolic addresses.

-G num Put definitions of externally-visible data in a small data section if that data is
no bigger than num bytes. GCC can then access the data more efficiently; see
‘-mgpopt’ for details.

The default ‘-G’ option depends on the configuration.

-mlocal-sdata

-mno-local-sdata
Extend (do not extend) the ‘-G’ behavior to local data too, such as to static
variables in C. ‘-mlocal-sdata’ is the default for all configurations.

If the linker complains that an application is using too much small data,
you might want to try rebuilding the less performance-critical parts with

Chapter 3: GCC Command Options 241

‘-mno-local-sdata’. You might also want to build large libraries with
‘-mno-local-sdata’, so that the libraries leave more room for the main
program.

-mextern-sdata
-mno-extern-sdata

—mgpopt

-mno-gpopt

Assume (do not assume) that externally-defined data will be in a small data
section if that data is within the ‘-G’ limit. ‘-mextern-sdata’ is the default for
all configurations.

If you compile a module Mod with ‘-mextern-sdata’ ‘-G num’ ‘-mgpopt’, and
Mod references a variable Var that is no bigger than num bytes, you must make
sure that Var is placed in a small data section. If Var is defined by another
module, you must either compile that module with a high-enough ‘-G’ setting
or attach a section attribute to Var’s definition. If Var is common, you must
link the application with a high-enough ‘-G’ setting.

The easiest way of satisfying these restrictions is to compile and link every
module with the same ‘-G’ option. However, you may wish to build a library
that supports several different small data limits. You can do this by compil-
ing the library with the highest supported ‘-G’ setting and additionally us-
ing ‘-mno-extern-sdata’ to stop the library from making assumptions about
externally-defined data.

Use (do not use) GP-relative accesses for symbols that are known to be in a
small data section; see ‘-G’, ‘-mlocal-sdata’ and ‘-mextern-sdata’. ‘-mgpopt’
is the default for all configurations.

‘-mno-gpopt’ is useful for cases where the $gp register might not hold the value
of _gp. For example, if the code is part of a library that might be used in a boot
monitor, programs that call boot monitor routines will pass an unknown value
in $gp. (In such situations, the boot monitor itself would usually be compiled
with ‘-G0".)

‘-mno-gpopt’ implies ‘-mno-local-sdata’ and ‘-mno-extern-sdata’.

-membedded-data
-mno-embedded-data

Allocate variables to the read-only data section first if possible, then next in the
small data section if possible, otherwise in data. This gives slightly slower code
than the default, but reduces the amount of RAM required when executing,
and thus may be preferred for some embedded systems.

-muninit-const-in-rodata
-mno-uninit-const-in-rodata

Put uninitialized const variables in the read-only data section. This option is
only meaningful in conjunction with ‘-membedded-data’.

-mcode-readable=setting

Specify whether GCC may generate code that reads from executable sections.
There are three possible settings:

242 Using the GNU Compiler Collection (GCC)

-mcode-readable=yes
Instructions may freely access executable sections. This is the de-
fault setting.

-mcode-readable=pcrel

MIPS16 PC-relative load instructions can access executable sec-
tions, but other instructions must not do so. This option is useful
on 4KSc and 4KSd processors when the code TLBs have the Read
Inhibit bit set. It is also useful on processors that can be configured
to have a dual instruction/data SRAM interface and that, like the
M4K, automatically redirect PC-relative loads to the instruction
RAM.

-mcode-readable=no
Instructions must not access executable sections. This option can
be useful on targets that are configured to have a dual instruc-
tion/data SRAM interface but that (unlike the M4K) do not auto-
matically redirect PC-relative loads to the instruction RAM.

-msplit-addresses

-mno-split-addresses
Enable (disable) use of the %hi() and %lo() assembler relocation operators.
This option has been superseded by ‘-mexplicit-relocs’ but is retained for
backwards compatibility.

-mexplicit-relocs

-mno-explicit-relocs
Use (do not use) assembler relocation operators when dealing with symbolic
addresses. The alternative, selected by ‘-mno-explicit-relocs’, is to use as-
sembler macros instead.

‘-mexplicit-relocs’ is the default if GCC was configured to use an assembler
that supports relocation operators.

-mcheck-zero-division
-mno-check-zero-division
Trap (do not trap) on integer division by zero.

The default is ‘-mcheck-zero-division’.

-mdivide-traps

-mdivide-breaks
MIPS systems check for division by zero by generating either a conditional
trap or a break instruction. Using traps results in smaller code, but is only
supported on MIPS II and later. Also, some versions of the Linux kernel have
a bug that prevents trap from generating the proper signal (SIGFPE). Use
‘-mdivide-traps’ to allow conditional traps on architectures that support them
and ‘-mdivide-breaks’ to force the use of breaks.

The default is usually ‘-mdivide-traps’, but this can be overridden at configure
time using ‘--with-divide=breaks’. Divide-by-zero checks can be completely
disabled using ‘-mno-check-zero-division’.

Chapter 3: GCC Command Options 243

-mmemcpy

-mno-memcpy
Force (do not force) the use of memcpy () for non-trivial block moves. The de-
fault is ‘-mno-memcpy’, which allows GCC to inline most constant-sized copies.

-mlong-calls

-mno-long-calls
Disable (do not disable) use of the jal instruction. Calling functions using
jal is more efficient but requires the caller and callee to be in the same 256
megabyte segment.

This option has no effect on abicalls code. The default is ‘-mno-long-calls’.

-mmad

-mno-mad Enable (disable) use of the mad, madu and mul instructions, as provided by the
R4650 ISA.

-mfused-madd

-mno-fused-madd
Enable (disable) use of the floating-point multiply-accumulate instructions,
when they are available. The default is ‘-mfused-madd’.

When multiply-accumulate instructions are used, the intermediate product is
calculated to infinite precision and is not subject to the FCSR Flush to Zero
bit. This may be undesirable in some circumstances.

-nocpp Tell the MIPS assembler to not run its preprocessor over user assembler files
(with a ‘.s’ suffix) when assembling them.

-mfix-24k

-mno-fix-24k

Work around the 24K E48 (lost data on stores during refill) errata. The
workarounds are implemented by the assembler rather than by GCC.

-mfix-r4000
-mno-fix-r4000
Work around certain R4000 CPU errata:
— A double-word or a variable shift may give an incorrect result if executed
immediately after starting an integer division.

— A double-word or a variable shift may give an incorrect result if executed
while an integer multiplication is in progress.

— An integer division may give an incorrect result if started in a delay slot of
a taken branch or a jump.

-mfix-r4400
-mno-fix-r4400
Work around certain R4400 CPU errata:
— A double-word or a variable shift may give an incorrect result if executed
immediately after starting an integer division.

-mfix-r10000
-mno-fix-r10000
Work around certain R10000 erratas:

244

Using the GNU Compiler Collection (GCC)

— 11/sc sequences may not behave atomically on revisions prior to 3.0. They
may deadlock on revisions 2.6 and earlier.

This option can only be used if the target architecture supports branch-likely
instructions. ‘-mfix-r10000’ is the default when ‘-march=r10000’ is used;
‘-mno-fix-r10000’ is the default otherwise.

-mfix-vr4120
-mno-fix-vr4120

Work around certain VR4120 errata:
— dmultu does not always produce the correct result.
— div and ddiv do not always produce the correct result if one of the operands
is negative.

The workarounds for the division errata rely on special functions in ‘libgcc.a’.
At present, these functions are only provided by the mips64vr*-elf configura-
tions.

Other VR4120 errata require a nop to be inserted between certain pairs of
instructions. These errata are handled by the assembler, not by GCC itself.

-mfix-vr4130

-mfix-sbl

Work around the VR4130 mflo/mfhi errata. The workarounds are implemented
by the assembler rather than by GCC, although GCC will avoid using mf1lo and
mfhi if the VR4130 macc, macchi, dmacc and dmacchi instructions are available
instead.

-mno-fix-sbil

Work around certain SB-1 CPU core errata. (This flag currently works around
the SB-1 revision 2 “F1” and “F2” floating-point errata.)

-mri10k-cache-barrier=setting

Specify whether GCC should insert cache barriers to avoid the side-effects of
speculation on R10K processors.

In common with many processors, the R10K tries to predict the outcome of
a conditional branch and speculatively executes instructions from the “taken”
branch. It later aborts these instructions if the predicted outcome was wrong.
However, on the R10K, even aborted instructions can have side effects.

This problem only affects kernel stores and, depending on the system, ker-
nel loads. As an example, a speculatively-executed store may load the target
memory into cache and mark the cache line as dirty, even if the store itself is
later aborted. If a DMA operation writes to the same area of memory before
the “dirty” line is flushed, the cached data will overwrite the DMA-ed data.
See the R10K processor manual for a full description, including other potential
problems.

One workaround is to insert cache barrier instructions before every memory
access that might be speculatively executed and that might have side effects
even if aborted. ‘-mr10k-cache-barrier=setting’ controls GCC’s implemen-
tation of this workaround. It assumes that aborted accesses to any byte in the
following regions will not have side effects:

Chapter 3: GCC Command Options 245

1. the memory occupied by the current function’s stack frame;
2. the memory occupied by an incoming stack argument;

3. the memory occupied by an object with a link-time-constant address.

It is the kernel’s responsibility to ensure that speculative accesses to these
regions are indeed safe.

If the input program contains a function declaration such as:

void foo (void);

then the implementation of foo must allow j foo and jal foo to be executed
speculatively. GCC honors this restriction for functions it compiles itself. It
expects non-GCC functions (such as hand-written assembly code) to do the
same.

The option has three forms:

-mr10k-cache-barrier=load-store
Insert a cache barrier before a load or store that might be specula-
tively executed and that might have side effects even if aborted.

-mri10k-cache-barrier=store
Insert a cache barrier before a store that might be speculatively
executed and that might have side effects even if aborted.

-mr10k-cache-barrier=none
Disable the insertion of cache barriers. This is the default setting.

-mflush-func=func

-mno-flush-func
Specifies the function to call to flush the I and D caches, or to not call any such
function. If called, the function must take the same arguments as the common
_flush_func(), that is, the address of the memory range for which the cache
is being flushed, the size of the memory range, and the number 3 (to flush
both caches). The default depends on the target GCC was configured for, but
commonly is either ‘_flush_func’ or ‘__cpu_flush’.

mbranch-cost=num
Set the cost of branches to roughly num “simple” instructions. This cost is only
a heuristic and is not guaranteed to produce consistent results across releases.
A zero cost redundantly selects the default, which is based on the ‘-mtune’
setting.

-mbranch-likely

-mno-branch-likely
Enable or disable use of Branch Likely instructions, regardless of the default
for the selected architecture. By default, Branch Likely instructions may be
generated if they are supported by the selected architecture. An exception
is for the MIPS32 and MIPS64 architectures and processors that implement
those architectures; for those, Branch Likely instructions will not be generated
by default because the MIPS32 and MIPS64 architectures specifically deprecate
their use.

246 Using the GNU Compiler Collection (GCC)

-mfp-exceptions

-mno-fp-exceptions
Specifies whether FP exceptions are enabled. This affects how we schedule FP
instructions for some processors. The default is that FP exceptions are enabled.

For instance, on the SB-1, if FP exceptions are disabled, and we are emitting
64-bit code, then we can use both FP pipes. Otherwise, we can only use one
FP pipe.

-mvr4130-align

-mno-vr4130-align
The VR4130 pipeline is two-way superscalar, but can only issue two instructions
together if the first one is 8-byte aligned. When this option is enabled, GCC
will align pairs of instructions that it thinks should execute in parallel.

This option only has an effect when optimizing for the VR4130. It normally
makes code faster, but at the expense of making it bigger. It is enabled by
default at optimization level ‘-=03’.

-msynci

-mno-synci
Enable (disable) generation of synci instructions on architectures that support
it. The synci instructions (if enabled) will be generated when __builtin_
clear_cache() is compiled.

This option defaults to -mno-synci, but the default can be overridden by con-
figuring with --with-synci.

When compiling code for single processor systems, it is generally safe to use
synci. However, on many multi-core (SMP) systems, it will not invalidate the
instruction caches on all cores and may lead to undefined behavior.

-mrelax-pic-calls

-mno-relax-pic-calls
Try to turn PIC calls that are normally dispatched via register $25 into direct
calls. This is only possible if the linker can resolve the destination at link-time
and if the destination is within range for a direct call.

‘-mrelax-pic-calls’ is the default if GCC was configured to use an assembler
and a linker that supports the .reloc assembly directive and -mexplicit-
relocs is in effect. With -mno-explicit-relocs, this optimization can be
performed by the assembler and the linker alone without help from the compiler.

-mmcount-ra-address

-mno-mcount-ra-address
Emit (do not emit) code that allows _mcount to modify the calling function’s
return address. When enabled, this option extends the usual _mcount interface
with a new ra-address parameter, which has type intptr_t * and is passed in
register $12. _mcount can then modify the return address by doing both of the
following:

e Returning the new address in register $31.

e Storing the new address in *ra-address, if ra-address is nonnull.

The default is ‘“-mno-mcount-ra-address’.

Chapter 3: GCC Command Options 247

3.17.29 MMIX Options
These options are defined for the MMIX:

-mlibfuncs

-mno-libfuncs
Specify that intrinsic library functions are being compiled, passing all values in
registers, no matter the size.

-mepsilon

-mno-epsilon
Generate floating-point comparison instructions that compare with respect to
the rE epsilon register.

-mabi=mmixware

-mabi=gnu
Generate code that passes function parameters and return values that (in the
called function) are seen as registers $0 and up, as opposed to the GNU ABI
which uses global registers $231 and up.

-mzero-extend

-mno-zero-extend
When reading data from memory in sizes shorter than 64 bits, use (do not use)
zero-extending load instructions by default, rather than sign-extending ones.

-mknuthdiv

-mno-knuthdiv
Make the result of a division yielding a remainder have the same sign as the
divisor. With the default, ‘-mno-knuthdiv’, the sign of the remainder follows
the sign of the dividend. Both methods are arithmetically valid, the latter being
almost exclusively used.

-mtoplevel-symbols

-mno-toplevel-symbols
Prepend (do not prepend) a ‘:” to all global symbols, so the assembly code can
be used with the PREFIX assembly directive.

-melf Generate an executable in the ELF format, rather than the default ‘mmo’ format
used by the mmix simulator.

-mbranch-predict

-mno-branch-predict
Use (do not use) the probable-branch instructions, when static branch predic-
tion indicates a probable branch.

-mbase-addresses

-mno-base-addresses
Generate (do not generate) code that uses base addresses. Using a base address
automatically generates a request (handled by the assembler and the linker)
for a constant to be set up in a global register. The register is used for one or
more base address requests within the range 0 to 255 from the value held in the
register. The generally leads to short and fast code, but the number of different

248 Using the GNU Compiler Collection (GCC)

data items that can be addressed is limited. This means that a program that
uses lots of static data may require ‘-mno-base-addresses’.

-msingle-exit
-mno-single-exit
Force (do not force) generated code to have a single exit point in each function.

3.17.30 MIN10300 Options
These ‘-m’ options are defined for Matsushita MN10300 architectures:
-mmult-bug

Generate code to avoid bugs in the multiply instructions for the MN10300
processors. This is the default.

-mno-mult-bug
Do not generate code to avoid bugs in the multiply instructions for the MIN10300

processors.
-mam33 Generate code using features specific to the AM33 processor.
-mno-am33
Do not generate code using features specific to the AM33 processor. This is the
default.

-mam33-2 Generate code using features specific to the AM33/2.0 processor.
-mam34 Generate code using features specific to the AM34 processor.

-mtune=cpu-type
Use the timing characteristics of the indicated CPU type when scheduling in-
structions. This does not change the targeted processor type. The CPU type
must be one of ‘mn10300’, ‘am33’, ‘am33-2’ or ‘am34’.

-mreturn-pointer-on-do0
When generating a function that returns a pointer, return the pointer in both
a0 and d0. Otherwise, the pointer is returned only in a0, and attempts to call
such functions without a prototype would result in errors. Note that this option
is on by default; use ‘-mno-return-pointer-on-d0’ to disable it.

-mno-crt0
Do not link in the C run-time initialization object file.

-mrelax Indicate to the linker that it should perform a relaxation optimization pass to
shorten branches, calls and absolute memory addresses. This option only has
an effect when used on the command line for the final link step.

This option makes symbolic debugging impossible.
-mliw Allow the compiler to generate Long Instruction Word instructions if the target

is the ‘AM33’ or later. This is the default. This option defines the preprocessor
macro ‘__LIW__’.

-mnoliw Do not allow the compiler to generate Long Instruction Word instructions. This
option defines the preprocessor macro ‘__NO_LIW__ .

Chapter 3: GCC Command Options 249

-msetlb Allow the compiler to generate the SETLB and Lcc instructions if the target
is the ‘AM33’ or later. This is the default. This option defines the preprocessor
macro ‘__SETLB__’.

-mnosetlb
Do not allow the compiler to generate SETLB or Lcc instructions. This option
defines the preprocessor macro ‘__NO_SETLB__’.

3.17.31 PDP-11 Options
These options are defined for the PDP-11:

-mfpu Use hardware FPP floating point. This is the default. (FIS floating point on
the PDP-11/40 is not supported.)

-msoft-float
Do not use hardware floating point.

-macO Return floating-point results in acO (fr0 in Unix assembler syntax).

-mno-acO0 Return floating-point results in memory. This is the default.

-m40 Generate code for a PDP-11/40.
-m45 Generate code for a PDP-11/45. This is the default.
-m10 Generate code for a PDP-11/10.

-mbcopy-builtin
Use inline movmemhi patterns for copying memory. This is the default.

-mbcopy Do not use inline movmemhi patterns for copying memory.

-mint16
-mno—-int32
Use 16-bit int. This is the default.

-mint32
-mno-int16
Use 32-bit int.

-mfloat64
-mno-float32
Use 64-bit float. This is the default.

-mfloat32
-mno-float64
Use 32-bit float.

-mabshi Use abshi2 pattern. This is the default.

-mno—abshi
Do not use abshi2 pattern.

-mbranch-expensive
Pretend that branches are expensive. This is for experimenting with code gen-
eration only.

250 Using the GNU Compiler Collection (GCC)

-mbranch-cheap
Do not pretend that branches are expensive. This is the default.

-munix-asm
Use Unix assembler syntax. This is the default when configured for
‘pdpll-*-bsd’.

-mdec-asm
Use DEC assembler syntax. This is the default when configured for any PDP-11
target other than ‘pdpl1-*-bsd’.

3.17.32 picoChip Options

These ‘-m’ options are defined for picoChip implementations:

-mae=ae_type

Set the instruction set, register set, and instruction scheduling parameters for
array element type ae_type. Supported values for ae_type are ‘ANY’, ‘MUL’, and
‘MAC'.

‘-mae=ANY’ selects a completely generic AE type. Code generated with this
option will run on any of the other AE types. The code will not be as efficient
as it would be if compiled for a specific AE type, and some types of operation
(e.g., multiplication) will not work properly on all types of AE.

‘-mae=MUL’ selects a MUL AE type. This is the most useful AE type for com-
piled code, and is the default.

‘-mae=MAC’ selects a DSP-style MAC AE. Code compiled with this option may
suffer from poor performance of byte (char) manipulation, since the DSP AE
does not provide hardware support for byte load/stores.

-msymbol-as—-address
Enable the compiler to directly use a symbol name as an address in a load/store
instruction, without first loading it into a register. Typically, the use of this
option will generate larger programs, which run faster than when the option
isn’t used. However, the results vary from program to program, so it is left as
a user option, rather than being permanently enabled.

-mno-inefficient-warnings

Disables warnings about the generation of inefficient code. These warnings
can be generated, for example, when compiling code that performs byte-level
memory operations on the MAC AE type. The MAC AE has no hardware
support for byte-level memory operations, so all byte load/stores must be syn-
thesized from word load/store operations. This is inefficient and a warning will
be generated indicating to the programmer that they should rewrite the code to
avoid byte operations, or to target an AE type that has the necessary hardware
support. This option enables the warning to be turned off.

