GNU Compiler Collection Internals

For ccc version 4.8.3

(crosstool-NG linaro-1.13.1-4.8-2014.02 - Linaro GCC 2014.02)

Richard M. Stallman and the GCC Developer Community

Copyright (©) 1988-2013 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.3 or any later version published by the
Free Software Foundation; with the Invariant Sections being “Funding Free Software”, the
Front-Cover Texts being (a) (see below), and with the Back-Cover Texts being (b) (see
below). A copy of the license is included in the section entitled “GNU Free Documentation
License”.

(a) The FSF’s Front-Cover Text is:
A GNU Manual
(b) The FSF’s Back-Cover Text is:

You have freedom to copy and modify this GNU Manual, like GNU software. Copies
published by the Free Software Foundation raise funds for GNU development.

Short Contents

Introductiono e 1
1 Contributing to GCC Development 3
2 GCC and Portability i 5
3 Interfacing to GCC Output 7
4 The GCC low-level runtime library 9
5 Language Front Ends in GCC 59
6 Source Tree Structure and Build System.................. 61
T Testsuites ..o e 79
8 Option specification files. 107
9 Passes and Files of the Compiler....................... 115
10 RTL Representation................ ii.... 129
11 GENERIC. ... e 181
12 GIMPLE . ..o 227
13 Analysis and Optimization of GIMPLE tuples............ 263
14 Analysis and Representation of Loops................... 275
15 Control Flow Graph 285
16 Machine Descriptions i i 295
17 Target Description Macros and Functions. 415
18 Host Configuration 583
19 Makefile Fragments. 587
20 collect2. .ottt 591
21 Standard Header File Directories. 593
22 Memory Management and Type Information 595
23 Plugins. 605
24 Link Time Optimization.............. ... 613
Funding Free Software 621
The GNU Project and GNU/Linux. oo 623
GNU General Public License........... 625
GNU Free Documentation License 637
Contributors to GCC 645
Option Index o 661

Concept Index ... oot e 663

Table of Contents

Introduction 1
1 Contributing to GCC Development 3
2 GCC and Portability 5
3 Interfacing to GCC Output.................... 7
4 The GCC low-level runtime library 9
4.1 Routines for integer arithmetic.............. 9
4.1.1 Arithmetic functionso 9

4.1.2 Comparison functions ..., 10

4.1.3 Trapping arithmetic functions 11

4.1.4 Bit operations.oouuuiiii 11

4.2 Routines for floating point emulation....................... ... 12
4.2.1 Arithmetic functions i 12

4.2.2 Conversion functions, 13

4.2.3 Comparison functions ..., 15

4.2.4 Other floating-point functions 16

4.3 Routines for decimal floating point emulation.................. 16
4.3.1 Arithmetic functions i 17

4.3.2 Conversion functions, 17

4.3.3 Comparison functions ..., 20

4.4 Routines for fixed-point fractional emulation................ ... 22
4.4.1 Arithmetic functions i 22

4.4.2 Comparison functionscooviiiieiiiieennnn... 30

4.4.3 Conversion functions, 30

4.5 Language-independent routines for exception handling......... 56
4.6 Miscellaneous runtime library routines......................... 57
4.6.1 Cache control functions............. i L. 57

4.6.2 Split stack functions and variables........................ 57

5 Language Front Ends in GCC................ 59
6 Source Tree Structure and Build System.... 61
6.1 Configure Terms and History............, 61
6.2 Top Level Source Directory...........cooiiiiiiiiiiiiiiiii.. 61
6.3 The ‘gec’ Subdirectory ... 63
6.3.1 Subdirectories of ‘gcc’. ... 63

6.3.2 Configuration in the ‘gcc’ Directory 64

6.3.2.1 Scripts Used by ‘configure’......................... 64

iii

GNU Compiler Collection (GCC) Internals

iv

6.3.2.2 The ‘config.build’; ‘config.host’; and ‘config.gcc’
Files ... o 65
6.3.2.3 Files Created by configure......................... 65
6.3.3 Build System in the ‘gcc’ Directory 66
6.3.4 Makefile Targets ... 66