3.17.33 PowerPC Options
These are listed under See Section 3.17.35 [RS/6000 and PowerPC Options], page 251.

Chapter 3: GCC Command Options 251

3.17.34 RL78 Options
-msim Links in additional target libraries to support operation within a simulator.

-mmul=none

-mmul=gl3

-mmul=rl78
Specifies the type of hardware multiplication support to be used. The default
is none, which uses software multiplication functions. The g13 option is for the
hardware multiply /divide peripheral only on the RL78/G13 targets. The r178
option is for the standard hardware multiplication defined in the RL78 software
manual.

3.17.35 IBM RS/6000 and PowerPC Options
These ‘-m’ options are defined for the IBM RS/6000 and PowerPC:

-mpower

-mno-power

-mpower?2

-mno-power2

-mpowerpc

-mno-powerpc

-mpowerpc-gpopt

-mno-powerpc-gpopt

-mpowerpc-gixopt

-mno-powerpc-gfxopt

-mpowerpc64

-mno-powerpc64

-mmfcrf

-mno-mfcrf

-mpopcntb

-mno-popcntb

-mpopcntd

-mno-popcntd

-mfprnd

-mno-fprnd

-mcmpb

-mno-cmpb

-mmfpgpr

-mno-mfpgpr

-mhard-dfp

-mno-hard-dfp
GCC supports two related instruction set architectures for the RS/6000 and
PowerPC. The POWER instruction set are those instructions supported by
the ‘rios’ chip set used in the original RS/6000 systems and the PowerPC
instruction set is the architecture of the Freescale MPChxx, MPC6xx, MPC8xx
microprocessors, and the IBM 4xx, 6xx, and follow-on microprocessors.

252

Using the GNU Compiler Collection (GCC)

Neither architecture is a subset of the other. However there is a large com-
mon subset of instructions supported by both. An MQ register is included in
processors supporting the POWER architecture.

You use these options to specify which instructions are available on the processor
you are using. The default value of these options is determined when configuring
GCC. Specifying the ‘-mcpu=cpu_type’ overrides the specification of these
options. We recommend you use the ‘-mcpu=cpu_type’ option rather than the
options listed above.

The ‘-mpower’ option allows GCC to generate instructions that are found only
in the POWER architecture and to use the MQ register. Specifying ‘-mpower2’
implies ‘-power’ and also allows GCC to generate instructions that are present
in the POWER2 architecture but not the original POWER architecture.

The ‘-mpowerpc’ option allows GCC to generate instructions that are
found only in the 32-bit subset of the PowerPC architecture. Specifying
‘-mpowerpc-gpopt’ implies ‘-mpowerpc’ and also allows GCC to use the
optional PowerPC architecture instructions in the General Purpose group,
including floating-point square root. Specifying ‘-mpowerpc-gfxopt’ implies
‘-mpowerpc’ and also allows GCC to use the optional PowerPC architecture
instructions in the Graphics group, including floating-point select.

The ‘“-mmfcrf’ option allows GCC to generate the move from condition register
field instruction implemented on the POWER4 processor and other processors
that support the PowerPC V2.01 architecture. The ‘-mpopcntb’ option allows
GCC to generate the popcount and double-precision FP reciprocal estimate
instruction implemented on the POWERS5 processor and other processors that
support the PowerPC V2.02 architecture. The ‘-mpopcntd’ option allows GCC
to generate the popcount instruction implemented on the POWERT proces-
sor and other processors that support the PowerPC V2.06 architecture. The
‘-mfprnd’ option allows GCC to generate the FP round to integer instructions
implemented on the POWERS+ processor and other processors that support the
PowerPC V2.03 architecture. The ‘-mcmpb’ option allows GCC to generate the
compare bytes instruction implemented on the POWERG6 processor and other
processors that support the PowerPC V2.05 architecture. The ‘-mmfpgpr’ op-
tion allows GCC to generate the FP move to/from general-purpose register in-
structions implemented on the POWERGX processor and other processors that
support the extended PowerPC V2.05 architecture. The ‘-mhard-dfp’ option
allows GCC to generate the decimal floating-point instructions implemented on
some POWER processors.

The ‘-mpowerpc64’ option allows GCC to generate the additional 64-bit instruc-
tions that are found in the full PowerPC64 architecture and to treat GPRs as
64-bit, doubleword quantities. GCC defaults to ‘-mno-powerpc64’.

If you specify both ‘-mno-power’ and ‘-mno-powerpc’, GCC will use only the
instructions in the common subset of both architectures plus some special
AIX common-mode calls, and will not use the MQ register. Specifying both
‘-mpower’ and ‘-mpowerpc’ permits GCC to use any instruction from either

architecture and to allow use of the MQ register; specify this for the Motorola
MPC601.

Chapter 3: GCC Command Options 253

-mnew-mnemonics

-mold-mnemonics
Select which mmnemonics to use in the generated assembler code. With
‘-mnew-mnemonics’, GCC uses the assembler mnemonics defined for the
PowerPC architecture. =~ With ‘-mold-mnemonics’ it uses the assembler
mnemonics defined for the POWER architecture. Instructions defined in
only one architecture have only one mnemonic; GCC uses that mnemonic
irrespective of which of these options is specified.

GCC defaults to the mnemonics appropriate for the architecture in use. Spec-
ifying ‘-mcpu=cpu_type’ sometimes overrides the value of these option. Un-
less you are building a cross-compiler, you should normally not specify either
‘-mnew-mnemonics’ or ‘-mold-mnemonics’, but should instead accept the de-
fault.

-mcpu=cpu_type

Set architecture type, register usage, choice of mnemonics, and instruction
scheduling parameters for machine type cpu_type. Supported values for
cpu_type are ‘401’, ‘403’, ‘405’, ‘405fp’, ‘440’, ‘440fp’, ‘464°, ‘464fp’, ‘476’,
‘476fp’, ‘505’, ‘6017, ‘602’, ‘603", ‘603e’, ‘604’, ‘604e’, ‘620°, ‘630, ‘740’
“7400°, “7450°, ‘7507, ‘8017, ‘821, ‘823, ‘860°, ‘970, ‘8540’, ‘a2’, ‘@300c2’,
‘e300c3’, ‘e500mc’, ‘e500mc64’, ‘ec603e’, ‘G3’, ‘G4’, ‘G5’, ‘titan’, ‘power’,
‘power2’, ‘power3d’, ‘powerd’;, ‘powerb’, ‘powerb+’, ‘power6’, ‘power6x’,
‘power7’, ‘common’, ‘powerpc’, ‘powerpc64’, ‘rios’, ‘riosl’, ‘rios2’, ‘rsc’,
and ‘rs64’.

‘-mcpu=common’ selects a completely generic processor. Code generated under
this option will run on any POWER, or PowerPC processor. GCC will use
only the instructions in the common subset of both architectures, and will not
use the MQ register. GCC assumes a generic processor model for scheduling
purposes.

‘-mcpu=power’, ‘-mcpu=power2’, ‘-mcpu=powerpc’, and ‘-mcpu=powerpc64’

specify generic POWER, POWER2, pure 32-bit PowerPC (i.e., not MPC601),
and 64-bit PowerPC architecture machine types, with an appropriate, generic
processor model assumed for scheduling purposes.

The other options specify a specific processor. Code generated under those
options will run best on that processor, and may not run at all on others.

The ‘-mcpu’ options automatically enable or disable the following options:
-maltivec -mfprnd -mhard-float -mmfcrf -mmultiple
-mnew-mnemonics -mpopcntb -mpopcntd -mpower -mpower2 -mpowerpc64
-mpowerpc-gpopt -mpowerpc-gfxopt -msingle-float -mdouble-float
-msimple-fpu -mstring -mmulhw -mdlmzb -mmfpgpr -mvsx
The particular options set for any particular CPU will vary between compiler
versions, depending on what setting seems to produce optimal code for that
CPU; it doesn’t necessarily reflect the actual hardware’s capabilities. If you
wish to set an individual option to a particular value, you may specify it after
the ‘-mcpu’ option, like ‘-mcpu=970 -mno-altivec’.
On AIX, the ‘-maltivec’ and ‘-mpowerpc64’ options are not enabled or disabled
by the ‘-mcpu’ option at present because AIX does not have full support for

254 Using the GNU Compiler Collection (GCC)

these options. You may still enable or disable them individually if you're sure
it’ll work in your environment.

-mtune=cpu_type
Set the instruction scheduling parameters for machine type cpu_type, but
do not set the architecture type, register usage, or choice of mnemonics,
as ‘-mcpu=cpu_type’ would. The same values for cpu_type are used for
‘-mtune’ as for ‘-mcpu’. If both are specified, the code generated will use
the architecture, registers, and mnemonics set by ‘-mcpu’, but the scheduling
parameters set by ‘-mtune’.

-mcmodel=small
Generate PowerPC64 code for the small model: The TOC is limited to 64k.

-mcmodel=medium
Generate PowerPC64 code for the medium model: The TOC and other static
data may be up to a total of 4G in size.

-mcmodel=large
Generate PowerPC64 code for the large model: The TOC may be up to 4G in
size. Other data and code is only limited by the 64-bit address space.

-maltivec

-mno-altivec
Generate code that uses (does not use) AltiVec instructions, and also enable the
use of built-in functions that allow more direct access to the AltiVec instruction
set. You may also need to set ‘-mabi=altivec’ to adjust the current ABI with
AltiVec ABI enhancements.

-mvrsave
-mno-vrsave
Generate VRSAVE instructions when generating AltiVec code.

-mgen-cell-microcode
Generate Cell microcode instructions

-mwarn-cell-microcode
Warning when a Cell microcode instruction is going to emitted. An example of
a Cell microcode instruction is a variable shift.

-msecure-plt
Generate code that allows 1d and 1d.so to build executables and shared libraries
with non-exec .plt and .got sections. This is a PowerPC 32-bit SYSV ABI
option.

-mbss-plt
Generate code that uses a BSS .plt section that ld.so fills in, and requires .plt
and .got sections that are both writable and executable. This is a PowerPC
32-bit SYSV ABI option.

-misel
-mno-isel
This switch enables or disables the generation of ISEL instructions.

Chapter 3: GCC Command Options 255

-misel=yes/no

-mspe
-mno-spe

-mpaired

This switch has been deprecated. Use ‘-misel’ and ‘-mno-isel’ instead.

This switch enables or disables the generation of SPE simd instructions.

-mno-paired

This switch enables or disables the generation of PAIRED simd instructions.

-mspe=yes/no

—ImvVsX
—mno-vsx

This option has been deprecated. Use ‘-mspe’ and ‘-mno-spe’ instead.

Generate code that uses (does not use) vector/scalar (VSX) instructions, and
also enable the use of built-in functions that allow more direct access to the
VSX instruction set.

-mfloat-gprs=yes/single/double/no
-mfloat-gprs

-m32
-m64

-mfull-toc

This switch enables or disables the generation of floating-point operations on
the general-purpose registers for architectures that support it.

The argument yes or single enables the use of single-precision floating-point
operations.

The argument double enables the use of single and double-precision floating-
point operations.

The argument no disables floating-point operations on the general-purpose reg-
isters.

This option is currently only available on the MPC854x.

Generate code for 32-bit or 64-bit environments of Darwin and SVR4 targets
(including GNU/Linux). The 32-bit environment sets int, long and pointer
to 32 bits and generates code that runs on any PowerPC variant. The 64-bit
environment sets int to 32 bits and long and pointer to 64 bits, and generates
code for PowerPC64, as for ‘-mpowerpc64’.

-mno-fp-in-toc
-mno-sum-in-toc
-mminimal-toc

Modify generation of the TOC (Table Of Contents), which is created for every
executable file. The ‘-mfull-toc’ option is selected by default. In that case,
GCC will allocate at least one TOC entry for each unique non-automatic vari-
able reference in your program. GCC will also place floating-point constants in
the TOC. However, only 16,384 entries are available in the TOC.

If you receive a linker error message that saying you have overflowed the avail-
able TOC space, you can reduce the amount of TOC space used with the
‘-mno-fp-in-toc’ and ‘-mno-sum-in-toc’ options. ‘-mno-fp-in-toc’ prevents
GCC from putting floating-point constants in the TOC and ‘-mno-sum-in-toc’

256

-maix64
-maix32

Using the GNU Compiler Collection (GCC)

forces GCC to generate code to calculate the sum of an address and a constant
at run time instead of putting that sum into the TOC. You may specify one
or both of these options. Each causes GCC to produce very slightly slower and
larger code at the expense of conserving TOC space.

If you still run out of space in the TOC even when you specify both of these
options, specify ‘-mminimal-toc’ instead. This option causes GCC to make
only one TOC entry for every file. When you specify this option, GCC will
produce code that is slower and larger but which uses extremely little TOC
space. You may wish to use this option only on files that contain less frequently
executed code.

Enable 64-bit AIX ABI and calling convention: 64-bit pointers, 64-bit long
type, and the infrastructure needed to support them. Specifying ‘-maix64’
implies ‘-mpowerpc64’ and ‘-mpowerpc’, while ‘-maix32’ disables the 64-bit
ABI and implies ‘-mno-powerpc64’. GCC defaults to ‘-maix32’.

-mxl-compat
-mno-xl-compat

-mpe

Produce code that conforms more closely to IBM XL compiler semantics when
using AIX-compatible ABI. Pass floating-point arguments to prototyped func-
tions beyond the register save area (RSA) on the stack in addition to argument
FPRs. Do not assume that most significant double in 128-bit long double value
is properly rounded when comparing values and converting to double. Use XL
symbol names for long double support routines.

The AIX calling convention was extended but not initially documented to han-
dle an obscure K&R C case of calling a function that takes the address of
its arguments with fewer arguments than declared. IBM XL compilers access
floating-point arguments that do not fit in the RSA from the stack when a
subroutine is compiled without optimization. Because always storing floating-
point arguments on the stack is inefficient and rarely needed, this option is not
enabled by default and only is necessary when calling subroutines compiled by
IBM XL compilers without optimization.

Support IBM RS/6000 SP Parallel Environment (PE). Link an application
written to use message passing with special startup code to enable the ap-
plication to run. The system must have PE installed in the standard loca-
tion (‘/usr/lpp/ppe.poe/’), or the ‘specs’ file must be overridden with the
‘-specs=’ option to specify the appropriate directory location. The Parallel
Environment does not support threads, so the ‘-mpe’ option and the ‘-pthread’
option are incompatible.

-malign-natural
-malign-power

On AIX, 32-bit Darwin, and 64-bit PowerPC GNU/Linux, the option
‘-malign-natural’ overrides the ABI-defined alignment of larger types, such
as floating-point doubles, on their natural size-based boundary. The option
‘-malign-power’ instructs GCC to follow the ABI-specified alignment rules.
GCC defaults to the standard alignment defined in the ABI.

Chapter 3: GCC Command Options 257

On 64-bit Darwin, natural alignment is the default, and ‘-malign-power’ is not
supported.

-msoft-float

-mhard-float
Generate code that does not use (uses) the floating-point register set. Software
floating-point emulation is provided if you use the ‘-msoft-float’ option, and
pass the option to GCC when linking.

-msingle-float

-mdouble-float
Generate code for single- or double-precision floating-point operations.
‘-mdouble-float’ implies ‘-msingle-float’.

-msimple-fpu
Do not generate sqrt and div instructions for hardware floating-point unit.

-mfpu Specify type of floating-point unit. Valid values are sp_lite (equivalent to -
msingle-float -msimple-fpu), dp_lite (equivalent to -mdouble-float -msimple-
fpu), sp_full (equivalent to -msingle-float), and dp_full (equivalent to -mdouble-
float).

-mxilinx-fpu
Perform optimizations for the floating-point unit on Xilinx PPC 405/440.

-mmultiple

-mno-multiple
Generate code that uses (does not use) the load multiple word instructions
and the store multiple word instructions. These instructions are generated by
default on POWER systems, and not generated on PowerPC systems. Do not
use ‘-mmultiple’ on little-endian PowerPC systems, since those instructions
do not work when the processor is in little-endian mode. The exceptions are
PPC740 and PPC750 which permit these instructions in little-endian mode.

-mstring

-mno-string
Generate code that uses (does not use) the load string instructions and the
store string word instructions to save multiple registers and do small block
moves. These instructions are generated by default on POWER systems, and
not generated on PowerPC systems. Do not use ‘-mstring’ on little-endian
PowerPC systems, since those instructions do not work when the processor is
in little-endian mode. The exceptions are PPC740 and PPC750 which permit
these instructions in little-endian mode.

-mupdate

-mno-update
Generate code that uses (does not use) the load or store instructions that update
the base register to the address of the calculated memory location. These
instructions are generated by default. If you use ‘-mno-update’, there is a small
window between the time that the stack pointer is updated and the address of
the previous frame is stored, which means code that walks the stack frame
across interrupts or signals may get corrupted data.

258 Using the GNU Compiler Collection (GCC)

-mavoid-indexed-addresses

-mno-avoid-indexed-addresses
Generate code that tries to avoid (not avoid) the use of indexed load or store
instructions. These instructions can incur a performance penalty on Power6
processors in certain situations, such as when stepping through large arrays
that cross a 16M boundary. This option is enabled by default when targetting
Power6 and disabled otherwise.

-mfused-madd

-mno-fused-madd
Generate code that uses (does not use) the floating-point multiply and ac-
cumulate instructions. These instructions are generated by default if hard-
ware floating point is used. The machine-dependent ‘-mfused-madd’ option is
now mapped to the machine-independent ‘~ffp-contract=fast’ option, and
‘-mno-fused-madd’ is mapped to ‘~ffp-contract=off’.

-mmulhw

-mno-mulhw
Generate code that uses (does not use) the half-word multiply and multiply-
accumulate instructions on the IBM 405, 440, 464 and 476 processors. These
instructions are generated by default when targetting those processors.

-md1lmzb

-mno-dlmzb
Generate code that uses (does not use) the string-search ‘dlmzb’ instruction on
the IBM 405, 440, 464 and 476 processors. This instruction is generated by
default when targetting those processors.

-mno-bit-align

-mbit-align
On System V.4 and embedded PowerPC systems do not (do) force structures
and unions that contain bit-fields to be aligned to the base type of the bit-field.

For example, by default a structure containing nothing but 8 unsigned bit-
fields of length 1 is aligned to a 4-byte boundary and has a size of 4 bytes. By
using ‘-mno-bit-align’, the structure is aligned to a 1-byte boundary and is 1
byte in size.

-mno-strict-align

-mstrict-align
On System V.4 and embedded PowerPC systems do not (do) assume that un-
aligned memory references will be handled by the system.

-mrelocatable

-mno-relocatable
Generate code that allows (does not allow) a static executable to be relocated
to a different address at run time. A simple embedded PowerPC system loader
should relocate the entire contents of .got2 and 4-byte locations listed in the
.fixup section, a table of 32-bit addresses generated by this option. For this
to work, all objects linked together must be compiled with ‘-mrelocatable’
or ‘-mrelocatable-1ib’. ‘-mrelocatable’ code aligns the stack to an 8-byte
boundary.

Chapter 3: GCC Command Options 259

-mrelocatable-1ib

-mno-relocatable-1ib
Like ‘-mrelocatable’, ‘-mrelocatable-1ib’ generates a .fixup section to al-
low static executables to be relocated at run time, but ‘-mrelocatable-1ib’
does not use the smaller stack alignment of ‘-mrelocatable’. Objects com-
piled with ‘-mrelocatable-1ib’ may be linked with objects compiled with any
combination of the ‘-mrelocatable’ options.

-mno-toc

-mtoc On System V.4 and embedded PowerPC systems do not (do) assume that reg-
ister 2 contains a pointer to a global area pointing to the addresses used in the
program.