6.3.5 Library Source Files and Headers under the ‘gcc’ Directory
... 68
6.3.6 Headers Installed by GCC.........., 68
6.3.7 Building Documentation............. ool 69
6.3.7.1 Texinfo Manuals............ o .o i 69
6.3.7.2 Man Page Generationccooiiieiinn.... 70
6.3.7.3 Miscellaneous Documentation........................ 71
6.3.8 Anatomy of a Language Front End 71
6.3.8.1 The Front End ‘language’ Directory................. 73
6.3.8.2 The Front End ‘config-lang.in’ File............... 73
6.3.8.3 The Front End ‘Make-lang.in’ File................. 74
6.3.9 Anatomy of a Target Back End........................... 75
7 Testsuites.......... L. 79
7.1 Idioms Used in Testsuite Code ..., 79
7.2 Directives used within DejaGnu tests.......................... 80
7.2.1 Syntax and Descriptions of test directives................. 80
7.2.1.1 Specify how to build the test 80
7.2.1.2 Specify additional compiler options.................. 81
7.2.1.3 Modify the test timeout value 81
7.2.1.4 Skip a test for some targets.............. 81
7.2.1.5 Expect a test to fail for some targets................. 82
7.2.1.6 Expect the test executable to fail 82
7.2.1.7 Verify compiler messagesooiiiiii.. 82
7.2.1.8 Verify output of the test executable.................. 83
7.2.1.9 Specify additional files for a test................. ..., 83
7.2.1.10 Add checks at theend of a test..................... 83
7.2.2 Selecting targets to which a test applies 84
7.2.3 Keywords describing target attributes 84
7.2.3.1 Datatype sizes.........uueeiiiiiiiiiiiiiiiiii.. 84
7.2.3.2 Fortran-specific attributes 85
7.2.3.3 Vector-specific attributes 85
7.2.3.4 Thread Local Storage attributes..................... 87
7.2.3.5 Decimal floating point attributes..................... 87
7.2.3.6 ARM-specific attributes 88
7.2.3.7 MIPS-specific attributes............................. 89
7.2.3.8 PowerPC-specific attributes.......................... 89
7.2.3.9 Other hardware attributes........................... 90
7.2.3.10 Environment attributes...............o 90
7.2.3.11 Other attributes............. ... i i 92
7.2.3.12 Local to tests in gcc.target/i386 93
7.2.3.13 Local to tests in gcc.target/spu/ea............... 94

7.2.3.14 Local to tests in gcc.test-framework.............. 94

7.2.4 Features for dg-add-options..........coveiiiiniin... 94

7.2.5 Variants of dg-require-support.................. 95
7.2.6 Commands for use in dg-final........................... 96
7.2.6.1 Scan a particular fileo 96
7.2.6.2 Scan the assembly output 96
7.2.6.3 Scan optimization dump files........................ 96
7.2.6.4 Verify that an output files exists ornot 97
7.2.6.5 Check for LTO tests. ..., 97
7.2.6.6 Checks for gcov tests..............ooiiiiiiilL, 97
7.2.6.7 Clean up generated test files................ 97

7.3 Ada Language Testsuites.............coiiiiiiiiiiii. 98
7.4 C Language Testsuites 98
7.5 The Java library testsuites.................oooiiiiiiiiii. 100
7.6 Support for testing link-time optimizations................... 101
7.7 Support for testing gcov..... ... 101
7.8 Support for testing profile-directed optimizations............. 102
7.9 Support for testing binary compatibility...................... 103
7.10 Support for torture testing using multiple options 104
8 Option specification files..................... 107
8.1 Option file format......... 107
8.2 Option Propertieseeeiiie it 109
9 Passes and Files of the Compiler 115
9.1 Parsing Passottt e 115
9.2 GImplification pass.oouii i 116
9.3 Pass Manager....... ...t e 116
9.4 Tree SSA PaSSES . ..ottt 117
9.5 RIL PaSSES « o i ottt e e 124
10 RTL Representation........................ 129
10.1 RTL Object Types. ..oouuret et 129
10.2 RTL Classes and Formats............... .o it 130
10.3 Access to Operands.........cooiuiiiitiii i 132
10.4 Access to Special Operands ..., 133
10.5 Flags in an RTL Expression.............ccooiiiiiiiiii .. 136
10.6 Machine Modes.ccoviiiiiiiiii e 141
10.7 Constant Expression Types ..., 146
10.8 Registers and Memoryccoviiiiiiiiiiii .. 148
10.9 RTL Expressions for Arithmetic............................. 154
10.10 Comparison Operations.o.ueeeiiiiennieeannn.. 158
10.11 Bit-Fields ... 160
10.12 Vector Operationso.uiiiiii .. 160
10.13 CONVETSIONS . .ttt ettt ettt 161
10.14 Declarationsouieeein i 162
10.15 Side Effect Expressionso, 163

10.16 Embedded Side-Effects on Addresses....................... 168

vi GNU Compiler Collection (GCC) Internals

10.17 Assembler Instructions as Expressions...................... 169
10.18 Variable Location Debug Information in RTL 169
1019 INSIS . oottt 170
10.20 RTL Representation of Function-Call Insns................. 179
10.21 Structure Sharing Assumptionscovveenienn... 179
10.22 Reading RTL 180
11 GENERIC......... 181
11,1 Deficiencies 181
I O 181
T1.2.1 TTeeS oo e vee e 182
11.2.2 Identifiers..........c.oooeiiireii e 183
11.2.3 Containers.ot 183
RS T 0 PP 183
11.4 Declarationsooviiiii e 188
11.4.1 Working with declarations 188
11.4.2 Internal structure...........o, 190
11.4.2.1 Current structure hierarchy 190
11.4.2.2 Adding new DECL node types 191

11.5 Attributes In trees . ..ot 192
11.6 EXPressions.uuueitetiete i 193
11.6.1 Constant expressions.ooeveeenireeeenireeennnnn.. 193
11.6.2 References to storage. ..o, 195
11.6.3 Unary and Binary Expressions 196
11.6.4 VeCtors ..o 203
11.7 Statements ...t 205
11.7.1 Basic Statements..............o i 205
11.7.2 BlocKks 206
11.7.3 Statement Sequences...............oiiiiiiiiaiiie... 207
11.7.4 FEmpty Statements.............oooiiiiiiiiiiiii. 207
11,75 JUPS « oot e et e 207
11.7.6 Cleanups. ..o ot ettt et e e e e 207
11.7.7 OpenMP. ..o o 208
11.8 FUNCHionS. ...t e 210
11.8.1 Function Basics. ... 210
11.8.2 Function Properties.......... ... 212
11.9 Language-dependent trees................cciiiiiiiiiienn. 213
11.10 Cand CH+ Trees ..o 213
11.10.1 Types for CH4 .o e 214
11.10.2 NAmESPACES .. vttt ettt 216
11.10.3 Classes . oot vttt ettt e e 217
11.10.4 Functions for C++ ... 219
11.10.5 Statements for C++ ... 221
11.10.5.1 Statements............coviiiiiiiiiineeeeennnnnn. 221
11.10.6 CH+ EXPressions.........oueeeiiiiiieiiieenniea.n. 224

1111 Java TreesS. ..o 225

12

GIMPLE 227
12.1 Tuple representationooiiiiiii i 228
12.1.1 gimple_statement_base (gsbase)...................... 228
12.1.2 gimple_statement_with_ops.......................... 229
12.1.3 gimple_statement_with_memory_ops.................. 229
12.2 GIMPLE instruction set ..., 231
12.3 Exception Handling.............. ..o i, 231
12,4 TempPOTariesoo e 232
12,5 Operands. 232
12.5.1 Compound Expressionsccooiiiiiiiiii . 233
12.5.2 Compound Lvalues.............. i, 233
12.5.3 Conditional Expressions...............oooiiiiiii.. 233
12.5.4 Logical Operators.........c.oouuiiiiiiiiiiiiiiieniee... 233
12.5.5 Manipulating operands................coiiiiiiia.. 234
12.5.6 Operand vector allocation.............................. 234
12.5.7 Operand validationo .. 235
12.5.8 Statement validation............. i 236
12.6 Manipulating GIMPLE statements.......................... 236
12.6.1 CommOn ACCESSOTSt vtt ettt et et aeenn 236
12.7 Tuple specific accessorsviuti i 239
1271 GIMPLE _ASM. ...ttt i 239
12.7.2 GIMPLE _ASSIGN ...ttt 240
12.7.3 GIMPLE _BIND ...ttt e e 241
12.7.4 GIMPLE_CALL ...\ttt i eans 242
12.7.5 GIMPLE_CATCHttt e e 243
12.7.6 GIMPLE_COND ...ttt iiieeeee e 244
12,77 GIMPLE _DEBUGtttttttttiiieeeee e 245
12.7.8 GIMPLE_EH_FILTER........oiiiiiiiitiiiiiiinnaeeaann. 246
12.7.9 GIMPLE_LABEL ...ttt 247
12.7.10 GIMPLE_NOP. ..o\ttt ettt ieeee e 247
12.7.11 GIMPLE_OMP_ATOMIC_LOAD ...ttt 247
12.7.12 GIMPLE_OMP_ATOMIC_STOREcoviiiiiinnnnnnn. 247
12.7.13 GIMPLE_OMP_CONTINUE....... ..ottt 248
12.7.14 GIMPLE_OMP_CRITICALcituiiiiieiieiaannnn, 248
12.7.15 GIMPLE_OMP_FOR......oottttiiiiieee s 249
12.7.16 GIMPLE_OMP_MASTERoittttiiiiineee e 250
12.7.17 GIMPLE_OMP_ORDEREDcoiiiiiiiiiiiinnnnnnn.. 250
12.7.18 GIMPLE_OMP_PARALLELcttittiiaaneeeeenennnnn 250
12.7.19 GIMPLE_OMP_RETURNc0iiiiiiiiineinnnnnnn 251
12.7.20 GIMPLE_OMP_SECTIONuiiiieittiiiiiianaaennn. 252
12.7.21 GIMPLE_OMP_SECTIONS.......ttitiiiiiaeeeeenennnnnnn 252
12.7.22 GIMPLE_OMP_SINGLE ...ttt 252
12.7.23 GIMPLE _PHI.. ...ttt 253
12.7.24 GIMPLE _RESK ..ottt e 253
12.7.25 GIMPLE_RETURNc.iiiiiiiittiiiiiiiaaaaeenn, 254
12.7.26 GIMPLE_SWITCH\ttt 254
12.7.27 GIMPLE _TRY . ..ttt 255