-mlittle

-mlittle-endian
On System V.4 and embedded PowerPC systems compile code for the processor
in little-endian mode. The ‘-mlittle-endian’ option is the same as ‘-mlittle’.

-mbig

-mbig-endian
On System V.4 and embedded PowerPC systems compile code for the processor
in big-endian mode. The ‘-mbig-endian’ option is the same as ‘-mbig’.

-mdynamic-no-pic
On Darwin and Mac OS X systems, compile code so that it is not relocatable,
but that its external references are relocatable. The resulting code is suitable
for applications, but not shared libraries.

-msingle-pic-base
Treat the register used for PIC addressing as read-only, rather than loading
it in the prologue for each function. The runtime system is responsible for
initializing this register with an appropriate value before execution begins.

-mprioritize-restricted-insns=priority
This option controls the priority that is assigned to dispatch-slot restricted
instructions during the second scheduling pass. The argument priority takes
the value 0/1/2 to assign no/highest/second-highest priority to dispatch slot
restricted instructions.

-msched-costly-dep=dependence_type
This option controls which dependences are considered costly by the target
during instruction scheduling. The argument dependence_type takes one of the
following values: no: no dependence is costly, all: all dependences are costly,
true_store_to_load: a true dependence from store to load is costly, store_to_load:
any dependence from store to load is costly, number: any dependence for which
latency >= number is costly.

-minsert-sched-nops=scheme
This option controls which nop insertion scheme will be used during the second
scheduling pass. The argument scheme takes one of the following values: no:
Don’t insert nops. pad: Pad with nops any dispatch group that has vacant

260 Using the GNU Compiler Collection (GCC)

issue slots, according to the scheduler’s grouping. regroup_exact: Insert nops
to force costly dependent insns into separate groups. Insert exactly as many
nops as needed to force an insn to a new group, according to the estimated
processor grouping. number: Insert nops to force costly dependent insns into
separate groups. Insert number nops to force an insn to a new group.

-mcall-sysv
On System V.4 and embedded PowerPC systems compile code using calling
conventions that adheres to the March 1995 draft of the System V Application
Binary Interface, PowerPC processor supplement. This is the default unless
you configured GCC using ‘powerpc-*-eabiaix’.

-mcall-sysv-eabi
-mcall-eabi
Specify both ‘-mcall-sysv’ and ‘-meabi’ options.

-mcall-sysv-noeabi
Specify both ‘-mcall-sysv’ and ‘-mno-eabi’ options.

-mcall-aixdesc
On System V.4 and embedded PowerPC systems compile code for the AIX
operating system.

-mcall-linux
On System V.4 and embedded PowerPC systems compile code for the Linux-
based GNU system.

-mcall-freebsd
On System V.4 and embedded PowerPC systems compile code for the FreeBSD
operating system.

-mcall-netbsd
On System V.4 and embedded PowerPC systems compile code for the NetBSD
operating system.

-mcall-openbsd
On System V.4 and embedded PowerPC systems compile code for the OpenBSD
operating system.

-maix-struct-return
Return all structures in memory (as specified by the AIX ABI).

-msvrd-struct-return
Return structures smaller than 8 bytes in registers (as specified by the SVR4
ABI).

-mabi=abi-type
Extend the current ABI with a particular extension, or remove such extension.
Valid values are altivec, no-altivec, spe, no-spe, ibmlongdouble, ieeelongdouble.

-mabi=spe
Extend the current ABI with SPE ABI extensions. This does not change the
default ABI, instead it adds the SPE ABI extensions to the current ABI.

Chapter 3: GCC Command Options 261

-mabi=no-spe
Disable Booke SPE ABI extensions for the current ABI.

-mabi=ibmlongdouble
Change the current ABI to use IBM extended-precision long double. This is a
PowerPC 32-bit SYSV ABI option.

-mabi=ieeelongdouble
Change the current ABI to use IEEE extended-precision long double. This is
a PowerPC 32-bit Linux ABI option.

-mprototype

-mno-prototype
On System V.4 and embedded PowerPC systems assume that all calls to vari-
able argument functions are properly prototyped. Otherwise, the compiler must
insert an instruction before every non prototyped call to set or clear bit 6 of
the condition code register (CR) to indicate whether floating-point values were
passed in the floating-point registers in case the function takes variable argu-
ments. With ‘-mprototype’, only calls to prototyped variable argument func-
tions will set or clear the bit.

-msim On embedded PowerPC systems, assume that the startup module is called
‘sim-crt0.0’ and that the standard C libraries are ‘libsim.a’ and ‘libc.a’.
This is the default for ‘powerpc-*-eabisim’ configurations.

-mmvme On embedded PowerPC systems, assume that the startup module is called
‘crt0.0’ and the standard C libraries are ‘libmvme.a’ and ‘libc.a’.

-mads On embedded PowerPC systems, assume that the startup module is called
‘crt0.0’ and the standard C libraries are ‘libads.a’ and ‘libc.a’.

-myellowknife
On embedded PowerPC systems, assume that the startup module is called
‘crt0.0’ and the standard C libraries are ‘libyk.a’ and ‘libc.a’.

-mvVXworks
On System V.4 and embedded PowerPC systems, specify that you are compiling
for a VxWorks system.

-memb On embedded PowerPC systems, set the PPC_EMB bit in the ELF flags header
to indicate that ‘eabi’ extended relocations are used.

-meabi

-mno-eabi
On System V.4 and embedded PowerPC systems do (do not) adhere to the
Embedded Applications Binary Interface (eabi) which is a set of modifications
to the System V.4 specifications. Selecting ‘-meabi’ means that the stack is
aligned to an 8-byte boundary, a function __eabi is called to from main to set
up the eabi environment, and the ‘-msdata’ option can use both r2 and r13
to point to two separate small data areas. Selecting ‘-mno-eabi’ means that
the stack is aligned to a 16-byte boundary, do not call an initialization function
from main, and the ‘-msdata’ option will only use r13 to point to a single small

262 Using the GNU Compiler Collection (GCC)

data area. The ‘-meabi’ option is on by default if you configured GCC using
one of the ‘powerpc*—*-eabi*’ options.

-msdata=eabi

On System V.4 and embedded PowerPC systems, put small initialized const
global and static data in the ‘.sdata2’ section, which is pointed to by register
r2. Put small initialized non-const global and static data in the ‘.sdata’
section, which is pointed to by register r13. Put small uninitialized global and
static data in the ‘.sbss’ section, which is adjacent to the ‘.sdata’ section.
The ‘-msdata=eabi’ option is incompatible with the ‘-mrelocatable’ option.
The ‘-msdata=eabi’ option also sets the ‘-memb’ option.

3

-msdata=sysv
On System V.4 and embedded PowerPC systems, put small global and static
data in the ‘.sdata’ section, which is pointed to by register r13. Put small
uninitialized global and static data in the ‘.sbss’ section, which is adjacent
to the ‘.sdata’ section. The ‘-msdata=sysv’ option is incompatible with the
‘-mrelocatable’ option.

-msdata=default

-msdata On System V.4 and embedded PowerPC systems, if ‘-meabi’ is used, com-
pile code the same as ‘-msdata=eabi’, otherwise compile code the same as
‘-msdata=sysv’.

-msdata=data
On System V.4 and embedded PowerPC systems, put small global data in the
‘.sdata’ section. Put small uninitialized global data in the ‘.sbss’ section. Do
not use register r13 to address small data however. This is the default behavior
unless other ‘-msdata’ options are used.

-msdata=none

-mno-sdata
On embedded PowerPC systems, put all initialized global and static data in
the ‘.data’ section, and all uninitialized data in the ‘.bss’ section.

-mblock-move-inline-limit=num
Inline all block moves (such as calls to memcpy or structure copies) less than or
equal to num bytes. The minimum value for num is 32 bytes on 32-bit targets
and 64 bytes on 64-bit targets. The default value is target-specific.

-G num On embedded PowerPC systems, put global and static items less than or equal
to num bytes into the small data or bss sections instead of the normal data or
bss section. By default, num is 8. The ‘-G num’ switch is also passed to the
linker. All modules should be compiled with the same ‘-G num’ value.

-mregnames
-mno-regnames
On System V.4 and embedded PowerPC systems do (do not) emit register
names in the assembly language output using symbolic forms.

Chapter 3: GCC Command Options 263

-mlongcall

-mno-longcall
By default assume that all calls are far away so that a longer more expensive
calling sequence is required. This is required for calls further than 32 megabytes
(33,554,432 bytes) from the current location. A short call will be generated if
the compiler knows the call cannot be that far away. This setting can be
overridden by the shortcall function attribute, or by #pragma longcall(0).

Some linkers are capable of detecting out-of-range calls and generating glue
code on the fly. On these systems, long calls are unnecessary and generate
slower code. As of this writing, the AIX linker can do this, as can the GNU
linker for PowerPC/64. It is planned to add this feature to the GNU linker for
32-bit PowerPC systems as well.

On Darwin/PPC systems, #pragma longcall will generate “jbsr callee, 142",
plus a “branch island” (glue code). The two target addresses represent the
callee and the “branch island”. The Darwin/PPC linker will prefer the first
address and generate a “bl callee” if the PPC “bl” instruction will reach the
callee directly; otherwise, the linker will generate “bl L42” to call the “branch
island”. The “branch island” is appended to the body of the calling function;
it computes the full 32-bit address of the callee and jumps to it.

On Mach-O (Darwin) systems, this option directs the compiler emit to the glue
for every direct call, and the Darwin linker decides whether to use or discard
it.

In the future, we may cause GCC to ignore all longcall specifications when the
linker is known to generate glue.

-mtls-markers

-mno-tls-markers
Mark (do not mark) calls to __tls_get_addr with a relocation specifying the
function argument. The relocation allows Id to reliably associate function call
with argument setup instructions for TLS optimization, which in turn allows
gce to better schedule the sequence.

-pthread Adds support for multithreading with the pthreads library. This option sets
flags for both the preprocessor and linker.

-mrecip

-mno-recip
This option will enable GCC to use the reciprocal estimate and reciprocal
square root estimate instructions with additional Newton-Raphson steps
to increase precision instead of doing a divide or square root and divide
for floating-point arguments. You should use the ‘-ffast-math’ option
when wusing ‘-mrecip’ (or at least ‘-funsafe-math-optimizations’,
‘~finite-math-only’, ‘-freciprocal-math’ and ‘-fno-trapping-math’).
Note that while the throughput of the sequence is generally higher than the
throughput of the non-reciprocal instruction, the precision of the sequence
can be decreased by up to 2 ulp (i.e. the inverse of 1.0 equals 0.99999994) for
reciprocal square roots.

264

Using the GNU Compiler Collection (GCC)

-mrecip=opt

This option allows to control which reciprocal estimate instructions may be
used. opt is a comma separated list of options, which may be preceded by a !
to invert the option: all: enable all estimate instructions, default: enable the
default instructions, equivalent to ‘-mrecip’, none: disable all estimate instruc-
tions, equivalent to ‘-mno-recip’; div: enable the reciprocal approximation in-
structions for both single and double precision; divf: enable the single-precision
reciprocal approximation instructions; divd: enable the double-precision recip-
rocal approximation instructions; rsqrt: enable the reciprocal square root ap-
proximation instructions for both single and double precision; rsqrtf: enable
the single-precision reciprocal square root approximation instructions; rsqrtd:
enable the double-precision reciprocal square root approximation instructions;

So for example, ‘-mrecip=all, !rsqrtd’ would enable the all of the reciprocal
estimate instructions, except for the FRSQRTE, XSRSQRTEDP, and XVRSQRTEDP
instructions which handle the double-precision reciprocal square root calcula-
tions.

-mrecip-precision
-mno-recip-precision

Assume (do mnot assume) that the reciprocal estimate instructions
provide higher-precision estimates than is mandated by the PowerPC
ABI. Selecting ‘-mcpu=power6’ or ‘-mcpu=power7’ automatically selects
‘-mrecip-precision’. The double-precision square root estimate instructions
are not generated by default on low-precision machines, since they do not
provide an estimate that converges after three steps.

-mveclibabi=type

-mfriz
-mno-friz

Specifies the ABI type to use for vectorizing intrinsics using an external
library. The only type supported at present is mass, which specifies to use
IBM’s Mathematical Acceleration Subsystem (MASS) libraries for vectorizing
intrinsics using external libraries. GCC will currently emit calls to acosd2,
acosf4, acoshd2, acoshf4, asind2, asinf4, asinhd2, asinhf4, atan2d2,
atan2f4, atand2, atanf4, atanhd2, atanhf4, cbrtd2, cbrtf4, cosd2, cosf4,
coshd2, coshf4, erfcd2, erfcfd4, erfd2, erffd, exp2d2, exp2f4, expd2,
expf4, expmld2, expmlf4, hypotd2, hypotf4, lgammad2, lgammaf4, 1logl0d2,
logl0£f4, loglpd2, loglpf4, log2d2, log2f4, logd2, logf4, powd2, powf4,
sind2, sinf4, sinhd2, sinhf4, sqrtd2, sqrtf4, tand2, tanf4, tanhd2, and
tanhf4 when generating code for power7. Both ‘-ftree-vectorize’ and
‘~funsafe-math-optimizations’ have to be enabled. The MASS libraries
will have to be specified at link time.

Generate (do not generate) the friz instruction when the
‘~funsafe-math-optimizations’ option is used to optimize rounding
of floating-point values to 64-bit integer and back to floating point. The friz
instruction does not return the same value if the floating-point number is too
large to fit in an integer.

Chapter 3: GCC Command Options 265

-mpointers-to-nested-functions
-mno-pointers-to-nested-functions

Generate (do not generate) code to load up the static chain register (rl11) when
calling through a pointer on AIX and 64-bit Linux systems where a func-
tion pointer points to a 3-word descriptor giving the function address, TOC
value to be loaded in register r2, and static chain value to be loaded in reg-
ister r11. The ‘-mpointers-to-nested-functions’ is on by default. You
will not be able to call through pointers to nested functions or pointers to
functions compiled in other languages that use the static chain if you use the
‘-mno-pointers-to-nested-functions’.

-msave-toc—-indirect
-mno-save—-toc-indirect

Generate (do not generate) code to save the TOC value in the reserved stack
location in the function prologue if the function calls through a pointer on AIX
and 64-bit Linux systems. If the TOC value is not saved in the prologue, it is
saved just before the call through the pointer. The ‘-mno-save-toc-indirect’
option is the default.

3.17.36 RX Options

These command-line options are defined for RX targets:

-m64bit-doubles
-m32bit-doubles

-fpu
-nofpu

—mcpu=name

Make the double data type be 64 bits (‘-m64bit-doubles’) or 32 bits
(‘-m32bit-doubles’) in size. The default is ‘-m32bit-doubles’. Note RX
floating-point hardware only works on 32-bit values, which is why the default
is ‘-m32bit-doubles’.

Enables (‘-fpu’) or disables (‘-nofpu’) the use of RX floating-point hardware.
The default is enabled for the RX600 series and disabled for the RX200 series.

Floating-point instructions will only be generated for 32-bit floating-point val-
ues however, so if the ‘-m64bit-doubles’ option is in use then the FPU hard-
ware will not be used for doubles.

Note If the ‘~fpu’ option is enabled then ‘~funsafe-math-optimizations’ is
also enabled automatically. This is because the RX FPU instructions are them-
selves unsafe.

Selects the type of RX CPU to be targeted. Currently three types are sup-
ported, the generic RX600 and RX200 series hardware and the specific RX610
CPU. The default is RX600.

The only difference between RX600 and RX610 is that the RX610 does not
support the MVTIPL instruction.

The RX200 series does not have a hardware floating-point unit and so ‘-nofpu’
is enabled by default when this type is selected.

266 Using the GNU Compiler Collection (GCC)

-mbig-endian-data

-mlittle-endian-data
Store data (but not code) in the big-endian format. The default is
‘-mlittle-endian-data’, i.e. to store data in the little-endian format.

-msmall-data-limit=N

Specifies the maximum size in bytes of global and static variables which can be
placed into the small data area. Using the small data area can lead to smaller
and faster code, but the size of area is limited and it is up to the programmer
to ensure that the area does not overflow. Also when the small data area is
used one of the RX’s registers (usually r13) is reserved for use pointing to this
area, so it is no longer available for use by the compiler. This could result in
slower and/or larger code if variables which once could have been held in the
reserved register are now pushed onto the stack.

Note, common variables (variables that have not been initialized) and constants
are not placed into the small data area as they are assigned to other sections
in the output executable.

The default value is zero, which disables this feature. Note, this feature is not
enabled by default with higher optimization levels (‘-02’ etc) because of the
potentially detrimental effects of reserving a register. It is up to the programmer
to experiment and discover whether this feature is of benefit to their program.
See the description of the ‘-mpid’ option for a description of how the actual
register to hold the small data area pointer is chosen.

-msim
-mno-sim Use the simulator runtime. The default is to use the libgloss board specific
runtime.

-mas100-syntax

-mno-as100-syntax
When generating assembler output use a syntax that is compatible with Rene-
sas’s AS100 assembler. This syntax can also be handled by the GAS assembler
but it has some restrictions so generating it is not the default option.

-mmax-constant-size=N

Specifies the maximum size, in bytes, of a constant that can be used as an
operand in a RX instruction. Although the RX instruction set does allow
constants of up to 4 bytes in length to be used in instructions, a longer value
equates to a longer instruction. Thus in some circumstances it can be beneficial
to restrict the size of constants that are used in instructions. Constants that
are too big are instead placed into a constant pool and referenced via register
indirection.

The value N can be between 0 and 4. A value of 0 (the default) or 4 means
that constants of any size are allowed.

-mrelax Enable linker relaxation. Linker relaxation is a process whereby the linker will
attempt to reduce the size of a program by finding shorter versions of various
instructions. Disabled by default.

Chapter 3: GCC Command Options 267

-mint-register=N
Specify the number of registers to reserve for fast interrupt handler functions.
The value N can be between 0 and 4. A value of 1 means that register r13 will
be reserved for the exclusive use of fast interrupt handlers. A value of 2 reserves
r13 and r12. A value of 3 reserves r13, r12 and ri11, and a value of 4 reserves
r13 through r10. A value of 0, the default, does not reserve any registers.

-msave-acc-in-interrupts
Specifies that interrupt handler functions should preserve the accumulator reg-
ister. This is only necessary if normal code might use the accumulator register,
for example because it performs 64-bit multiplications. The default is to ignore
the accumulator as this makes the interrupt handlers faster.

-mpid

-mno-pid Enables the generation of position independent data. When enabled any access
to constant data will done via an offset from a base address held in a register.
This allows the location of constant data to be determined at run time with-
out requiring the executable to be relocated, which is a benefit to embedded
applications with tight memory constraints. Data that can be modified is not
affected by this option.

Note, using this feature reserves a register, usually r13, for the constant data
base address. This can result in slower and/or larger code, especially in com-
plicated functions.

The actual register chosen to hold the constant data base address depends upon
whether the ‘-msmall-data-1limit’ and/or the ‘-mint-register’ command-
line options are enabled. Starting with register r13 and proceeding downwards,
registers are allocated first to satisfy the requirements of ‘-mint-register’,
then ‘-mpid’ and finally ‘-msmall-data-limit’. Thus it is possible for the
small data area register to be r8 if both ‘-mint-register=4’ and ‘-mpid’ are
specified on the command line.

By default this feature is not enabled. The default can be restored via the
‘-mno-pid’ command-line option.

Note: The generic GCC command-line option ‘-ffixed-reg’ has special significance to
the RX port when used with the interrupt function attribute. This attribute indicates a
function intended to process fast interrupts. GCC will will ensure that it only uses the reg-
isters r10, r11, r12 and/or r13 and only provided that the normal use of the corresponding
registers have been restricted via the ‘-ffixed-reg’ or ‘-mint-register’ command-line
options.

3.17.37 S/390 and zSeries Options
These are the ‘-m’ options defined for the S/390 and zSeries architecture.

-mhard-float

-msoft-float
Use (do mnot use) the hardware floating-point instructions and registers
for floating-point operations. When ‘-msoft-float’ is specified, functions
in ‘libgcc.a’ will be used to perform floating-point operations. ~ When

268 Using the GNU Compiler Collection (GCC)

‘-mhard-float’ is specified, the compiler generates IEEE floating-point
instructions. This is the default.

-mhard-dfp

-mno-hard-dfp
Use (do not use) the hardware decimal-floating-point instructions for decimal-
floating-point operations. When ‘-mno-hard-dfp’ is specified, functions in
‘libgcc.a’ will be used to perform decimal-floating-point operations. When
‘-mhard-dfp’ is specified, the compiler generates decimal-floating-point hard-
ware instructions. This is the default for ‘-march=z9-ec’ or higher.

-mlong-double-64

-mlong-double-128
These switches control the size of long double type. A size of 64 bits makes
the long double type equivalent to the double type. This is the default.

-mbackchain

-mno-backchain
Store (do not store) the address of the caller’s frame as backchain pointer into
the callee’s stack frame. A backchain may be needed to allow debugging us-
ing tools that do not understand DWARF-2 call frame information. When
‘-mno-packed-stack’ is in effect, the backchain pointer is stored at the bottom
of the stack frame; when ‘-mpacked-stack’ is in effect, the backchain is placed
into the topmost word of the 96/160 byte register save area.

In general, code compiled with ‘-mbackchain’ is call-compatible with code com-
piled with ‘-mmo-backchain’; however, use of the backchain for debugging pur-
poses usually requires that the whole binary is built with ‘-mbackchain’. Note
that the combination of ‘-mbackchain’, ‘-mpacked-stack’ and ‘-mhard-float’
is not supported. In order to build a linux kernel use ‘-msoft-float’.

The default is to not maintain the backchain.

-mpacked-stack

-mno-packed-stack
Use (do not use) the packed stack layout. When ‘-mno-packed-stack’ is spec-
ified, the compiler uses the all fields of the 96/160 byte register save area
only for their default purpose; unused fields still take up stack space. When
‘-mpacked-stack’ is specified, register save slots are densely packed at the top
of the register save area; unused space is reused for other purposes, allowing for
more efficient use of the available stack space. However, when ‘-mbackchain’
is also in effect, the topmost word of the save area is always used to store the
backchain, and the return address register is always saved two words below the
backchain.

As long as the stack frame backchain is not wused, code generated
with ‘-mpacked-stack’ is call-compatible with code generated with
‘-mno-packed-stack’. Note that some non-FSF releases of GCC 2.95 for
S/390 or zSeries generated code that uses the stack frame backchain at run
time, not just for debugging purposes. Such code is not call-compatible with
code compiled with ‘-mpacked-stack’. Also, note that the combination of

Chapter 3: GCC Command Options 269

‘-mbackchain’, ‘-mpacked-stack’ and ‘-mhard-float’ is not supported. In
order to build a linux kernel use ‘-msoft-float’.

The default is to not use the packed stack layout.

-msmall-exec

-mno-small-exec
Generate (or do not generate) code using the bras instruction to do subroutine
calls. This only works reliably if the total executable size does not exceed 64k.
The default is to use the basr instruction instead, which does not have this
limitation.

-m64

-m31 When ‘-m31’ is specified, generate code compliant to the GNU/Linux for S/390
ABI. When ‘-m64’ is specified, generate code compliant to the GNU /Linux for
zSeries ABI. This allows GCC in particular to generate 64-bit instructions. For
the ‘s390° targets, the default is ‘-m31’, while the ‘s390x’ targets default to
‘-m64’.

-mzarch

-mesa When ‘-mzarch’ is specified, generate code using the instructions available on
z/Architecture. When ‘-mesa’ is specified, generate code using the instructions
available on ESA/390. Note that ‘-mesa’ is not possible with ‘-m64’. When
generating code compliant to the GNU/Linux for S/390 ABI, the default is
‘-mesa’. When generating code compliant to the GNU/Linux for zSeries ABI,
the default is ‘-mzarch’.

-mmvcle

-mno-mvcle
Generate (or do not generate) code using the mvcle instruction to perform
block moves. When ‘-mno-mvcle’ is specified, use a mvc loop instead. This is
the default unless optimizing for size.

-mdebug

-mno-debug
Print (or do not print) additional debug information when compiling. The
default is to not print debug information.

-march=cpu-type
Generate code that will run on cpu-type, which is the name of a system rep-
resenting a certain processor type. Possible values for cpu-type are ‘gs’, ‘g6’,
‘2900, ‘z990’, ‘z9-109’, ‘z9-ec’ and ‘z10’. When generating code using the in-
structions available on z/Architecture, the default is ‘-march=2z900’. Otherwise,
the default is ‘-march=g5’.

-mtune=cpu-type
Tune to cpu-type everything applicable about the generated code, except for
the ABI and the set of available instructions. The list of cpu-type values is the
same as for ‘-march’. The default is the value used for ‘-march’.

270 Using the GNU Compiler Collection (GCC)

-mtpf-trace

-mno-tpf-trace
Generate code that adds (does not add) in TPF OS specific branches to trace
routines in the operating system. This option is off by default, even when
compiling for the TPF OS.

-mfused-madd

-mno-fused-madd
Generate code that uses (does not use) the floating-point multiply and accu-
mulate instructions. These instructions are generated by default if hardware
floating point is used.

-mwarn-framesize=framesize
Emit a warning if the current function exceeds the given frame size. Because
this is a compile-time check it doesn’t need to be a real problem when the
program runs. It is intended to identify functions that most probably cause a
stack overflow. It is useful to be used in an environment with limited stack size
e.g. the linux kernel.

-mwarn-dynamicstack
Emit a warning if the function calls alloca or uses dynamically sized arrays.
This is generally a bad idea with a limited stack size.

-mstack-guard=stack-guard

-mstack-size=stack-size
If these options are provided the s390 back end emits additional instructions
in the function prologue which trigger a trap if the stack size is stack-guard
bytes above the stack-size (remember that the stack on s390 grows downward).
If the stack-guard option is omitted the smallest power of 2 larger than the
frame size of the compiled function is chosen. These options are intended to
be used to help debugging stack overflow problems. The additionally emitted
code causes only little overhead and hence can also be used in production like
systems without greater performance degradation. The given values have to be
exact powers of 2 and stack-size has to be greater than stack-guard without
exceeding 64k. In order to be efficient the extra code makes the assumption
that the stack starts at an address aligned to the value given by stack-size. The
stack-guard option can only be used in conjunction with stack-size.

3.17.38 Score Options

These options are defined for Score implementations:

-meb Compile code for big-endian mode. This is the default.
-mel Compile code for little-endian mode.
-mnhwloop

Disable generate benz instruction.
-muls Enable generate unaligned load and store instruction.
-mmac Enable the use of multiply-accumulate instructions. Disabled by default.

-mscoreb Specify the SCORES as the target architecture.

Chapter 3: GCC Command Options 271

-mscorebu
Specify the SCORESHU of the target architecture.

-mscore7 Specify the SCORET as the target architecture. This is the default.

-mscore7d
Specify the SCORETD as the target architecture.

3.17.39 SH Options

These ‘-m’ options are defined for the SH implementations:

-ml Generate code for the SHI.
-m2 Generate code for the SH2.
-m2e Generate code for the SH2e.

-m2a-nofpu
Generate code for the SH2a without FPU, or for a SH2a-FPU in such a way
that the floating-point unit is not used.

-m2a-single-only
Generate code for the SH2a-FPU, in such a way that no double-precision
floating-point operations are used.

-m2a-single
Generate code for the SH2a-FPU assuming the floating-point unit is in single-
precision mode by default.

-m2a Generate code for the SH2a-FPU assuming the floating-point unit is in double-
precision mode by default.

-m3 Generate code for the SH3.

-m3e Generate code for the SH3e.

-m4-nofpu

Generate code for the SH4 without a floating-point unit.

-m4-single-only
Generate code for the SH4 with a floating-point unit that only supports single-
precision arithmetic.

-m4-single
Generate code for the SH4 assuming the floating-point unit is in single-precision
mode by default.

-m4 Generate code for the SH4.

-m4a-nofpu
Generate code for the SH4al-dsp, or for a SH4a in such a way that the floating-
point unit is not used.

-m4a-single-only
Generate code for the SH4a, in such a way that no double-precision floating-
point operations are used.

272 Using the GNU Compiler Collection (GCC)

-m4a-single
Generate code for the SH4a assuming the floating-point unit is in
single-precision mode by default.

-méa Generate code for the SH4a.

-m4al Same as ‘-mda-nofpu’, except that it implicitly passes ‘~dsp’ to the assembler.
GCC doesn’t generate any DSP instructions at the moment.

-mb Compile code for the processor in big-endian mode.
-ml Compile code for the processor in little-endian mode.

-mdalign Align doubles at 64-bit boundaries. Note that this changes the calling conven-
tions, and thus some functions from the standard C library will not work unless
you recompile it first with ‘-mdalign’.

-mrelax Shorten some address references at link time, when possible; uses the linker
option ‘-relax’.

-mbigtable
Use 32-bit offsets in switch tables. The default is to use 16-bit offsets.

-mbitops Enable the use of bit manipulation instructions on SH2A.

-mfmovd Enable the use of the instruction fmovd. Check ‘-mdalign’ for alignment con-
straints.

-mhitachi
Comply with the calling conventions defined by Renesas.

-mrenesas
Comply with the calling conventions defined by Renesas.

-mno-renesas
Comply with the calling conventions defined for GCC before the Renesas con-
ventions were available. This option is the default for all targets of the SH
toolchain.

-mnomacsave
Mark the MAC register as call-clobbered, even if ‘-mhitachi’ is given.

-mieee

-mno-ieee
Control the IEEE compliance of floating-point comparisons, which affects the
handling of cases where the result of a comparison is unordered. By default
‘-mieee’ is implicitly enabled. If ‘~ffinite-math-only’ is enabled ‘-mno-ieee’
is implicitly set, which results in faster floating-point greater-equal and less-
equal comparisons. The implcit settings can be overridden by specifying either
‘-mieee’ or ‘-mno-ieee’.

-minline-ic_invalidate
Inline code to invalidate instruction cache entries after setting up nested func-
tion trampolines. This option has no effect if -musermode is in effect and the
selected code generation option (e.g. -m4) does not allow the use of the icbi

Chapter 3: GCC Command Options 273

instruction. If the selected code generation option does not allow the use of the
icbi instruction, and -musermode is not in effect, the inlined code will manipu-
late the instruction cache address array directly with an associative write. This
not only requires privileged mode, but it will also fail if the cache line had been
mapped via the TLB and has become unmapped.

-misize Dump instruction size and location in the assembly code.

-mpadstruct
This option is deprecated. It pads structures to multiple of 4 bytes, which is
incompatible with the SH ABI.

-msoft-atomic

Generate GNU /Linux compatible gUSA software atomic sequences for the
atomic built-in functions. The generated atomic sequences require support
from the interrupt / exception handling code of the system and are only
suitable for single-core systems. They will not perform correctly on multi-core
systems. This option is enabled by default when the target is sh-*-linuxx.
For details on the atomic built-in functions see Section 6.52 [__atomic Builtins],
page 432.

-mspace Optimize for space instead of speed. Implied by ‘-0s’.

-mprefergot
When generating position-independent code, emit function calls using the
Global Offset Table instead of the Procedure Linkage Table.

-musermode
Don’t generate privileged mode only code; implies -mno-inline-ic_invalidate if
the inlined code would not work in user mode. This is the default when the
target is sh—*-1linuxx*.

-multcost=number
Set the cost to assume for a multiply insn.

-mdiv=strategy
Set the division strategy to be used for integer division operations. For SHmedia
strategy can be one of:

’ Performs the operation in floating point. This has a very high la-

tency, but needs only a few instructions, so it might be a good
choice if your code has enough easily-exploitable ILP to allow the
compiler to schedule the floating-point instructions together with
other instructions. Division by zero causes a floating-point excep-
tion.

‘fp

inv Uses integer operations to calculate the inverse of the divisor, and
then multiplies the dividend with the inverse. This strategy al-
lows CSE and hoisting of the inverse calculation. Division by zero
calculates an unspecified result, but does not trap.

‘inv:minlat’
A variant of ‘inv’ where, if no CSE or hoisting opportunities have
been found, or if the entire operation has been hoisted to the same

274

‘call’

‘call2’

‘inv:call’

‘inv:call?’

‘inv:fp’

‘inv20u’
‘inv201’

Using the GNU Compiler Collection (GCC)

place, the last stages of the inverse calculation are intertwined with
the final multiply to reduce the overall latency, at the expense of
using a few more instructions, and thus offering fewer scheduling
opportunities with other code.

Calls a library function that usually implements the ‘inv:minlat’
strategy. This gives high code density for mb-*media-nofpu com-
pilations.

Uses a different entry point of the same library function, where it
assumes that a pointer to a lookup table has already been set up,
which exposes the pointer load to CSE and code hoisting optimiza-
tions.

Use the ‘inv’ algorithm for initial code generation, but if the code
stays unoptimized, revert to the ‘call’, ‘call?2’, or ‘fp’ strategies,
respectively. Note that the potentially-trapping side effect of divi-
sion by zero is carried by a separate instruction, so it is possible
that all the integer instructions are hoisted out, but the marker for
the side effect stays where it is. A recombination to floating-point
operations or a call is not possible in that case.

Variants of the ‘inv:minlat’ strategy. In the case that the inverse
calculation is not separated from the multiply, they speed up divi-
sion where the dividend fits into 20 bits (plus sign where applicable)
by inserting a test to skip a number of operations in this case; this
test slows down the case of larger dividends. ‘inv20u’ assumes the
case of a such a small dividend to be unlikely, and ‘inv201’ assumes
it to be likely.

For targets other than SHmedia strategy can be one of:

‘call-divl’

‘call-fp’

Calls a library function that uses the single-step division instruc-
tion div1l to perform the operation. Division by zero calculates an
unspecified result and does not trap. This is the default except for
SH4, SH2A and SHcompact.

Calls a library function that performs the operation in double pre-
cision floating point. Division by zero causes a floating-point excep-
tion. This is the default for SHcompact with FPU. Specifying this
for targets that do not have a double precision FPU will default to
call-divl.

‘call-table’

Calls a library function that uses a lookup table for small divisors
and the div1l instruction with case distinction for larger divisors.
Division by zero calculates an unspecified result and does not trap.

Chapter 3: GCC Command Options 275

This is the default for SH4. Specifying this for targets that do not
have dynamic shift instructions will default to call-div1.

When a division strategy has not been specified the default strategy will be
selected based on the current target. For SH2A the default strategy is to use
the divs and divu instructions instead of library function calls.

-maccumulate-outgoing-args
Reserve space once for outgoing arguments in the function prologue rather than
around each call. Generally beneficial for performance and size. Also needed
for unwinding to avoid changing the stack frame around conditional code.

-mdivsi3_libfunc=name
Set the name of the library function used for 32-bit signed division to name.
This only affect the name used in the call and inv:call division strategies, and
the compiler will still expect the same sets of input/output/clobbered registers
as if this option was not present.

-mfixed-range=register-range
Generate code treating the given register range as fixed registers. A fixed
register is one that the register allocator can not use. This is useful when
compiling kernel code. A register range is specified as two registers separated
by a dash. Multiple register ranges can be specified separated by a comma.

-madjust-unroll
Throttle unrolling to avoid thrashing target registers. This option only has an
effect if the gee code base supports the TARGET_ADJUST_UNROLL_MAX
target hook.

-mindexed-addressing

Enable the use of the indexed addressing mode for SHmedia32/SHcompact.
This is only safe if the hardware and/or OS implement 32-bit wrap-around
semantics for the indexed addressing mode. The architecture allows the imple-
mentation of processors with 64-bit MMU, which the OS could use to get 32-bit
addressing, but since no current hardware implementation supports this or any
other way to make the indexed addressing mode safe to use in the 32-bit ABI,
the default is ‘-mno-indexed-addressing’.

-mgettrcost=number
Set the cost assumed for the gettr instruction to number. The default is 2 if
‘-mpt-fixed’ is in effect, 100 otherwise.

-mpt-fixed
Assume pt* instructions won’t trap. This will generally generate better sched-
uled code, but is unsafe on current hardware. The current architecture defini-
tion says that ptabs and ptrel trap when the target anded with 3 is 3. This
has the unintentional effect of making it unsafe to schedule ptabs / ptrel before
a branch, or hoist it out of a loop. For example, __do_global_ctors, a part of
libgce that runs constructors at program startup, calls functions in a list which
is delimited by —1. With the -mpt-fixed option, the ptabs will be done before
testing against —1. That means that all the constructors will be run a bit

276 Using the GNU Compiler Collection (GCC)

quicker, but when the loop comes to the end of the list, the program crashes
because ptabs loads —1 into a target register. Since this option is unsafe for
any hardware implementing the current architecture specification, the default
is -mno-pt-fixed. Unless the user specifies a specific cost with ‘-mgettrcost’,
-mno-pt-fixed also implies ‘-mgettrcost=100"; this deters register allocation
using target registers for storing ordinary integers.

-minvalid-symbols

Assume symbols might be invalid. Ordinary function symbols generated
by the compiler will always be valid to load with movi/shori/ptabs or
movi/shori/ptrel, but with assembler and/or linker tricks it is possible
to generate symbols that will cause ptabs / ptrel to trap. This option is
only meaningful when ‘-mno-pt-fixed’ is in effect. It will then prevent
cross-basic-block cse, hoisting and most scheduling of symbol loads. The
default is ‘-mno-invalid-symbols’.

-mbranch-cost=num
Assume num to be the cost for a branch instruction. Higher numbers will make
the compiler try to generate more branch-free code if possible. If not specified
the value is selected depending on the processor type that is being compiled
for.

-mcbranchdi
Enable the cbranchdi4 instruction pattern.

-mcmpeqdi
Emit the cmpeqdi_t instruction pattern even when ‘-mcbranchdi’ is in effect.

-mfused-madd
Allow the usage of the fmac instruction (floating-point multiply-accumulate) if
the processor type supports it. Enabling this option might generate code that
produces different numeric floating-point results compared to strict IEEE 754
arithmetic.

-mpretend-cmove
Prefer zero-displacement conditional branches for conditional move instruction
patterns. This can result in faster code on the SH4 processor.

3.17.40 Solaris 2 Options

These ‘-m’ options are supported on Solaris 2:

-mimpure-text
‘-mimpure-text’, used in addition to ‘-shared’, tells the compiler to not pass
‘~z text’ to the linker when linking a shared object. Using this option, you can
link position-dependent code into a shared object.

‘-mimpure-text’ suppresses the “relocations remain against allocatable but
non-writable sections” linker error message. However, the necessary reloca-
tions will trigger copy-on-write, and the shared object is not actually shared
across processes. Instead of using ‘-mimpure-text’, you should compile all
source code with ‘-fpic’ or ‘-fPIC’.

Chapter 3: GCC Command Options 277

These switches are supported in addition to the above on Solaris 2:

-pthreads
Add support for multithreading using the POSIX threads library. This option
sets flags for both the preprocessor and linker. This option does not affect
the thread safety of object code produced by the compiler or that of libraries
supplied with it.

-pthread This is a synonym for ‘~pthreads’.

3.17.41 SPARC Options
These ‘-m’ options are supported on the SPARC:

-mno-app-regs
-mapp-regs
Specify ‘-mapp-regs’ to generate output using the global registers 2 through 4,
which the SPARC SVR4 ABI reserves for applications. This is the default.