12.7.28 GIMPLE_WITH_CLEANUP_EXPR.................cccoon... 255

vii

viii

GNU Compiler Collection (GCC) Internals
12.8 GIMPLE SEqUencCesovi e 256
12.9 Sequence iteratorsc.oiiiii 257
12.10 Adding a new GIMPLE statement code.................... 260
12.11 Statement and operand traversals.......................... 260

13 Analysis and Optimization of GIMPLE tuples

... 263
13.1 Annotationsoiueii e 263
13.2 SSA Operandsoouuiit i 263

13.2.1 Operand Iterators And Access Routines................ 265
13.2.2 Immediate Uses. ... 267
13.3 Static Single Assignment........... it 269
13.3.1 Preserving the SSA form............. 270
13.3.2 Preserving the virtual SSA form........................ 271
13.3.3 Examining SSA_NAME nodesccoviiiieninea.n. 272
13.3.4 Walking use-def chains............. 272
13.3.5 Walking the dominator tree............................ 272
13.4 Alias analysis.ot 273
13.5 Memory model ... 274

14 Analysis and Representation of Loops.... 275

14.1 Loop representation............ ..ot 275
14.2 LOoOD QUETYING . .o .vtt ittt e 277
14.3 Loop manipulation. 278
14.4 TLoop-closed SSA form i 278
14.5 Scalar evolutions.o 279
14.6 IV analysison RTL....... .. o i 280
14.7 Number of iterations analysis 280
14.8 Data Dependency Analysis...........ccoviiiiiiiiiniinnn.. 281
14.9 Linear loop transformations framework...................... 283
14.10 Omega a solver for linear programming problems........... 283
15 Control Flow Graph........................ 285
15.1 Basic Blocks. 285
15.2 Bdges .o oo 287
15.3 Profile information............ ... o 290
15.4 Maintaining the CFG o i i 291

15.5 Liveness informationc.oouiiuiniiii i 293

16 Machine Descriptions....................... 295
16.1 Overview of How the Machine Description is Used........... 295
16.2 Everything about Instruction Patterns 295
16.3 Example of define_insncooiiiiiiiiiiiiii... 296
16.4 RTL Template. . ..o 297
16.5 Output Templates and Operand Substitution................ 301
16.6 C Statements for Assembler Output......................... 302
16.7 Predicateso 303

16.7.1 Machine-Independent Predicates 304
16.7.2 Defining Machine-Specific Predicates................... 306
16.8 Operand Constraints.c.oiiiiiieiiiienniieaann. 308
16.8.1 Simple Constraints......... ..o, 308
16.8.2 Multiple Alternative Constraints 312
16.8.3 Register Class Preferences............. 313
16.8.4 Constraint Modifier Characters......................... 313
16.8.5 Constraints for Particular Machines 315
16.8.6 Disable insn alternatives using the enabled attribute... 339
16.8.7 Defining Machine-Specific Constraints.................. 340
16.8.8 Testing constraints from C......... 342
16.9 Standard Pattern Names For Generation.................... 344
16.10 When the Order of Patterns Matters....................... 373
16.11 Interdependence of Patterns, 373
16.12 Defining Jump Instruction Patterns........................ 374
16.13 Defining Looping Instruction Patterns................... ... 374
16.14 Canonicalization of Instructions............................ 376
16.15 Defining RTL Sequences for Code Generation.............. 377
16.16 Defining How to Split Instructions 380
16.17 Including Patterns in Machine Descriptions................. 383
16.17.1 RTL Generation Tool Options for Directory Search.... 384
16.18 Machine-Specific Peephole Optimizers...................... 384
16.18.1 RTL to Text Peephole Optimizers..................... 385
16.18.2 RTL to RTL Peephole Optimizers..................... 387
16.19 Instruction Attributes L. 388
16.19.1 Defining Attributes and their Values 388
16.19.2 Attribute Expressions...........coooiiiiiiiiiiiiii... 390
16.19.3 Assigning Attribute Values to Insns................... 392
16.19.4 Example of Attribute Specifications................... 394
16.19.5 Computing the Length of an Insn..................... 394
16.19.6 Constant Attributes L. 396
16.19.7 Delay Slot Scheduling............... ..., 396
16.19.8 Specifying processor pipeline description 397
16.20 Conditional Execution................ooiiiiiiiiiiiiiiL. 403
16.21 RTL Templates Transformations........................... 404
16.21.1 define_subst Example............................... 405
16.21.2 Pattern Matching in define_subst 406
16.21.3 Generation of output template in define_subst....... 406
16.22 Constant Definitions..........o it 407