To be fully SVR4 ABI compliant at the cost of some performance loss, specify
‘-mno-app-regs’. You should compile libraries and system software with this
option.

-mflat

-mno-flat
With ‘-mflat’, the compiler does not generate save/restore instructions and
uses a “flat” or single register window model. This model is compatible with
the regular register window model. The local registers and the input registers
(0-5) are still treated as “call-saved” registers and will be saved on the stack
as needed.

With ‘-mno-flat’ (the default), the compiler generates save/restore instruc-
tions (except for leaf functions). This is the normal operating mode.

-mfpu
-mhard-float
Generate output containing floating-point instructions. This is the default.

-mno—fpu

-msoft-float
Generate output containing library calls for floating point. Warning: the req-
uisite libraries are not available for all SPARC targets. Normally the facilities
of the machine’s usual C compiler are used, but this cannot be done directly in
cross-compilation. You must make your own arrangements to provide suitable
library functions for cross-compilation. The embedded targets ‘sparc-*-aout’
and ‘sparclite-*-*" do provide software floating-point support.

‘-msoft-float’ changes the calling convention in the output file; therefore, it
is only useful if you compile all of a program with this option. In particu-
lar, you need to compile ‘libgcc.a’, the library that comes with GCC, with
‘-msoft-float’ in order for this to work.

-mhard-quad-float
Generate output containing quad-word (long double) floating-point instruc-
tions.

278 Using the GNU Compiler Collection (GCC)

-msoft-quad-float
Generate output containing library calls for quad-word (long double) floating-
point instructions. The functions called are those specified in the SPARC ABI.
This is the default.

As of this writing, there are no SPARC implementations that have hardware
support for the quad-word floating-point instructions. They all invoke a trap
handler for one of these instructions, and then the trap handler emulates the
effect of the instruction. Because of the trap handler overhead, this is much
slower than calling the ABI library routines. Thus the ‘-msoft-quad-float’
option is the default.

-mno-unaligned-doubles
-munaligned-doubles
Assume that doubles have 8-byte alignment. This is the default.

With ‘-munaligned-doubles’, GCC assumes that doubles have 8-byte align-
ment only if they are contained in another type, or if they have an absolute
address. Otherwise, it assumes they have 4-byte alignment. Specifying this
option avoids some rare compatibility problems with code generated by other
compilers. It is not the default because it results in a performance loss, espe-
cially for floating-point code.

-mno-faster-structs

-mfaster-structs
With ‘-mfaster-structs’, the compiler assumes that structures should have
8-byte alignment. This enables the use of pairs of 1dd and std instructions
for copies in structure assignment, in place of twice as many 1d and st pairs.
However, the use of this changed alignment directly violates the SPARC ABI.
Thus, it’s intended only for use on targets where the developer acknowledges
that their resulting code will not be directly in line with the rules of the ABI.

-mcpu=cpu_type

Set the instruction set, register set, and instruction scheduling parameters for
machine type cpu_type. Supported values for cpu_type are ‘v7’, ‘cypress’,
‘v8’, ‘supersparc’, ‘hypersparc’, ‘leon’, ‘sparclite’, ‘f930°, ‘f934’,
‘sparclite86x’, ‘sparclet’, ‘tsc701’, ‘v9’, ‘ultrasparc’, ‘ultrasparc3’,
‘niagara’, ‘niagara?2’, ‘niagara3’, and ‘niagara4’.

Native Solaris and GNU/Linux toolchains also support the value
‘native’, which selects the best architecture option for the host processor.
‘-mcpu=native’ has no effect if GCC does not recognize the processor.

Default instruction scheduling parameters are used for values that select an
architecture and not an implementation. These are ‘v7’, ‘v8’, ‘sparclite’,
‘sparclet’, ‘v9'.

Here is a list of each supported architecture and their supported implementa-
tions.

v7 cypress

v8 supersparc, hypersparc, leon

Chapter 3: GCC Command Options 279

sparclite 930, 934, sparclite86x
sparclet tsc701
v9 ultrasparc, ultrasparc3, niagara, niagara2, niagara3, niagarad

By default (unless configured otherwise), GCC generates code for the V7 vari-
ant of the SPARC architecture. With ‘-mcpu=cypress’, the compiler addition-
ally optimizes it for the Cypress CY7C602 chip, as used in the SPARCSta-
tion/SPARCServer 3xx series. This is also appropriate for the older SPARC-
Station 1, 2, IPX etc.

With ‘-mcpu=v8’, GCC generates code for the V8 variant of the SPARC archi-
tecture. The only difference from V7 code is that the compiler emits the integer
multiply and integer divide instructions which exist in SPARC-V8 but not in
SPARC-V7. With ‘-mcpu=supersparc’, the compiler additionally optimizes it
for the SuperSPARC chip, as used in the SPARCStation 10, 1000 and 2000

series.

With ‘-mcpu=sparclite’, GCC generates code for the SPARClite variant of the
SPARC architecture. This adds the integer multiply, integer divide step and
scan (ffs) instructions which exist in SPARClite but not in SPARC-V7. With
‘-mcpu=£930’°, the compiler additionally optimizes it for the Fujitsu MB86930
chip, which is the original SPARClite, with no FPU. With ‘-mcpu=£934’, the
compiler additionally optimizes it for the Fujitsu MB86934 chip, which is the
more recent SPARClite with FPU.

With ‘-mcpu=sparclet’, GCC generates code for the SPARClet variant of the
SPARC architecture. This adds the integer multiply, multiply /accumulate,
integer divide step and scan (ffs) instructions which exist in SPARClet but
not in SPARC-V7. With ‘-mcpu=tsc701’, the compiler additionally optimizes
it for the TEMIC SPARClet chip.

With ‘-mcpu=v9’, GCC generates code for the V9 variant of the SPARC ar-
chitecture. This adds 64-bit integer and floating-point move instructions, 3
additional floating-point condition code registers and conditional move instruc-
tions. With ‘-mcpu=ultrasparc’, the compiler additionally optimizes it for the
Sun UltraSPARC I/I1/1Ii chips. With ‘-mcpu=ultrasparc3’, the compiler addi-
tionally optimizes it for the Sun UltraSPARC III/IIT+/IIIi/IIIi+/IV /IV+ chips.
With ‘-mcpu=niagara’, the compiler additionally optimizes it for Sun Ultra-
SPARC T1 chips. With ‘-mcpu=niagara?2’, the compiler additionally optimizes
it for Sun UltraSPARC T2 chips. With ‘-mcpu=niagara3’, the compiler addi-
tionally optimizes it for Sun UltraSPARC T3 chips. With ‘-mcpu=niagara4d’,
the compiler additionally optimizes it for Sun UltraSPARC T4 chips.

-mtune=cpu_type
Set the instruction scheduling parameters for machine type cpu_type, but do
not set the instruction set or register set that the option ‘-mcpu=cpu_type’
would.

[4 3

The same values for ‘-mcpu=cpu_type’ can be used for ‘-mtune=cpu_type’,
but the only useful values are those that select a particular CPU implemen-
tation. Those are ‘cypress’, ‘supersparc’, ‘hypersparc’, ‘leon’, ‘£930’,

280 Using the GNU Compiler Collection (GCC)

‘f934’, ‘sparclite86x’, ‘tsc701’, ‘ultrasparc’, ‘ultrasparc3’, ‘niagara’,
‘niagara?2’, ‘niagara3’ and ‘niagara4’. With native Solaris and GNU/Linux
toolchains, ‘native’ can also be used.

-mv8plus

-mno-v8plus
With ‘-mv8plus’, GCC generates code for the SPARC-V8+ ABI. The difference
from the V8 ABI is that the global and out registers are considered 64 bits
wide. This is enabled by default on Solaris in 32-bit mode for all SPARC-V9
processors.

-mvis
-mno-vis With ‘-mvis’, GCC generates code that takes advantage of the UltraSPARC
Visual Instruction Set extensions. The default is ‘-mno-vis’.

-mvis2

-mno-vis2
With ‘-mvis2’, GCC generates code that takes advantage of version 2.0 of the
UltraSPARC Visual Instruction Set extensions. The default is ‘-mvis2’ when
targetting a cpu that supports such instructions, such as UltraSPARC-III and
later. Setting ‘-mvis2’ also sets ‘-mvis’.

-mvis3

-mno-vis3
With ‘-mvis3’, GCC generates code that takes advantage of version 3.0 of the
UltraSPARC Visual Instruction Set extensions. The default is ‘-mvis3’ when
targetting a cpu that supports such instructions, such as niagara-3 and later.
Setting ‘-mvis3’ also sets ‘-mvis2’ and ‘-mvis’.

-mpopc

-mno-popc
With ‘-mpopc’, GCC generates code that takes advantage of the UltraSPARC
population count instruction. The default is ‘-mpopc’ when targetting a cpu
that supports such instructions, such as Niagara-2 and later.

-mfmaf

-mno—-fmaf

With ‘-mfmaf’, GCC generates code that takes advantage of the UltraSPARC
Fused Multiply-Add Floating-point extensions. The default is ‘-mfmaf’ when
targetting a cpu that supports such instructions, such as Niagara-3 and later.

-mfix-at697f
Enable the documented workaround for the single erratum of the Atmel AT697F
processor (which corresponds to erratum #13 of the AT697E processor).

These ‘-m’ options are supported in addition to the above on SPARC-V9 processors in
64-bit environments:

-m32

-m64 Generate code for a 32-bit or 64-bit environment. The 32-bit environment sets
int, long and pointer to 32 bits. The 64-bit environment sets int to 32 bits and
long and pointer to 64 bits.

Chapter 3: GCC Command Options 281

-mcmodel=which
Set the code model to one of

‘medlow’ The Medium/Low code model: 64-bit addresses, programs must be
linked in the low 32 bits of memory. Programs can be statically or
dynamically linked.

‘medmid’ The Medium/Middle code model: 64-bit addresses, programs must
be linked in the low 44 bits of memory, the text and data segments
must be less than 2GB in size and the data segment must be located
within 2GB of the text segment.

‘medany’ The Medium/Anywhere code model: 64-bit addresses, programs
may be linked anywhere in memory, the text and data segments
must be less than 2GB in size and the data segment must be located
within 2GB of the text segment.

‘embmedany’
The Medium/Anywhere code model for embedded systems: 64-bit
addresses, the text and data segments must be less than 2GB in
size, both starting anywhere in memory (determined at link time).
The global register %g4 points to the base of the data segment.
Programs are statically linked and PIC is not supported.

-mmemory-model=mem-model
Set the memory model in force on the processor to one of

‘default’ The default memory model for the processor and operating system.

‘rmo’ Relaxed Memory Order
‘pso’ Partial Store Order
‘tso’ Total Store Order

‘sc’ Sequential Consistency

These memory models are formally defined in Appendix D of the Sparc V9
architecture manual, as set in the processor’s PSTATE.MM field.

-mstack-bias

-mno-stack-bias
With ‘-mstack-bias’, GCC assumes that the stack pointer, and frame pointer
if present, are offset by —2047 which must be added back when making stack
frame references. This is the default in 64-bit mode. Otherwise, assume no
such offset is present.

3.17.42 SPU Options
These ‘-m’ options are supported on the SPU:

-mwarn-reloc

-merror-reloc
The loader for SPU does not handle dynamic relocations. By default, GCC
will give an error when it generates code that requires a dynamic relocation.

282 Using the GNU Compiler Collection (GCC)

‘-mno-error-reloc’ disables the error, ‘-mwarn-reloc’ will generate a warning
instead.

-msafe-dma

-munsafe-dma
Instructions that initiate or test completion of DMA must not be reordered
with respect to loads and stores of the memory that is being accessed. Users
typically address this problem using the volatile keyword, but that can lead to
inefficient code in places where the memory is known to not change. Rather
than mark the memory as volatile we treat the DMA instructions as potentially
effecting all memory. With ‘-munsafe-dma’ users must use the volatile keyword
to protect memory accesses.

-mbranch-hints
By default, GCC will generate a branch hint instruction to avoid pipeline stalls
for always taken or probably taken branches. A hint will not be generated closer
than 8 instructions away from its branch. There is little reason to disable them,
except for debugging purposes, or to make an object a little bit smaller.

-msmall-mem

-mlarge-mem
By default, GCC generates code assuming that addresses are never larger than
18 bits. With ‘-mlarge-mem’ code is generated that assumes a full 32-bit ad-
dress.

-mstdmain
By default, GCC links against startup code that assumes the SPU-style
main function interface (which has an unconventional parameter list). With
‘-mstdmain’, GCC will link your program against startup code that assumes a
C99-style interface to main, including a local copy of argv strings.

-mfixed-range=register-range
Generate code treating the given register range as fixed registers. A fixed
register is one that the register allocator can not use. This is useful when
compiling kernel code. A register range is specified as two registers separated
by a dash. Multiple register ranges can be specified separated by a comma.

-mea32

-meab4 Compile code assuming that pointers to the PPU address space accessed via the
__ea named address space qualifier are either 32 or 64 bits wide. The default
is 32 bits. As this is an ABI changing option, all object code in an executable
must be compiled with the same setting.

-maddress-space-conversion

-mno-address-space-conversion
Allow /disallow treating the __ea address space as superset of the generic ad-
dress space. This enables explicit type casts between __ea and generic pointer
as well as implicit conversions of generic pointers to __ea pointers. The default
is to allow address space pointer conversions.

Chapter 3: GCC Command Options 283

-mcache-size=cache-size
This option controls the version of libgcc that the compiler links to an executable
and selects a software-managed cache for accessing variables in the __ea address
space with a particular cache size. Possible options for cache-size are ‘8’, ‘16’,
‘327, ‘64’ and ‘128’. The default cache size is 64KB.

-matomic-updates

-mno-atomic-updates
This option controls the version of libgcc that the compiler links to an executable
and selects whether atomic updates to the software-managed cache of PPU-side
variables are used. If you use atomic updates, changes to a PPU variable from
SPU code using the __ea named address space qualifier will not interfere with
changes to other PPU variables residing in the same cache line from PPU code.
If you do not use atomic updates, such interference may occur; however, writing
back cache lines will be more efficient. The default behavior is to use atomic
updates.

-mdual-nops

-mdual-nops=n
By default, GCC will insert nops to increase dual issue when it expects it to
increase performance. n can be a value from 0 to 10. A smaller n will insert
fewer nops. 10 is the default, 0 is the same as ‘-mno-dual-nops’. Disabled with
‘-0s’.

-mhint-max-nops=n
Maximum number of nops to insert for a branch hint. A branch hint must be
at least 8 instructions away from the branch it is effecting. GCC will insert up
to n nops to enforce this, otherwise it will not generate the branch hint.

-mhint-max-distance=n
The encoding of the branch hint instruction limits the hint to be within 256
instructions of the branch it is effecting. By default, GCC makes sure it is
within 125.

-msafe-hints
Work around a hardware bug that causes the SPU to stall indefinitely. By
default, GCC will insert the hbrp instruction to make sure this stall won’t
happen.

3.17.43 Options for System V

These additional options are available on System V Release 4 for compatibility with other
compilers on those systems:

-G Create a shared object. It is recommended that ‘~symbolic’ or ‘~shared’ be
used instead.

-Qy Identify the versions of each tool used by the compiler, in a .ident assembler
directive in the output.

-Qn Refrain from adding .ident directives to the output file (this is the default).

-YP,dirs Search the directories dirs, and no others, for libraries specified with ‘-1’.

284 Using the GNU Compiler Collection (GCC)

-Ym,dir Look in the directory dir to find the M4 preprocessor. The assembler uses this
option.

3.17.44 TILE-Gx Options
These ‘-m’ options are supported on the TILE-Gx:

-mcpu=name
Selects the type of CPU to be targeted. Currently the only supported type is
‘tilegx’.

-m32

-m64 Generate code for a 32-bit or 64-bit environment. The 32-bit environment sets
int, long, and pointer to 32 bits. The 64-bit environment sets int to 32 bits and
long and pointer to 64 bits.

3.17.45 TILEPro Options
These ‘-m’ options are supported on the TILEPro:

-mcpu=name
Selects the type of CPU to be targeted. Currently the only supported type is
‘tilepro’.

-m32 Generate code for a 32-bit environment, which sets int, long, and pointer to 32
bits. This is the only supported behavior so the flag is essentially ignored.

3.17.46 V850 Options
These ‘-m’ options are defined for V850 implementations:

-mlong-calls

-mno-long-calls
Treat all calls as being far away (near). If calls are assumed to be far away,
the compiler will always load the functions address up into a register, and call
indirect through the pointer.

-mno-ep

-mep Do not optimize (do optimize) basic blocks that use the same index pointer 4
or more times to copy pointer into the ep register, and use the shorter s1d and
sst instructions. The ‘-mep’ option is on by default if you optimize.

-mno-prolog-function

-mprolog-function
Do not use (do use) external functions to save and restore registers at the
prologue and epilogue of a function. The external functions are slower, but use
less code space if more than one function saves the same number of registers.
The ‘-mprolog-function’ option is on by default if you optimize.

-mspace Try to make the code as small as possible. At present, this just turns on the
‘-mep’ and ‘-mprolog-function’ options.

-mtda=n Put static or global variables whose size is n bytes or less into the tiny data
area that register ep points to. The tiny data area can hold up to 256 bytes in
total (128 bytes for byte references).

Chapter 3: GCC Command Options 285

-msda=n Put static or global variables whose size is n bytes or less into the small data
area that register gp points to. The small data area can hold up to 64 kilobytes.

-mzda=n Put static or global variables whose size is n bytes or less into the first 32
kilobytes of memory.

-mv850 Specify that the target processor is the V850.

-mbig-switch
Generate code suitable for big switch tables. Use this option only if the assem-
bler/linker complain about out of range branches within a switch table.

-mapp-regs
This option will cause r2 and r5 to be used in the code generated by the compiler.
This setting is the default.

-mno-app-regs
This option will cause r2 and rb to be treated as fixed registers.

-mv850e2v3
Specify that the target processor is the V850E2V3. The preprocessor constants
‘__v850e2v3__’ will be defined if this option is used.

-mv850e2 Specify that the target processor is the V850E2. The preprocessor constants
‘__v850e2__’ will be defined if this option is used.

-mv850el Specify that the target processor is the V850E1. The preprocessor constants
‘__v850el__" and ‘__v850e__" will be defined if this option is used.

-mv850es Specify that the target processor is the V850ES. This is an alias for the
‘-mv850e1’ option.

-mv850e Specify that the target processor is the V850E. The preprocessor constant
‘__v850e__" will be defined if this option is used.

If neither ‘-mv850° nor ‘-mv850e’ mnor ‘-mv850el’ nor ‘-mv850e2’ nor
‘-mv850e2v3’ are defined then a default target processor will be chosen and
the relevant ‘__v850%__’ preprocessor constant will be defined.

The preprocessor constants ‘__v850’ and ‘__v851__’ are always defined, regard-
less of which processor variant is the target.

-mdisable-callt
This option will suppress generation of the CALLT instruction for the v850e,
v850el, v850e2 and v850e2v3 flavors of the v850 architecture. The default is
‘-mno-disable-callt’ which allows the CALLT instruction to be used.

3.17.47 VAX Options

These ‘-m’ options are defined for the VAX:

-munix Do not output certain jump instructions (aobleq and so on) that the Unix
assembler for the VAX cannot handle across long ranges.

-mgnu Do output those jump instructions, on the assumption that you will assemble
with the GNU assembler.

-mg Output code for G-format floating-point numbers instead of D-format.

286 Using the GNU Compiler Collection (GCC)

3.17.48 VxWorks Options

The options in this section are defined for all VxWorks targets. Options specific to the
target hardware are listed with the other options for that target.

-mrtp GCC can generate code for both VxWorks kernels and real time processes
(RTPs). This option switches from the former to the latter. It also defines
the preprocessor macro __RTP__

-non-static
Link an RTP executable against shared libraries rather than static libraries.
The options ‘-static’ and ‘-shared’ can also be used for RTPs (see Section 3.13
[Link Options|, page 154); ‘-static’ is the default.