16.23 T6eratorS. ..ot 409

ix

GNU Compiler Collection (GCC) Internals

16.23.1 Mode Iterators. ...t 409
16.23.1.1 Defining Mode Iterators.......................... 409
16.23.1.2 Substitution in Mode Iterators................... 410
16.23.1.3 Mode Iterator Examples 410

16.23.2 Code Iterators. ...t 411

16.23.3 Int Iterators ... 412

16.23.4 Subst Iterators.ot 413

17 Target Description Macros and Functions

... 415
17.1 The Global targetm Variable............ 415
17.2 Controlling the Compilation Driver, ‘gec’ 416
17.3 Run-time Target Specification..............., 422
17.4 Defining data structures for per-function information. 425
17.5 Storage Layout 426
17.6 Layout of Source Language Data Types..................... 435
17.7 Register Usage......covinniiiii e 441

17.7.1 Basic Characteristics of Registers....................... 441
17.7.2 Order of Allocation of Registers........................ 443
17.7.3 How Values Fit in Registers................., 444
17.7.4 Handling Leaf Functions 446
17.7.5 Registers That Form a Stack........................... 447
17.8 Register Classesot e 447
17.9 Obsolete Macros for Defining Constraints 456
17.10 Stack Layout and Calling Conventions 458
17.10.1 Basic Stack Layouto 459
17.10.2 Exception Handling Support 462
17.10.3 Specifying How Stack Checking is Done............... 464
17.10.4 Registers That Address the Stack Frame 466
17.10.5 Eliminating Frame Pointer and Arg Pointer 468
17.10.6 Passing Function Arguments on the Stack............. 470
17.10.7 Passing Arguments in Registers....................... 472
17.10.8 How Scalar Function Values Are Returned 478
17.10.9 How Large Values Are Returned 480
17.10.10 Caller-Saves Register Allocation...................... 481
17.10.11 Function Entry and Exit...................o ... 482
17.10.12 Generating Code for Profiling........................ 485
17.10.13 Permitting tail calls............o il 486
17.10.14 Stack smashing protection 486
17.11 Implementing the Varargs Macros.......................... 487
17.12 Trampolines for Nested Functions.......................... 489
17.13 Implicit Calls to Library Routines.......................... 491
17.14 Addressing Modesouiiiiii 492
17.15 Anchored Addresses ... 499
17.16 Condition Code Status.cuviiiiin i 500
17.16.1 Representation of condition codes using (cc0)......... 500
17.16.2 Representation of condition codes using registers 501

17.16.3 Macros to control conditional execution 503

17.17 Describing Relative Costs of Operations.................... 504
17.18 Adjusting the Instruction Scheduler........................ 509
17.19 Dividing the Output into Sections (Texts, Data, ...)....... 515
17.20 Position Independent Code ..., 520
17.21 Defining the Output Assembler Language 521
17.21.1 The Overall Framework of an Assembler File.......... 521
17.21.2 Output of Data ... 525
17.21.3 Output of Uninitialized Variables 527
17.21.4 Output and Generation of Labels 529
17.21.5 How Initialization Functions Are Handled 536
17.21.6 Macros Controlling Initialization Routines............. 538
17.21.7 Output of Assembler Instructions 540
17.21.8 Output of Dispatch Tables............ 543
17.21.9 Assembler Commands for Exception Regions.......... 545
17.21.10 Assembler Commands for Alignment................. 547
17.22 Controlling Debugging Information Format................. 549
17.22.1 Macros Affecting All Debugging Formats.............. 549
17.22.2 Specific Options for DBX Output 550
17.22.3 Open-Ended Hooks for DBX Format 552
17.22.4 File Names in DBX Format 552
17.22.5 Macros for SDB and DWARF Output................. 553
17.22.6 Macros for VMS Debug Format....................... 555
17.23 Cross Compilation and Floating Point...................... 555
17.24 Mode Switching Instructions...............o L. 557
17.25 Defining target-specific uses of __attribute__............. 558
17.26 Emulating TLSo 561
17.27 Defining coprocessor specifics for MIPS targets. 562
17.28 Parameters for Precompiled Header Validity Checking. 562
17.29 CH++ ABI parameters. ..ot 563
17.30 Adding support for named address spaces.................. 564
17.31 Miscellaneous Parameters................... i, 566
18 Host Configuration......................... 583
18.1 Host Commonot 583
18.2 Host Filesystem. 584
18.3 Host MiSC ..t e 585
19 Makefile Fragments......................... 587
19.1 Target Makefile Fragments...........o i 587
19.2 Host Makefile Fragments......... ...t 590
20 collect2 591