-Bstatic

-Bdynamic
These options are passed down to the linker. They are defined for compatibility
with Diab.

-Xbind-lazy
Enable lazy binding of function calls. This option is equivalent to ‘-W1,-z,now’
and is defined for compatibility with Diab.

-Xbind-now
Disable lazy binding of function calls. This option is the default and is defined
for compatibility with Diab.

3.17.49 x86-64 Options
These are listed under See Section 3.17.17 [i386 and x86-64 Options], page 206.

3.17.50 Xstormy16 Options
These options are defined for Xstormy16:

-msim Choose startup files and linker script suitable for the simulator.

3.17.51 Xtensa Options
These options are supported for Xtensa targets:

-mconst16

-mno-constl16
Enable or disable use of CONST16 instructions for loading constant values. The
CONST16 instruction is currently not a standard option from Tensilica. When
enabled, CONST16 instructions are always used in place of the standard L32R in-
structions. The use of CONST16 is enabled by default only if the L32R instruction
is not available.

-mfused-madd

-mno-fused-madd
Enable or disable use of fused multiply/add and multiply/subtract instructions
in the floating-point option. This has no effect if the floating-point option
is not also enabled. Disabling fused multiply/add and multiply/subtract in-
structions forces the compiler to use separate instructions for the multiply and

Chapter 3: GCC Command Options 287

add/subtract operations. This may be desirable in some cases where strict
IEEE 754-compliant results are required: the fused multiply add/subtract in-
structions do not round the intermediate result, thereby producing results with
more bits of precision than specified by the IEEE standard. Disabling fused
multiply add/subtract instructions also ensures that the program output is not
sensitive to the compiler’s ability to combine multiply and add/subtract oper-
ations.

-mserialize-volatile

-mno-serialize-volatile
When this option is enabled, GCC inserts MEMW instructions before volatile
memory references to guarantee sequential consistency. The default is
‘-mserialize-volatile’. Use ‘-mno-serialize-volatile’ to omit the MEMW
instructions.

-mforce-no-pic
For targets, like GNU/Linux, where all user-mode Xtensa code must be
position-independent code (PIC), this option disables PIC for compiling kernel
code.

-mtext-section-literals

-mno-text-section-literals
Control the treatment of literal pools. The default is ‘-mno-text-section-literals’ |
which places literals in a separate section in the output file. This allows the
literal pool to be placed in a data RAM/ROM, and it also allows the linker to
combine literal pools from separate object files to remove redundant literals
and improve code size. With ‘-mtext-section-literals’, the literals are
interspersed in the text section in order to keep them as close as possible to
their references. This may be necessary for large assembly files.

-mtarget-align

-mno-target-align
When this option is enabled, GCC instructs the assembler to automatically align
instructions to reduce branch penalties at the expense of some code density. The
assembler attempts to widen density instructions to align branch targets and
the instructions following call instructions. If there are not enough preceding
safe density instructions to align a target, no widening will be performed. The
default is ‘-mtarget-align’. These options do not affect the treatment of auto-
aligned instructions like LOOP, which the assembler will always align, either by
widening density instructions or by inserting no-op instructions.

-mlongcalls

-mno-longcalls
When this option is enabled, GCC instructs the assembler to translate direct
calls to indirect calls unless it can determine that the target of a direct call is
in the range allowed by the call instruction. This translation typically occurs
for calls to functions in other source files. Specifically, the assembler translates
a direct CALL instruction into an L32R followed by a CALLX instruction. The
default is ‘-mno-longcalls’. This option should be used in programs where
the call target can potentially be out of range. This option is implemented in

288

Using the GNU Compiler Collection (GCC)

the assembler, not the compiler, so the assembly code generated by GCC will
still show direct call instructions—look at the disassembled object code to see
the actual instructions. Note that the assembler will use an indirect call for
every cross-file call, not just those that really will be out of range.

3.17.52 zSeries Options
These are listed under See Section 3.17.37 [S/390 and zSeries Options]|, page 267.

3.18 Options for Code Generation Conventions

These machine-independent options control the interface conventions used in code genera-

tion.

Most of them have both positive and negative forms; the negative form of ‘-ffoo’ would
be ‘-fno-foo’. In the table below, only one of the forms is listed—the one that is not the
default. You can figure out the other form by either removing ‘no-’ or adding it.

-fbounds-check

-ftrapv

-fwrapv

For front ends that support it, generate additional code to check that indices
used to access arrays are within the declared range. This is currently only
supported by the Java and Fortran front ends, where this option defaults to
true and false respectively.

This option generates traps for signed overflow on addition, subtraction, mul-
tiplication operations.

This option instructs the compiler to assume that signed arithmetic overflow of
addition, subtraction and multiplication wraps around using twos-complement
representation. This flag enables some optimizations and disables others. This
option is enabled by default for the Java front end, as required by the Java
language specification.

-fexceptions

Enable exception handling. Generates extra code needed to propagate excep-
tions. For some targets, this implies GCC will generate frame unwind informa-
tion for all functions, which can produce significant data size overhead, although
it does not affect execution. If you do not specify this option, GCC will enable
it by default for languages like C++ that normally require exception handling,
and disable it for languages like C that do not normally require it. However,
you may need to enable this option when compiling C code that needs to inter-
operate properly with exception handlers written in C++. You may also wish
to disable this option if you are compiling older C++ programs that don’t use
exception handling.

-fnon-call-exceptions

Generate code that allows trapping instructions to throw exceptions. Note that
this requires platform-specific runtime support that does not exist everywhere.
Moreover, it only allows trapping instructions to throw exceptions, i.e. memory
references or floating-point instructions. It does not allow exceptions to be
thrown from arbitrary signal handlers such as SIGALRM.

Chapter 3: GCC Command Options 289

-funwind-tables
Similar to ‘-fexceptions’, except that it will just generate any needed static
data, but will not affect the generated code in any other way. You will normally
not enable this option; instead, a language processor that needs this handling
would enable it on your behalf.

-fasynchronous-unwind-tables
Generate unwind table in dwarf2 format, if supported by target machine. The
table is exact at each instruction boundary, so it can be used for stack unwinding
from asynchronous events (such as debugger or garbage collector).

-fpcc-struct-return
Return “short” struct and union values in memory like longer ones, rather
than in registers. This convention is less efficient, but it has the advantage
of allowing intercallability between GCC-compiled files and files compiled with
other compilers, particularly the Portable C Compiler (pcc).

The precise convention for returning structures in memory depends on the tar-
get configuration macros.

Short structures and unions are those whose size and alignment match that of
some integer type.

Warning: code compiled with the ‘-fpcc-struct-return’ switch is not binary
compatible with code compiled with the ‘-freg-struct-return’ switch. Use
it to conform to a non-default application binary interface.

-freg-struct-return
Return struct and union values in registers when possible. This is more effi-
cient for small structures than ‘~fpcc-struct-return’.

If you specify neither ‘-fpcc-struct-return’ nor ‘-freg-struct-return’,
GCC defaults to whichever convention is standard for the target. If there is
no standard convention, GCC defaults to ‘-fpcc-struct-return’, except on
targets where GCC is the principal compiler. In those cases, we can choose
the standard, and we chose the more efficient register return alternative.

Warning: code compiled with the ‘~-freg-struct-return’ switch is not binary
compatible with code compiled with the ‘~fpcc-struct-return’ switch. Use
it to conform to a non-default application binary interface.

-fshort-enums
Allocate to an enum type only as many bytes as it needs for the declared range
of possible values. Specifically, the enum type will be equivalent to the smallest
integer type that has enough room.
Warning: the ‘~-fshort-enums’ switch causes GCC to generate code that is not
binary compatible with code generated without that switch. Use it to conform
to a non-default application binary interface.

—-fshort-double
Use the same size for double as for float.

Warning: the ‘~fshort-double’ switch causes GCC to generate code that is not
binary compatible with code generated without that switch. Use it to conform
to a non-default application binary interface.

290 Using the GNU Compiler Collection (GCC)

-fshort-wchar
Override the underlying type for ‘wchar_t’ to be ‘short unsigned int’ instead
of the default for the target. This option is useful for building programs to run
under WINE.

Warning: the ‘~fshort-wchar’ switch causes GCC to generate code that is not
binary compatible with code generated without that switch. Use it to conform
to a non-default application binary interface.

-fno-common

In C code, controls the placement of uninitialized global variables. Unix C
compilers have traditionally permitted multiple definitions of such variables in
different compilation units by placing the variables in a common block. This
is the behavior specified by ‘-fcommon’, and is the default for GCC on most
targets. On the other hand, this behavior is not required by ISO C, and on
some targets may carry a speed or code size penalty on variable references.
The ‘-fno-common’ option specifies that the compiler should place uninitialized
global variables in the data section of the object file, rather than generating
them as common blocks. This has the effect that if the same variable is declared
(without extern) in two different compilations, you will get a multiple-definition
error when you link them. In this case, you must compile with ‘~fcommon’
instead. Compiling with ‘~fno-common’ is useful on targets for which it provides
better performance, or if you wish to verify that the program will work on other
systems that always treat uninitialized variable declarations this way.

-fno-ident
Ignore the ‘#ident’ directive.

-finhibit-size-directive
Don’t output a .size assembler directive, or anything else that would cause
trouble if the function is split in the middle, and the two halves are placed at lo-
cations far apart in memory. This option is used when compiling ‘crtstuff.c’;
you should not need to use it for anything else.

-fverbose-asm
Put extra commentary information in the generated assembly code to make it
more readable. This option is generally only of use to those who actually need
to read the generated assembly code (perhaps while debugging the compiler
itself).
‘~fno-verbose-asm’, the default, causes the extra information to be omitted
and is useful when comparing two assembler files.

-frecord-gcc-switches

This switch causes the command line that was used to invoke the compiler to
be recorded into the object file that is being created. This switch is only im-
plemented on some targets and the exact format of the recording is target and
binary file format dependent, but it usually takes the form of a section contain-
ing ASCII text. This switch is related to the ‘~fverbose-asm’ switch, but that
switch only records information in the assembler output file as comments, so
it never reaches the object file. See also ‘~grecord-gcc-switches’ for another
way of storing compiler options into the object file.

Chapter 3: GCC Command Options 291

-fpic

-fPIC

-fpie
-fPIE

Generate position-independent code (PIC) suitable for use in a shared library,
if supported for the target machine. Such code accesses all constant addresses
through a global offset table (GOT). The dynamic loader resolves the GOT
entries when the program starts (the dynamic loader is not part of GCC; it
is part of the operating system). If the GOT size for the linked executable
exceeds a machine-specific maximum size, you get an error message from the
linker indicating that ‘-fpic’ does not work; in that case, recompile with ‘~fPIC’
instead. (These maximums are 8k on the SPARC and 32k on the m68k and
RS/6000. The 386 has no such limit.)

Position-independent code requires special support, and therefore works only on
certain machines. For the 386, GCC supports PIC for System V but not for the
Sun 386i. Code generated for the IBM RS/6000 is always position-independent.

When this flag is set, the macros __pic__ and __PIC__ are defined to 1.

If supported for the target machine, emit position-independent code, suitable
for dynamic linking and avoiding any limit on the size of the global offset table.
This option makes a difference on the m68k, PowerPC and SPARC.
Position-independent code requires special support, and therefore works only
on certain machines.

When this flag is set, the macros __pic__ and __PIC__ are defined to 2.

These options are similar to ‘-fpic’ and ‘-fPIC’, but generated position inde-
pendent code can be only linked into executables. Usually these options are
used when ‘-pie’ GCC option will be used during linking.

‘~fpie’ and ‘~fPIE’ both define the macros __pie__ and __PIE__. The macros
have the value 1 for ‘~fpie’ and 2 for ‘-fPIE’.

-fno-jump-tables

Do not use jump tables for switch statements even where it would be more effi-
cient than other code generation strategies. This option is of use in conjunction
with ‘~fpic’ or ‘~fPIC’ for building code that forms part of a dynamic linker
and cannot reference the address of a jump table. On some targets, jump tables
do not require a GOT and this option is not needed.

-ffixed-reg

Treat the register named reg as a fixed register; generated code should never
refer to it (except perhaps as a stack pointer, frame pointer or in some other
fixed role).

reg must be the name of a register. The register names accepted are machine-
specific and are defined in the REGISTER_NAMES macro in the machine descrip-
tion macro file.

This flag does not have a negative form, because it specifies a three-way choice.

-fcall-used-reg

Treat the register named reg as an allocable register that is clobbered by func-
tion calls. It may be allocated for temporaries or variables that do not live
across a call. Functions compiled this way will not save and restore the register
reg.

292

Using the GNU Compiler Collection (GCC)

It is an error to used this flag with the frame pointer or stack pointer. Use
of this flag for other registers that have fixed pervasive roles in the machine’s
execution model will produce disastrous results.

This flag does not have a negative form, because it specifies a three-way choice.

-fcall-saved-reg

Treat the register named reg as an allocable register saved by functions. It may
be allocated even for temporaries or variables that live across a call. Functions
compiled this way will save and restore the register reg if they use it.

It is an error to used this flag with the frame pointer or stack pointer. Use
of this flag for other registers that have fixed pervasive roles in the machine’s
execution model will produce disastrous results.

A different sort of disaster will result from the use of this flag for a register in
which function values may be returned.

This flag does not have a negative form, because it specifies a three-way choice.

-fpack-struct[=n]

Without a value specified, pack all structure members together without holes.
When a value is specified (which must be a small power of two), pack structure
members according to this value, representing the maximum alignment (that
is, objects with default alignment requirements larger than this will be output
potentially unaligned at the next fitting location.

Warning: the ‘-fpack-struct’ switch causes GCC to generate code that is
not binary compatible with code generated without that switch. Additionally,
it makes the code suboptimal. Use it to conform to a non-default application
binary interface.

—finstrument-functions

Generate instrumentation calls for entry and exit to functions. Just after func-
tion entry and just before function exit, the following profiling functions will
be called with the address of the current function and its call site. (On some
platforms, __builtin_return_address does not work beyond the current func-
tion, so the call site information may not be available to the profiling functions
otherwise.)
void __cyg_profile_func_enter (void *this_fn,
void *call_site);
void __cyg_profile_func_exit (void *this_fn,
void *call_site);
The first argument is the address of the start of the current function, which
may be looked up exactly in the symbol table.

This instrumentation is also done for functions expanded inline in other func-
tions. The profiling calls will indicate where, conceptually, the inline function
is entered and exited. This means that addressable versions of such functions
must be available. If all your uses of a function are expanded inline, this may
mean an additional expansion of code size. If you use ‘extern inline’ in your
C code, an addressable version of such functions must be provided. (This is
normally the case anyways, but if you get lucky and the optimizer always ex-

Chapter 3: GCC Command Options 293

pands the functions inline, you might have gotten away without providing static
copies.)

A function may be given the attribute no_instrument_function, in which
case this instrumentation will not be done. This can be used, for example, for
the profiling functions listed above, high-priority interrupt routines, and any
functions from which the profiling functions cannot safely be called (perhaps
signal handlers, if the profiling routines generate output or allocate memory).

-finstrument-functions-exclude-file-list=file,file,...
Set the list of functions that are excluded from instrumentation (see the descrip-
tion of ~finstrument-functions). If the file that contains a function definition
matches with one of file, then that function is not instrumented. The match is
done on substrings: if the file parameter is a substring of the file name, it is
considered to be a match.

For example:

-finstrument-functions-exclude-file-list=/bits/stl,include/sys

will exclude any inline function defined in files whose pathnames contain
/bits/stl or include/sys.

If, for some reason, you want to include letter ’,’ in one of sym, write ’\,’.
For example, -finstrument-functions-exclude-file-list=’\,\,tmp’
(note the single quote surrounding the option).

—finstrument-functions-exclude-function-list=sym, sym,...

This is similar to -finstrument-functions-exclude-file-list, but this
option sets the list of function names to be excluded from instrumentation.
The function name to be matched is its user-visible name, such as
vector<int> blah(const vector<int> &), not the internal mangled name
(e.g., _Z4blahRSt6vectorIiSaIiEE). The match is done on substrings: if the
sym parameter is a substring of the function name, it is considered to be
a match. For C99 and C++ extended identifiers, the function name must be
given in UTF-8, not using universal character names.

-fstack-check
Generate code to verify that you do not go beyond the boundary of the stack.
You should specify this flag if you are running in an environment with multiple
threads, but only rarely need to specify it in a single-threaded environment
since stack overflow is automatically detected on nearly all systems if there is
only one stack.

Note that this switch does not actually cause checking to be done; the operating
system or the language runtime must do that. The switch causes generation of
code to ensure that they see the stack being extended.

You can additionally specify a string parameter: no means no checking, generic
means force the use of old-style checking, specific means use the best checking
method and is equivalent to bare ‘-fstack-check’.

Old-style checking is a generic mechanism that requires no specific target sup-
port in the compiler but comes with the following drawbacks:

294

Using the GNU Compiler Collection (GCC)

1. Modified allocation strategy for large objects: they will always be allocated
dynamically if their size exceeds a fixed threshold.

2. Fixed limit on the size of the static frame of functions: when it is topped
by a particular function, stack checking is not reliable and a warning is
issued by the compiler.

3. Inefficiency: because of both the modified allocation strategy and the

generic implementation, the performances of the code are hampered.

Note that old-style stack checking is also the fallback method for specific if
no target support has been added in the compiler.

-fstack-limit-register=reg
-fstack-limit-symbol=sym
-fno-stack-limit

Generate code to ensure that the stack does not grow beyond a certain value,
either the value of a register or the address of a symbol. If the stack would grow
beyond the value, a signal is raised. For most targets, the signal is raised before
the stack overruns the boundary, so it is possible to catch the signal without
taking special precautions.

For instance, if the stack starts at absolute address ‘0x80000000” and grows
downwards, you can use the flags ‘~-fstack-limit-symbol=__stack_limit’
and ‘-Wl,--defsym,__stack_limit=0x7£fe0000’ to enforce a stack limit of
128KB. Note that this may only work with the GNU linker.

-fsplit-stack

Generate code to automatically split the stack before it overflows. The resulting
program has a discontiguous stack which can only overflow if the program is
unable to allocate any more memory. This is most useful when running threaded
programs, as it is no longer necessary to calculate a good stack size to use for
each thread. This is currently only implemented for the i386 and x86_64 back
ends running GNU/Linux.

When code compiled with ‘-fsplit-stack’ calls code compiled without
‘~-fsplit-stack’, there may not be much stack space available for the
latter code to run. If compiling all code, including library code, with
‘~fsplit-stack’ is not an option, then the linker can fix up these calls so that
the code compiled without ‘~fsplit-stack’ always has a large stack. Support
for this is implemented in the gold linker in GNU binutils release 2.21 and
later.

-fleading-underscore

This option and its counterpart, ‘~fno-leading-underscore’, forcibly change
the way C symbols are represented in the object file. One use is to help link
with legacy assembly code.

Warning: the ‘-fleading-underscore’ switch causes GCC to generate code

that is not binary compatible with code generated without that switch. Use it
to conform to a non-default application binary interface. Not all targets provide
complete support for this switch.

Chapter 3: GCC Command Options 295

—ftls—-model=model
Alter the thread-local storage model to be used (see Section 6.59 [Thread-
Local], page 622). The model argument should be one of global-dynamic,
local-dynamic, initial-exec or local-exec.

The default without ‘-fpic’ is initial-exec; with ‘~fpic’ the default is
global-dynamic.

-fvisibility=default|internallhidden|protected
Set the default ELF image symbol visibility to the specified option—all symbols
will be marked with this unless overridden within the code. Using this feature
can very substantially improve linking and load times of shared object libraries,
produce more optimized code, provide near-perfect API export and prevent
symbol clashes. It is strongly recommended that you use this in any shared
objects you distribute.