21 Standard Header File Directories.......... 593

xi

xii GNU Compiler Collection (GCC) Internals

22 Memory Management and Type Information

... 595

22.1 The Inside of @ GTY((O)) . ovviriit i 596
22.2 Support for user-provided GC marking routines 601
22.2.1 User-provided marking routines for template types...... 601

22.3 Marking Roots for the Garbage Collector.................... 602
22.4 Source Files Containing Type Information................... 603
22.5 How to invoke the garbage collector......................... 603
22.6 Troubleshooting the garbage collector....................... 604
23 Plugins............ .. 605
23.1 Loading Pluginso 605
23.2 Plugin APL. 605
23.2.1 Plugin license check.......... il 605
23.2.2 Plugin initialization............... ... o oL 605
23.2.3 Plugin callbacks.......... ..o 606

23.3 Interacting with the pass manager........................... 608
23.4 Interacting with the GCC Garbage Collector 608
23.5 Giving information about a plugin 609
23.6 Registering custom attributes or pragmas 609
23.7 Recording information about pass execution................. 610
23.8 Controlling which passes are being run...................... 610
23.9 Keeping track of available passes..................ciiiiin. 610
23.10 Building GCC plugins ...t 611
24 Link Time Optimization.................... 613
24.1 Design OVErvIeWvintt i 613
24.1.1 LTO modes of operationcoooviiiiaaa... 614

24.2 LTO file sections.couuutiiini e 614
24.3 Using summary information in IPA passes................... 616
24.3.1 Virtual clones......... ..o 617
24.3.2 TPA referencesouuoiiiiiiiiiii i 618
24.3.3 Jump functions i 618

24.4 Whole program assumptions, linker plugin and symbol visibilities
.. 618

24.5 Internal flags controlling 1tol........... ..., 620
Funding Free Software........................... 621
The GNU Project and GNU/Linux............ 623
GNU General Public License 625
GNU Free Documentation License 637

ADDENDUM: How to use this License for your documents 644

xiii

Contributors to GCC............................ 645
Option Index 661

Concept Index............. i, 663

Introduction 1

Introduction

This manual documents the internals of the GNU compilers, including how to port them
to new targets and some information about how to write front ends for new languages. It
corresponds to the compilers (crosstool-NG linaro-1.13.1-4.8-2014.02 - Linaro GCC 2014.02)
version 4.8.3. The use of the GNU compilers is documented in a separate manual. See
Section “Introduction” in Using the GNU Compiler Collection (GCC).

This manual is mainly a reference manual rather than a tutorial. It discusses how to con-
tribute to GCC (see Chapter 1 [Contributing|, page 3), the characteristics of the machines
supported by GCC as hosts and targets (see Chapter 2 [Portability], page 5), how GCC
relates to the ABIs on such systems (see Chapter 3 [Interface], page 7), and the character-
istics of the languages for which GCC front ends are written (see Chapter 5 [Languages],
page 59). It then describes the GCC source tree structure and build system, some of the
interfaces to GCC front ends, and how support for a target system is implemented in GCC.

Additional tutorial information is linked to from http://gcc.gnu.org/readings.html.

http://gcc.gnu.org/readings.html

Chapter 1: Contributing to GCC Development 3

1 Contributing to GCC Development

If you would like to help pretest GCC releases to assure they work well, current development
sources are available by SVN (see http://gcc.gnu.org/svn.html). Source and binary
snapshots are also available for F'TP; see http://gcc.gnu.org/snapshots.html.

If you would like to work on improvements to GCC, please read the advice at these URLs:

http://gcc.gnu.org/contribute.html
http://gcc.gnu.org/contributewhy.html

for information on how to make useful contributions and avoid duplication of effort. Sug-
gested projects are listed at http://gcc.gnu.org/projects/.

http://gcc.gnu.org/svn.html
http://gcc.gnu.org/snapshots.html
http://gcc.gnu.org/contribute.html
http://gcc.gnu.org/contributewhy.html
http://gcc.gnu.org/projects/

Chapter 2: GCC and Portability 5

2 GCC and Portability

GCC itself aims to be portable to any machine where int is at least a 32-bit type. It aims
to target machines with a flat (non-segmented) byte addressed data address space (the code
address space can be separate). Target ABIs may have 8, 16, 32 or 64-bit int type. char
can be wider than 8 bits.

GCC gets most of the information about the target machine from a machine description
which gives an algebraic formula for each of the machine’s instructions. This is a very clean
way to describe the target. But when the compiler needs information that is difficult to
express in this fashion, ad-hoc parameters have been defined for machine descriptions. The
purpose of portability is to reduce the total work needed on the compiler; it was not of
interest for its own sake.

GCC does not contain machine dependent code, but it does contain code that depends on
machine parameters such as endianness (whether the most significant byte has the highest
or lowest address of the bytes in a word) and the availability of autoincrement addressing. In
the RTL-generation pass, it is often necessary to have multiple strategies for generating code
for a particular kind of syntax tree, strategies that are usable for different combinations of
parameters. Often, not all possible cases have been addressed, but only the common ones or
only the ones that have been encountered. As a result, a new target may require additional
strategies. You will know if this happens because the compiler will call abort. Fortunately,
the new strategies can be added in a machine-independent fashion, and will affect only the
target machines that need them.

Chapter 3: Interfacing to GCC Output 7

3 Interfacing to GCC Output

GCC is normally configured to use the same function calling convention normally in use
on the target system. This is done with the machine-description macros described (see
Chapter 17 [Target Macros], page 415).

However, returning of structure and union values is done differently on some target ma-
chines. As a result, functions compiled with PCC returning such types cannot be called
from code compiled with GCC, and vice versa. This does not cause trouble often because
few Unix library routines return structures or unions.

GCC code returns structures and unions that are 1, 2, 4 or 8 bytes long in the same
registers used for int or double return values. (GCC typically allocates variables of such
types in registers also.) Structures and unions of other sizes are returned by storing them
into an address passed by the caller (usually in a register). The target hook TARGET _STRUCT_
VALUE_RTX tells GCC where to pass this address.

By contrast, PCC on most target machines returns structures and unions of any size
by copying the data into an area of static storage, and then returning the address of that
storage as if it were a pointer value. The caller must copy the data from that memory area
to the place where the value is wanted. This is slower than the method used by GCC, and
fails to be reentrant.

On some target machines, such as RISC machines and the 80386, the standard system
convention is to pass to the subroutine the address of where to return the value. On these
machines, GCC has been configured to be compatible with the standard compiler, when
this method is used. It may not be compatible for structures of 1, 2, 4 or 8 bytes.

GCC uses the system’s standard convention for passing arguments. On some machines,
the first few arguments are passed in registers; in others, all are passed on the stack. It
would be possible to use registers for argument passing on any machine, and this would
probably result in a significant speedup. But the result would be complete incompatibility
with code that follows the standard convention. So this change is practical only if you
are switching to GCC as the sole C compiler for the system. We may implement register
argument passing on certain machines once we have a complete GNU system so that we
can compile the libraries with GCC.

On some machines (particularly the SPARC), certain types of arguments are passed “by
invisible reference”. This means that the value is stored in memory, and the address of the
memory location is passed to the subroutine.

If you use longjmp, beware of automatic variables. ISO C says that automatic variables
that are not declared volatile have undefined values after a longjmp. And this is all GCC
promises to do, because it is very difficult to restore register variables correctly, and one of
GCC’s features is that it can put variables in registers without your asking it to.

Chapter 4: The GCC low-level runtime library 9

4 The GCC low-level runtime library

GCC provides a low-level runtime library, ‘libgcc.a’ or ‘libgcc_s.so.1’ on some plat-
forms. GCC generates calls to routines in this library automatically, whenever it needs to
perform some operation that is too complicated to emit inline code for.

Most of the routines in libgcc handle arithmetic operations that the target processor
cannot perform directly. This includes integer multiply and divide on some machines, and all
floating-point and fixed-point operations on other machines. 1ibgcc also includes routines
for exception handling, and a handful of miscellaneous operations.

Some of these routines can be defined in mostly machine-independent C. Others must be
hand-written in assembly language for each processor that needs them.

GCC will also generate calls to C library routines, such as memcpy and memset, in some
cases. The set of routines that GCC may possibly use is documented in Section “Other
Builtins” in Using the GNU Compiler Collection (GCC).

These routines take arguments and return values of a specific machine mode, not a specific
C type. See Section 10.6 [Machine Modes]|, page 141, for an explanation of this concept. For
illustrative purposes, in this chapter the floating point type float is assumed to correspond
to SFmode; double to DFmode; and long double to both TFmode and XFmode. Similarly,
the integer types int and unsigned int correspond to SImode; long and unsigned long
to DImode; and long long and unsigned long long to TImode.

4.1 Routines for integer arithmetic

The integer arithmetic routines are used on platforms that don’t provide hardware support
for arithmetic operations on some modes.

4.1.1 Arithmetic functions

int __ashlsi3 (int a, int b) [Runtime Function]

long __ashldi3 (long a, int b) [Runtime Function]

long long __ashlti3 (long long a, int b) [Runtime Function]
These functions return the result of shifting a left by b bits.

int __ashrsi3 (int a, int b) [Runtime Function]

long __ashrdi3 (long a, int b) [Runtime Function]

long long __ashrti3 (long long a, int b) [Runtime Function]
These functions return the result of arithmetically shifting a right by b bits.

int __divsi3 (int a, int b) [Runtime Function]

long __divdi3 (long a, long b) [Runtime Function]

long long __divti3 (long long a, long long b) [Runtime Function]
These functions return the quotient of the signed division of a and b.

int __1shrsi3 (int a, int b) [Runtime Function]

long __1shrdi3 (long a, int b) [Runtime Function]

long long __lshrti3 (long long a, int b) [Runtime Function]

These functions return the result of logically shifting a right by b bits.