Despite the nomenclature, default always means public; i.e., available to be
linked against from outside the shared object. protected and internal are
pretty useless in real-world usage so the only other commonly used option will
be hidden. The default if ‘-fvisibility’ isn’t specified is default, i.e., make
every symbol public—this causes the same behavior as previous versions of
GCC.

A good explanation of the benefits offered by ensuring ELF symbols have
the correct visibility is given by “How To Write Shared Libraries” by Ulrich
Drepper (which can be found at http://people.redhat.com/ drepper/)—
however a superior solution made possible by this option to marking things
hidden when the default is public is to make the default hidden and
mark things public. This is the norm with DLL’s on Windows and with
‘~fvisibility=hidden’ and __attribute__ ((visibility("default")))
instead of __declspec(dllexport) you get almost identical semantics with
identical syntax. This is a great boon to those working with cross-platform
projects.

For those adding visibility support to existing code, you may find ‘#pragma GCC
visibility’ of use. This works by you enclosing the declarations you wish to
set visibility for with (for example) ‘#pragma GCC visibility push(hidden)’
and ‘#pragma GCC visibility pop’. Bear in mind that symbol visibility should
be viewed as part of the API interface contract and thus all new code should
always specify visibility when it is not the default; i.e., declarations only for
use within the local DSO should always be marked explicitly as hidden as so
to avoid PLT indirection overheads—making this abundantly clear also aids
readability and self-documentation of the code. Note that due to ISO C++
specification requirements, operator new and operator delete must always be of
default visibility.

Be aware that headers from outside your project, in particular system head-
ers and headers from any other library you use, may not be expecting to be
compiled with visibility other than the default. You may need to explicitly say
‘#pragma GCC visibility push(default)’ before including any such headers.

http://people.redhat.com/~drepper/

296

Using the GNU Compiler Collection (GCC)

‘extern’ declarations are not affected by ‘-fvisibility’, so a lot of code can
be recompiled with ‘~fvisibility=hidden’ with no modifications. However,
this means that calls to ‘extern’ functions with no explicit visibility will use
the PLT, so it is more effective to use ‘__attribute ((visibility))’ and/or
‘#pragma GCC visibility’ to tell the compiler which ‘extern’ declarations
should be treated as hidden.

Note that ‘~fvisibility’ does affect C++ vague linkage entities. This means
that, for instance, an exception class that will be thrown between DSOs must
be explicitly marked with default visibility so that the ‘type_info’ nodes will
be unified between the DSOs.

An overview of these techniques, their benefits and how to use them is at
http://gcc.gnu.org/wiki/Visibility.

—-fstrict-volatile-bitfields

This option should be used if accesses to volatile bit-fields (or other structure
fields, although the compiler usually honors those types anyway) should use a
single access of the width of the field’s type, aligned to a natural alignment if
possible. For example, targets with memory-mapped peripheral registers might
require all such accesses to be 16 bits wide; with this flag the user could declare
all peripheral bit-fields as “unsigned short” (assuming short is 16 bits on these
targets) to force GCC to use 16-bit accesses instead of, perhaps, a more efficient
32-bit access.

If this option is disabled, the compiler will use the most efficient instruction. In
the previous example, that might be a 32-bit load instruction, even though that
will access bytes that do not contain any portion of the bit-field, or memory-
mapped registers unrelated to the one being updated.

If the target requires strict alignment, and honoring the field type would require
violating this alignment, a warning is issued. If the field has packed attribute,
the access is done without honoring the field type. If the field doesn’t have
packed attribute, the access is done honoring the field type. In both cases,
GCC assumes that the user knows something about the target hardware that
it is unaware of.

The default value of this option is determined by the application binary interface
for the target processor.

3.19 Environment Variables Affecting GCC

This section describes several environment variables that affect how GCC operates. Some
of them work by specifying directories or prefixes to use when searching for various kinds
of files. Some are used to specify other aspects of the compilation environment.

Note that you can also specify places to search using options such as ‘-B’, ‘-I’ and
‘~L’ (see Section 3.14 [Directory Options], page 158). These take precedence over places
specified using environment variables, which in turn take precedence over those specified by
the configuration of GCC. See Section “Controlling the Compilation Driver ‘gcc’ in GNU
Compiler Collection (GCC) Internals.

http://gcc.gnu.org/wiki/Visibility

Chapter 3: GCC Command Options 297

LANG

LC_CTYPE

LC_MESSAGES

LC_ALL

TMPDIR

These environment variables control the way that GCC uses localization infor-
mation which allows GCC to work with different national conventions. GCC
inspects the locale categories LC_CTYPE and LC_MESSAGES if it has been config-
ured to do so. These locale categories can be set to any value supported by
your installation. A typical value is ‘en_GB.UTF-8’ for English in the United
Kingdom encoded in UTF-8.

The LC_CTYPE environment variable specifies character classification. GCC uses
it to determine the character boundaries in a string; this is needed for some
multibyte encodings that contain quote and escape characters that would oth-
erwise be interpreted as a string end or escape.

The LC_MESSAGES environment variable specifies the language to use in diag-
nostic messages.

If the LC_ALL environment variable is set, it overrides the value of LC_CTYPE and
LC_MESSAGES; otherwise, LC_CTYPE and LC_MESSAGES default to the value of the
LANG environment variable. If none of these variables are set, GCC defaults to
traditional C English behavior.

If TMPDIR is set, it specifies the directory to use for temporary files. GCC uses
temporary files to hold the output of one stage of compilation which is to be
used as input to the next stage: for example, the output of the preprocessor,
which is the input to the compiler proper.

GCC_COMPARE_DEBUG

Setting GCC_COMPARE_DEBUG is nearly equivalent to passing ‘-fcompare-debug’
to the compiler driver. See the documentation of this option for more details.

GCC_EXEC_PREFIX

If GCC_EXEC_PREFIX is set, it specifies a prefix to use in the names of the
subprograms executed by the compiler. No slash is added when this prefix is
combined with the name of a subprogram, but you can specify a prefix that
ends with a slash if you wish.

If GCC_EXEC_PREFIX is not set, GCC will attempt to figure out an appropriate
prefix to use based on the pathname it was invoked with.

If GCC cannot find the subprogram using the specified prefix, it tries looking
in the usual places for the subprogram.

The default value of GCC_EXEC_PREFIX is ‘prefix/lib/gcc/’ where prefix is
the prefix to the installed compiler. In many cases prefix is the value of prefix
when you ran the ‘configure’ script.

Other prefixes specified with ‘-B’ take precedence over this prefix.

This prefix is also used for finding files such as ‘crt0.o’ that are used for linking.
In addition, the prefix is used in an unusual way in finding the directories
to search for header files. For each of the standard directories whose name
normally begins with ‘/usr/local/lib/gcc’ (more precisely, with the value
of GCC_INCLUDE_DIR), GCC tries replacing that beginning with the specified

298

Using the GNU Compiler Collection (GCC)

prefix to produce an alternate directory name. Thus, with ‘-Bfoo/’, GCC will
search ‘foo/bar’ where it would normally search ‘/usr/local/lib/bar’. These
alternate directories are searched first; the standard directories come next. If a
standard directory begins with the configured prefix then the value of prefix is
replaced by GCC_EXEC_PREFIX when looking for header files.

COMPILER_PATH

The value of COMPILER_PATH is a colon-separated list of directories, much like
PATH. GCC tries the directories thus specified when searching for subprograms,
if it can’t find the subprograms using GCC_EXEC_PREFIX.

LIBRARY_PATH

LANG

The value of LIBRARY_PATH is a colon-separated list of directories, much like
PATH. When configured as a native compiler, GCC tries the directories thus
specified when searching for special linker files, if it can’t find them using GCC_
EXEC_PREFIX. Linking using GCC also uses these directories when searching for
ordinary libraries for the ‘-1’ option (but directories specified with ‘-L’ come

first).

This variable is used to pass locale information to the compiler. One way in
which this information is used is to determine the character set to be used when
character literals, string literals and comments are parsed in C and C++. When
the compiler is configured to allow multibyte characters, the following values
for LANG are recognized:

‘C-JIS’ Recognize JIS characters.
‘C-8JIS’ Recognize SJIS characters.
‘C-EUCJP’ Recognize EUCJP characters.

If LANG is not defined, or if it has some other value, then the compiler will use
mblen and mbtowc as defined by the default locale to recognize and translate
multibyte characters.

Some additional environments variables affect the behavior of the preprocessor.

CPATH

C_INCLUDE_PATH
CPLUS_INCLUDE_PATH
OBJC_INCLUDE_PATH

Each variable’s value is a list of directories separated by a special character,
much like PATH, in which to look for header files. The special character, PATH_
SEPARATOR, is target-dependent and determined at GCC build time. For Mi-
crosoft Windows-based targets it is a semicolon, and for almost all other targets
it is a colon.

CPATH specifies a list of directories to be searched as if specified with ‘-=I’, but
after any paths given with ‘~I’” options on the command line. This environment
variable is used regardless of which language is being preprocessed.

The remaining environment variables apply only when preprocessing the par-
ticular language indicated. Each specifies a list of directories to be searched as

Chapter 3: GCC Command Options 299

if specified with ‘~isystem’, but after any paths given with ‘~isystem’ options
on the command line.

In all these variables, an empty element instructs the compiler to search its
current working directory. Empty elements can appear at the beginning or end
of a path. For instance, if the value of CPATH is :/special/include, that has
the same effect as ‘-I. -I/special/include’.

DEPENDENCIES_QUTPUT
If this variable is set, its value specifies how to output dependencies for Make
based on the non-system header files processed by the compiler. System header
files are ignored in the dependency output.

The value of DEPENDENCIES_OUTPUT can be just a file name, in which case the
Make rules are written to that file, guessing the target name from the source
file name. Or the value can have the form ‘file target’, in which case the
rules are written to file file using target as the target name.

In other words, this environment variable is equivalent to combining the options
‘MM’ and ‘-MF’ (see Section 3.11 [Preprocessor Options|, page 143), with an
optional ‘-MT’ switch too.

SUNPRO_DEPENDENCTIES
This variable is the same as DEPENDENCIES_OUTPUT (see above), except that
system header files are not ignored, so it implies ‘M’ rather than ‘-MM’. However,
the dependence on the main input file is omitted. See Section 3.11 [Preprocessor
Options|, page 143.

3.20 Using Precompiled Headers

Often large projects have many header files that are included in every source file. The time
the compiler takes to process these header files over and over again can account for nearly
all of the time required to build the project. To make builds faster, GCC allows users to
‘precompile’ a header file; then, if builds can use the precompiled header file they will be
much faster.

To create a precompiled header file, simply compile it as you would any other file, if
necessary using the ‘-x’ option to make the driver treat it as a C or C++ header file. You
will probably want to use a tool like make to keep the precompiled header up-to-date when
the headers it contains change.

A precompiled header file will be searched for when #include is seen in the compilation.
As it searches for the included file (see Section “Search Path” in The C Preprocessor) the
compiler looks for a precompiled header in each directory just before it looks for the include
file in that directory. The name searched for is the name specified in the #include with
‘.gch’ appended. If the precompiled header file can’t be used, it is ignored.

For instance, if you have #include "all.h", and you have ‘all.h.gch’ in the same
directory as ‘all.h’, then the precompiled header file will be used if possible, and the
original header will be used otherwise.

Alternatively, you might decide to put the precompiled header file in a directory and use
‘~I’ to ensure that directory is searched before (or instead of) the directory containing the
original header. Then, if you want to check that the precompiled header file is always used,

300 Using the GNU Compiler Collection (GCC)

you can put a file of the same name as the original header in this directory containing an
#error command.

This also works with ‘-include’. So yet another way to use precompiled headers, good
for projects not designed with precompiled header files in mind, is to simply take most
of the header files used by a project, include them from another header file, precompile
that header file, and ‘-include’ the precompiled header. If the header files have guards
against multiple inclusion, they will be skipped because they’ve already been included (in
the precompiled header).

If you need to precompile the same header file for different languages, targets, or compiler
options, you can instead make a directory named like ‘all.h.gch’, and put each precom-
piled header in the directory, perhaps using ‘-o’. It doesn’t matter what you call the files
in the directory, every precompiled header in the directory will be considered. The first
precompiled header encountered in the directory that is valid for this compilation will be
used; they’re searched in no particular order.

There are many other possibilities, limited only by your imagination, good sense, and the
constraints of your build system.

A precompiled header file can be used only when these conditions apply:
e Only one precompiled header can be used in a particular compilation.

e A precompiled header can’t be used once the first C token is seen. You can have
preprocessor directives before a precompiled header; you can even include a precompiled
header from inside another header, so long as there are no C tokens before the #include.

e The precompiled header file must be produced for the same language as the current
compilation. You can’t use a C precompiled header for a C++ compilation.

e The precompiled header file must have been produced by the same compiler binary as
the current compilation is using.

e Any macros defined before the precompiled header is included must either be defined
in the same way as when the precompiled header was generated, or must not affect the
precompiled header, which usually means that they don’t appear in the precompiled
header at all.

The ‘-D’ option is one way to define a macro before a precompiled header is included;
using a #define can also do it. There are also some options that define macros im-
plicitly, like ‘-0’ and ‘-Wdeprecated’; the same rule applies to macros defined this
way.

e If debugging information is output when using the precompiled header, using ‘-g’ or
similar, the same kind of debugging information must have been output when building
the precompiled header. However, a precompiled header built using ‘-g’ can be used
in a compilation when no debugging information is being output.

e The same ‘-m’ options must generally be used when building and using the precompiled
header. See Section 3.17 [Submodel Options], page 167, for any cases where this rule
is relaxed.

e Each of the following options must be the same when building and using the precom-
piled header:

-fexceptions

Chapter 3: GCC Command Options 301

e Some other command-line options starting with ‘~f’, ‘-p’, or ‘-0’ must be defined in
the same way as when the precompiled header was generated. At present, it’s not clear
which options are safe to change and which are not; the safest choice is to use exactly
the same options when generating and using the precompiled header. The following
are known to be safe:

-fmessage-length= -fpreprocessed -fsched-interblock
-fsched-spec -fsched-spec-load -fsched-spec-load-dangerous
-fsched-verbose=number -fschedule-insns -fvisibility=
-pedantic-errors

For all of these except the last, the compiler will automatically ignore the precompiled
header if the conditions aren’t met. If you find an option combination that doesn’t work
and doesn’t cause the precompiled header to be ignored, please consider filing a bug report,
see Chapter 12 [Bugs], page 683.

If you do use differing options when generating and using the precompiled header, the
actual behavior will be a mixture of the behavior for the options. For instance, if you use
‘~g’ to generate the precompiled header but not when using it, you may or may not get
debugging information for routines in the precompiled header.

Chapter 4: C Implementation-defined behavior 303

4 C Implementation-defined behavior

A conforming implementation of ISO C is required to document its choice of behavior in
each of the areas that are designated “implementation defined”. The following lists all such
areas, along with the section numbers from the ISO/IEC 9899:1990 and ISO/IEC 9899:1999
standards. Some areas are only implementation-defined in one version of the standard.

Some choices depend on the externally determined ABI for the platform (in-
cluding standard character encodings) which GCC follows; these are listed as
“determined by ABI” below. See Chapter 9 [Binary Compatibility], page 655, and
http://gcc.gnu.org/readings.html. Some choices are documented in the preprocessor
manual. See Section “Implementation-defined behavior” in The C Preprocessor. Some
choices are made by the library and operating system (or other environment when
compiling for a freestanding environment); refer to their documentation for details.

4.1 Translation

e How a diagnostic is identified (C90 3.7, C99 3.10, C90 and C99 5.1.1.3).
Diagnostics consist of all the output sent to stderr by GCC.

e Whether each nonempty sequence of white-space characters other than new-line is
retained or replaced by one space character in translation phase 3 (C90 and C99 5.1.1.2).

See Section “Implementation-defined behavior” in The C Preprocessor.

4.2 Environment
The behavior of most of these points are dependent on the implementation of the C library,

and are not defined by GCC itself.

e The mapping between physical source file multibyte characters and the source character
set in translation phase 1 (C90 and C99 5.1.1.2).

See Section “Implementation-defined behavior” in The C Preprocessor.

4.3 Identifiers

e Which additional multibyte characters may appear in identifiers and their correspon-
dence to universal character names (C99 6.4.2).

See Section “Implementation-defined behavior” in The C Preprocessor.

e The number of significant initial characters in an identifier (C90 6.1.2, C90 and C99
5.2.4.1, C99 6.4.2).

For internal names, all characters are significant. For external names, the number of
significant characters are defined by the linker; for almost all targets, all characters are
significant.

e Whether case distinctions are significant in an identifier with external linkage (C90
6.1.2).

This is a property of the linker. C99 requires that case distinctions are always significant
in identifiers with external linkage and systems without this property are not supported
by GCC.

http://gcc.gnu.org/readings.html

304

Using the GNU Compiler Collection (GCC)

4.4 Characters

The number of bits in a byte (C90 3.4, C99 3.6).

Determined by ABI.

The values of the members of the execution character set (C90 and C99 5.2.1).
Determined by ABI.

The unique value of the member of the execution character set produced for each of
the standard alphabetic escape sequences (C90 and C99 5.2.2).

Determined by ABI.

The value of a char object into which has been stored any character other than a
member of the basic execution character set (C90 6.1.2.5, C99 6.2.5).

Determined by ABI.

Which of signed char or unsigned char has the same range, representation, and be-
havior as “plain” char (C90 6.1.2.5, C90 6.2.1.1, C99 6.2.5, C99 6.3.1.1).

Determined by ABI. The options ‘~funsigned-char’ and ‘-fsigned-char’ change the
default. See Section 3.4 [Options Controlling C Dialect], page 29.

The mapping of members of the source character set (in character constants and string
literals) to members of the execution character set (C90 6.1.3.4, C99 6.4.4.4, C90 and
C99 5.1.1.2).

Determined by ABI.

The value of an integer character constant containing more than one character or
containing a character or escape sequence that does not map to a single-byte execution
character (C90 6.1.3.4, C99 6.4.4.4).

See Section “Implementation-defined behavior” in The C Preprocessor.

The value of a wide character constant containing more than one multibyte character,
or containing a multibyte character or escape sequence not represented in the extended
execution character set (C90 6.1.3.4, C99 6.4.4.4).

See Section “Implementation-defined behavior” in The C Preprocessor.

The current locale used to convert a wide character constant consisting of a single
multibyte character that maps to a member of the extended execution character set
into a corresponding wide character code (C90 6.1.3.4, C99 6.4.4.4).

See Section “Implementation-defined behavior” in The C Preprocessor.

The current locale used to convert a wide string literal into corresponding wide char-
acter codes (C90 6.1.4, C99 6.4.5).

See Section “Implementation-defined behavior” in The C Preprocessor.

The value of a string literal containing a multibyte character or escape sequence not
represented in the execution character set (C90 6.1.4, C99 6.4.5).

See Section “Implementation-defined behavior” in The C Preprocessor.

4.5 Integers

Any extended integer types that exist in the implementation (C99 6.2.5).
GCC does not support any extended integer types.

Chapter 4: C Implementation-defined behavior 305

Whether signed integer types are represented using sign and magnitude, two’s comple-
ment, or one’s complement, and whether the extraordinary value is a trap representa-
tion or an ordinary value (C99 6.2.6.2).

GCC supports only two’s complement integer types, and all bit patterns are ordinary
values.

The rank of any extended integer type relative to another extended integer type with
the same precision (C99 6.3.1.1).

GCC does not support any extended integer types.

The result of, or the signal raised by, converting an integer to a signed integer type when
the value cannot be represented in an object of that type (C90 6.2.1.2, C99 6.3.1.3).

For conversion to a type of width IV, the value is reduced modulo 2% to be within range
of the type; no signal is raised.

The results of some bitwise operations on signed integers (C90 6.3, C99 6.5).

Bitwise operators act on the representation of the value including both the sign and
value bits, where the sign bit is considered immediately above the highest-value value
bit. Signed ‘>>’ acts on negative numbers by sign extension.

GCC does not use the latitude given in C99 only to treat certain aspects of signed ‘<<’
as undefined, but this is subject to change.

The sign of the remainder on integer division (C90 6.3.5).

GCC always follows the C99 requirement that the result of division is truncated towards
Zero.

4.6 Floating point

The accuracy of the floating-point operations and of the library functions in <math.h>
and <complex.h> that return floating-point results (C90 and C99 5.2.4.2.2).

The accuracy is unknown.

The rounding behaviors characterized by non-standard values of FLT_ROUNDS
(C90 and C99 5.2.4.2.2).

GCC does not use such values.

The evaluation methods characterized by non-standard negative values of FLT_EVAL_
METHOD (C99 5.2.4.2.2).

GCC does not use such values.

The direction of rounding when an integer is converted to a floating-point number that
cannot exactly represent the original value (C90 6.2.1.3, C99 6.3.1.4).

C99 Annex F is followed.

The direction of rounding when a floating-point number is converted to a narrower
floating-point number (C90 6.2.1.4, C99 6.3.1.5).

C99 Annex F is followed.

How the nearest representable value or the larger or smaller representable value im-
mediately adjacent to the nearest representable value is chosen for certain floating
constants (C90 6.1.3.1, C99 6.4.4.2).

C99 Annex F is followed.

306

Using the GNU Compiler Collection (GCC)

Whether and how floating expressions are contracted when not disallowed by the FP_
CONTRACT pragma (C99 6.5).

Expressions are currently only contracted if ‘~funsafe-math-optimizations’ or
‘~ffast-math’ are used. This is subject to change.

The default state for the FENV_ACCESS pragma (C99 7.6.1).

This pragma is not implemented, but the default is to “off” unless ‘~frounding-math’
is used in which case it is “on”.

Additional floating-point exceptions, rounding modes, environments, and classifica-
tions, and their macro names (C99 7.6, C99 7.12).

This is dependent on the implementation of the C library, and is not defined by GCC
itself.

The default state for the FP_CONTRACT pragma (C99 7.12.2).

This pragma is not implemented. Expressions are currently only contracted if

‘~funsafe-math-optimizations’ or ‘-ffast-math’ are used. This is subject to
change.

Whether the “inexact” floating-point exception can be raised when the rounded result
actually does equal the mathematical result in an IEC 60559 conformant implementa-
tion (C99 F.9).

This is dependent on the implementation of the C library, and is not defined by GCC
itself.

Whether the “underflow” (and “inexact”) floating-point exception can be raised when
a result is tiny but not inexact in an IEC 60559 conformant implementation (C99 F.9).
This is dependent on the implementation of the C library, and is not defined by GCC
itself.

4.7 Arrays and pointers

The result of converting a pointer to an integer or vice versa (C90 6.3.4, C99 6.3.2.3).

A cast from pointer to integer discards most-significant bits if the pointer representation
is larger than the integer type, sign-extends' if the pointer representation is smaller
than the integer type, otherwise the bits are unchanged.

A cast from integer to pointer discards most-significant bits if the pointer representation
is smaller than the integer type, extends according to the signedness of the integer type
if the pointer representation is larger than the integer type, otherwise the bits are
unchanged.

When casting from pointer to integer and back again, the resulting pointer must ref-
erence the same object as the original pointer, otherwise the behavior is undefined.
That is, one may not use integer arithmetic to avoid the undefined behavior of pointer
arithmetic as proscribed in C99 6.5.6/8.

The size of the result of subtracting two pointers to elements of the same array (C90
6.3.6, C99 6.5.6).

The value is as specified in the standard and the type is determined by the ABI.

! Future versions of GCC may zero-extend, or use a target-defined ptr_extend pattern. Do not rely on
sign extension.

Chapter 4: C Implementation-defined behavior 307

4.8 Hints
e The extent to which suggestions made by using the register storage-class specifier
are effective (C90 6.5.1, C99 6.7.1).
The register specifier affects code generation only in these ways:

e When used as part of the register variable extension, see Section 6.44 [Explicit Reg
Vars|, page 423.

e When ‘-00’ is in use, the compiler allocates distinct stack memory for all variables
that do not have the register storage-class specifier; if register is specified, the
variable may have a shorter lifespan than the code would indicate and may never
be placed in memory.

e On some rare x86 targets, setjmp doesn’t save the registers in all circumstances.
In those cases, GCC doesn’t allocate any variables in registers unless they are
marked register.

e The extent to which suggestions made by using the inline function specifier are effective
(C99 6.7.4).

GCC will not inline any functions if the ‘~fno-inline’ option is used or if ‘-00’ is
used. Otherwise, GCC may still be unable to inline a function for many reasons; the
‘~Winline’ option may be used to determine if a function has not been inlined and why
not.

4.9 Structures, unions, enumerations, and bit-fields

e A member of a union object is accessed using a member of a different type (C90 6.3.2.3).

The relevant bytes of the representation of the object are treated as an object of the type
used for the access. See [Type-punning], page 115. This may be a trap representation.

o Whether a “plain” int bit-field is treated as a signed int bit-field or as an unsigned
int bit-field (C90 6.5.2, C90 6.5.2.1, C99 6.7.2, C99 6.7.2.1).

By default it is treated as signed int but this may be changed by the
‘~funsigned-bitfields’ option.

e Allowable bit-field types other than _Bool, signed int, and unsigned int (C99
6.7.2.1).

No other types are permitted in strictly conforming mode.

e Whether a bit-field can straddle a storage-unit boundary (C90 6.5.2.1, C99 6.7.2.1).
Determined by ABI.

e The order of allocation of bit-fields within a unit (C90 6.5.2.1, C99 6.7.2.1).
Determined by ABI.

e The alignment of non-bit-field members of structures (C90 6.5.2.1, C99 6.7.2.1).
Determined by ABI.

e The integer type compatible with each enumerated type (C90 6.5.2.2, C99 6.7.2.2).

Normally, the type is unsigned int if there are no negative values in the enumeration,
otherwise int. If ‘-fshort-enums’ is specified, then if there are negative values it is
the first of signed char, short and int that can represent all the values, otherwise it

308 Using the GNU Compiler Collection (GCC)

is the first of unsigned char, unsigned short and unsigned int that can represent
all the values.

On some targets, ‘~fshort-enums’ is the default; this is determined by the ABI.

4.10 Qualifiers

e What constitutes an access to an object that has volatile-qualified type (C90 6.5.3, C99
6.7.3).

Such an object is normally accessed by pointers and used for accessing hardware. In
most expressions, it is intuitively obvious what is a read and what is a write. For
example

volatile int *dst
volatile int *src
*dst = *src;

somevalue;
someothervalue;

will cause a read of the volatile object pointed to by src and store the value into the
volatile object pointed to by dst. There is no guarantee that these reads and writes
are atomic, especially for objects larger than int.
However, if the volatile storage is not being modified, and the value of the volatile
storage is not used, then the situation is less obvious. For example

volatile int *src = somevalue;

*src;
According to the C standard, such an expression is an rvalue whose type is the unqual-
ified version of its original type, i.e. int. Whether GCC interprets this as a read of
the volatile object being pointed to or only as a request to evaluate the expression for
its side-effects depends on this type.
If it is a scalar type, or on most targets an aggregate type whose only member object
is of a scalar type, or a union type whose member objects are of scalar types, the
expression is interpreted by GCC as a read of the volatile object; in the other cases,
the expression is only evaluated for its side-effects.

4.11 Declarators

e The maximum number of declarators that may modify an arithmetic, structure or
union type (C90 6.5.4).

GCC is only limited by available memory.

4.12 Statements

e The maximum number of case values in a switch statement (C90 6.6.4.2).

GCC is only limited by available memory.

4.13 Preprocessing directives
See Section “Implementation-defined behavior” in The C Preprocessor, for details of these
aspects of implementation-defined behavior.

e How sequences in both forms of header names are mapped to headers or external source
file names (C90 6.1.7, C99 6.4.7).

Chapter 4: C Implementation-defined behavior 309

e Whether the value of a character constant in a constant expression that controls con-
ditional inclusion matches the value of the same character constant in the execution
character set (C90 6.8.1, C99 6.10.1).

e Whether the value of a single-character character constant in a constant expression
that controls conditional inclusion may have a negative value (C90 6.8.1, C99 6.10.1).

e The places that are searched for an included ‘<>’ delimited header, and how the places
are specified or the header is identified (C90 6.8.2, C99 6.10.2).

e How the named source file is searched for in an included """’ delimited header (C90
6.8.2, C99 6.10.2).

e The method by which preprocessing tokens (possibly resulting from macro expansion)
in a #include directive are combined into a header name (C90 6.8.2, C99 6.10.2).

e The nesting limit for #include processing (C90 6.8.2, C99 6.10.2).

e Whether the #’ operator inserts a ‘\’ character before the ‘\’ character that begins a
universal character name in a character constant or string literal (C99 6.10.3.2).

e The behavior on each recognized non-STDC #pragma directive (C90 6.8.6, C99 6.10.6).

See Section “Pragmas” in The C Preprocessor, for details of pragmas accepted by GCC
on all targets. See Section 6.57 [Pragmas Accepted by GCC], page 614, for details of
target-specific pragmas.

e The definitions for __DATE__ and __TIME__ when respectively, the date and time of
translation are not available (C90 6.8.8, C99 6.10.8).

4.14 Library functions
The behavior of most of these points are dependent on the implementation of the C library,
and are not defined by GCC itself.

e The null pointer constant to which the macro NULL expands (C90 7.1.6, C99 7.17).

In <stddef .h>, NULL expands to ((void *)0). GCC does not provide the other headers
which define NULL and some library implementations may use other definitions in those
headers.

4.15 Architecture
e The values or expressions assigned to the macros specified in the headers <float.h>,
<limits.h>, and <stdint.h> (C90 and C99 5.2.4.2, C99 7.18.2, C99 7.18.3).
Determined by ABI.

e The number, order, and encoding of bytes in any object (when not explicitly specified
in this International Standard) (C99 6.2.6.1).

Determined by ABI.
e The value of the result of the sizeof operator (C90 6.3.3.4, C99 6.5.3.4).
Determined by ABI.

4.16 Locale-specific behavior

The behavior of these points are dependent on the implementation of the C library, and are
not defined by GCC itself.

Chapter 5: C++ Implementation-defined behavior 311

5 C++ Implementation-defined behavior

A conforming implementation of ISO C++ is required to document its choice of behavior
in each of the areas that are designated “implementation defined”. The following lists all
such areas, along with the section numbers from the ISO/IEC 14822:1998 and ISO/IEC
14822:2003 standards. Some areas are only implementation-defined in one version of the
standard.

Some choices depend on the externally determined ABI for the platform (in-
cluding standard character encodings) which GCC follows; these are listed as
“determined by ABI” below. See Chapter 9 [Binary Compatibility], page 655, and
http://gcc.gnu.org/readings.html. Some choices are documented in the preprocessor
manual. See Section “Implementation-defined behavior” in The C Preprocessor. Some
choices are documented in the corresponding document for the C language. See Chapter 4
[C Implementation], page 303. Some choices are made by the library and operating system
(or other environment when compiling for a freestanding environment); refer to their
documentation for details.

5.1 Conditionally-supported behavior

FEach implementation shall include documentation that identifies all conditionally-supported
constructs that it does not support (C++0x 1.4).

e Whether an argument of class type with a non-trivial copy constructor or destructor
can be passed to ... (C++0x 5.2.2).

Such argument passing is not supported.

5.2 Exception handling

e In the situation where no matching handler is found, it is implementation-defined
whether or not the stack is unwound before std::terminate() is called (C++98 15.5.1).

The stack is not unwound before std::terminate is called.

http://gcc.gnu.org/readings.html

Chapter 6: Extensions to the C Language Family 313

6 Extensions to the C Language Family

GNU C provides several language features not found in ISO standard C. (The ‘-pedantic’
option directs GCC to print a warning message if any of these features is used.) To test for
the availability of these features in conditional compilation, check for a predefined macro
__GNUC__, which is always defined under GCC.

These extensions are available in C and Objective-C. Most of them are also available in
C++. See Chapter 7 [Extensions to the C++ Languagel, page 627, for extensions that apply
only to C++.

-

Some features that are in ISO C99 but not C90 or C++ are also, as extensions, accepted
by GCC in C90 mode and in C++.

6.1 Statements and Declarations in Expressions

A compound statement enclosed in parentheses may appear as an expression in GNU C.
This allows you to use loops, switches, and local variables within an expression.

Recall that a compound statement is a sequence of statements surrounded by braces; in
this construct, parentheses go around the braces. For example:
({ int y = foo (); int z;

if (y > 0) z = y;

else z = - y;

z; 1)
is a valid (though slightly more complex than necessary) expression for the absolute value
of foo ().

The last thing in the compound statement should be an expression followed by a semi-
colon; the value of this subexpression serves as the value of the entire construct. (If you use
some other kind of statement last within the braces, the construct has type void, and thus
effectively no value.)

This feature is especially useful in making macro definitions “safe” (so that they evaluate
each operand exactly once). For example, the “maximum” function is commonly defined
as a macro in standard C as follows:

#define max(a,b) ((a) > (b) ? (a) : (b))

But this definition computes either a or b twice, with bad results if the operand has side
effects. In GNU C, if you know the type of the operands (here taken as int), you can define
the macro safely as follows:

#define maxint(a,b) \
({int _a = (a), b= (); _.a> _b 7 _a: _b; })

Embedded statements are not allowed in constant expressions, such as the value of an
enumeration constant, the width of a bit-field, or the initial value of a static variable.

If you don’t know the type of the operand, you can still do this, but you must use typeof
(see Section 6.6 [Typeof], page 320).

In G++, the result value of a statement expression undergoes array and function pointer
decay, and is returned by value to the enclosing expression. For instance, if A is a class,
then

314 Using the GNU Compiler Collection (GCC)

A a;

({a;}) .Foo O

will construct a temporary A object to hold the result of the statement expression, and that
will be used to invoke Foo. Therefore the this pointer observed by Foo will not be the
address of a.

Any temporaries created within a statement within a statement expression will be de-
stroyed at the statement’s end. This makes statement expressions inside macros slightly
different from function calls. In the latter case temporaries introduced during argument
evaluation will be destroyed at the end of the statement that includes the function call. In
the statement expression case they will be destroyed during the statement expression. For
instance,

#define macro(a) ({__typeof__(a) b = (a); b + 3; })
template<typename T> T function(T a) { T b = a; return b + 3; }

void foo ()
{
macro (X));
function (X ());
}
will have different places where temporaries are destroyed. For the macro case, the tem-
porary X will be destroyed just after the initialization of b. In the function case that
temporary will be destroyed when the function returns.

These considerations mean that it is probably a bad idea to use statement-expressions of
this form in header files that are designed to work with C++. (Note that some versions of
the GNU C Library contained header files using statement-expression that lead to precisely
this bug.)

Jumping into a statement expression with goto or using a switch statement outside the
statement expression with a case or default label inside the statement expression is not
permitted. Jumping into a statement expression with a computed goto (see Section 6.3
[Labels as Values], page 315) yields undefined behavior. Jumping out of a statement ex-
pression is permitted, but if the statement expression is part of a larger expression then
it is unspecified which other subexpressions of that expression have been evaluated except
where the language definition requires certain subexpressions to be evaluated before or after
the statement expression. In any case, as with a function call the evaluation of a statement
expression is not interleaved with the evaluation of other parts of the containing expression.
For example,

foo (), (({ barl (); goto a; 0; }) + bar2 (), baz();

will call foo and bar1 and will not call baz but may or may not call bar2. If bar2 is called,
it will be called after foo and before bar1

6.2 Locally Declared Labels

GCC allows you to declare local labels in any nested block scope. A local label is just like
an ordinary label, but you can only reference it (with a goto statement, or by taking its
address) within the block in which it was declared.

A local label declaration looks like this:

Chapter 6: Extensions to the C Language Family 315

__label__ label;

or

__label__ labell, label2, /* ... */;

Local label declarations must come at the beginning of the block, before any ordinary
declarations or statements.

The label declaration defines the label name, but does not define the label itself. You must
do this in the usual way, with label :, within the statements of the statement expression.

The local label feature is useful for complex macros. If a macro contains nested loops, a
goto can be useful for breaking out of them. However, an ordinary label whose scope is the
whole function cannot be used: if the macro can be expanded several times in one function,
the label will be multiply defined in that function. A local label avoids this problem. For
example:

#define SEARCH(value, array, target)
do {

__label__ found;

typeof (target) _SEARCH_ target =

typeof (*(array)) *_SEARCH_array

int i, j;

int value;

for (i = 0; i < max; i++)

for (j = 0; j < max; j++)
if (_SEARCH_arrayl[i][j] == _SEARCH_target)
{ (value) = i; goto found; }

e) = -1;

(target) ;
= (array);

(valu
found:;
} while (0)

P A A L A A

This could also be written using a statement-expression:

#define SEARCH(array, target)
Gt
__label__ found;
typeof (target) _SEARCH_target =
typeof (*(array)) *_SEARCH_array
int i, j;
int value;
for (i = 0; i < max; i++)
for (j = 0; j < max; j++)
if (_SEARCH_array[i] [j] == _SEARCH_target)
{ value = i; goto found; }
value = -1;
found:
value;

b

Local label declarations also make the labels they declare visible to nested functions, if
there are any. See Section 6.4 [Nested Functions], page 316, for details.

(target) ;
= (array);

P A A A A

6.3 Labels as Values

You can get the address of a label defined in the current function (or a containing function)
with the unary operator ‘&&’. The value has type void *. This value is a constant and can
be used wherever a constant of that type is valid. For example:

void *ptr;

316 Using the GNU Compiler Collection (GCC)

/* ... %/
ptr = &&foo;
To use these values, you need to be able to jump to one. This is done with the computed
goto statement!, goto *exp ;. For example,
goto *ptr;
Any expression of type void * is allowed.

One way of using these constants is in initializing a static array that will serve as a jump
table:
static void *array[] = { &&foo, &&bar, &&hack };

Then you can select a label with indexing, like this:

goto *array[il;

Note that this does not check whether the subscript is in bounds—array indexing in C never
does that.

Such an array of label values serves a purpose much like that of the switch statement.
The switch statement is cleaner, so use that rather than an array unless the problem does
not fit a switch statement very well.

Another use of label values is in an interpreter for threaded code. The labels within the
interpreter function can be stored in the threaded code for super-fast dispatching.

You may not use this mechanism to jump to code in a different function. If you do that,
totally unpredictable things will happen. The best way to avoid this is to store the label
address only in automatic variables and never pass it as an argument.

An alternate way to write the above example is

static const int array[] = { &&foo - &&foo, &&bar - &&foo,
&&hack - &&foo };
goto *(&&foo + arrayl[il);
This is more friendly to code living in shared libraries, as it reduces the number of dynamic
relocations that are needed, and by consequence, allows the data to be read-only.

The &&foo expressions for the same label might have different values if the contain-
ing function is inlined or cloned. If a program relies on them being always the same,
__attribute__((__noinline__,__noclone__)) should be used to prevent inlining and
cloning. If &&foo is used in a static variable initializer, inlining and cloning is forbidden.

6.4 Nested Functions

A nested function is a function defined inside another function. (Nested functions are not
supported for GNU C++.) The nested function’s name is local to the block where it is
defined. For example, here we define a nested function named square, and call it twice:

foo (double a, double b)
{

double square (double z) { return z * z; }

return square (a) + square (b);

}

I The analogous feature in Fortran is called an assigned goto, but that name seems inappropriate in C,
where one can do more than simply store label addresses in label