10 GNU Compiler Collection (GCC) Internals

int __modsi3 (int a, int b) [Runtime Function]

long __moddi3 (long a, long b) [Runtime Function]

long long __modti3 (long long a, long long b) [Runtime Function]
These functions return the remainder of the signed division of a and b.

int __mulsi3 (int a, int b) [Runtime Function]

long __muldi3 (long a, long b) [Runtime Function]

long long __multi3 (long long a, long long b) [Runtime Function]
These functions return the product of a and b.

long __negdi2 (long a) [Runtime Function]

long long __negti2 (long long a) [Runtime Function]
These functions return the negation of a.

unsigned int __udivsi3 (unsigned int a, unsigned int b) [Runtime Function]

unsigned long __udivdi3 (unsigned long a, unsigned long b) [Runtime Function]

unsigned long long __udivti3 (unsigned long long a, [Runtime Function]

unsigned long long b)
These functions return the quotient of the unsigned division of a and b.

unsigned long __udivmoddi4 (unsigned long a, unsigned long [Runtime Function]
b, unsigned long *c)
unsigned long long __udivmodti4 (unsigned long long a, [Runtime Function]
unsigned long long b, unsigned long long *c)
These functions calculate both the quotient and remainder of the unsigned division
of a and b. The return value is the quotient, and the remainder is placed in variable
pointed to by c.

unsigned int __umodsi3 (unsigned int a, unsigned int b) [Runtime Function]
unsigned long __umoddi3 (unsigned long a, unsigned long b) [Runtime Function]
unsigned long long __umodti3 (unsigned long long a, [Runtime Function]

unsigned long long b)
These functions return the remainder of the unsigned division of a and b.

4.1.2 Comparison functions

The following functions implement integral comparisons. These functions implement a low-
level compare, upon which the higher level comparison operators (such as less than and
greater than or equal to) can be constructed. The returned values lie in the range zero
to two, to allow the high-level operators to be implemented by testing the returned result
using either signed or unsigned comparison.

int __cmpdi2 (long a, long b) [Runtime Function]
int __cmpti2 (long long a, long long b) [Runtime Function]
These functions perform a signed comparison of a and b. If a is less than b, they
return 0; if a is greater than b, they return 2; and if a and b are equal they return 1.

int __ucmpdi2 (unsigned long a, unsigned long b) [Runtime Function]
int __ucmpti2 (unsigned long long a, unsigned long long b) [Runtime Function]
These functions perform an unsigned comparison of a and b. If a is less than b, they
return 0; if a is greater than b, they return 2; and if a and b are equal they return 1.

Chapter 4: The GCC low-level runtime library 11

4.1.3 Trapping arithmetic functions

The following functions implement trapping arithmetic. These functions call the libc func-
tion abort upon signed arithmetic overflow.

int __absvsi2 (int a) [Runtime Function]

long __absvdi2 (long a) [Runtime Function]
These functions return the absolute value of a.

int __addvsi3 (int a, int b) [Runtime Function]

long __addvdi3 (long a, long b) [Runtime Function]
These functions return the sum of a and b; that is a + b.

int __mulvsi3 (int a, int b) [Runtime Function]

long __mulvdi3 (long a, long b) [Runtime Function]
The functions return the product of a and b; that is a * b.

int __negvsi2 (int a) [Runtime Function]

long __negvdi2 (long a) [Runtime Function]
These functions return the negation of a; that is -a.

int __subvsi3 (int a, int b) [Runtime Function]

long __subvdi3 (long a, long b) [Runtime Function]

These functions return the difference between b and a; that is a - b.

4.1.4 Bit operations

int
int
int

int
int
int

int
int

int
int
int

__clzsi2 (int a) [Runtime Function]
__clzdi2 (long a) [Runtime Function]
__clzti2 (long long a) [Runtime Function]

These functions return the number of leading 0-bits in a, starting at the most signif-
icant bit position. If a is zero, the result is undefined.

__ctzsi2 (int a) [Runtime Function]
__ctzdi2 (long a) [Runtime Function]
__ctzti2 (long long a) [Runtime Function]

These functions return the number of trailing 0-bits in a, starting at the least signif-
icant bit position. If a is zero, the result is undefined.

__ffsdi2 (long a) [Runtime Function]
__ffsti2 (long long a) [Runtime Function]
These functions return the index of the least significant 1-bit in a, or the value zero
if a is zero. The least significant bit is index one.

__paritysi2 (int a) [Runtime Function]
__paritydi2 (long a) [Runtime Function]
__parityti2 (long long a) [Runtime Function]

These functions return the value zero if the number of bits set in a is even, and the
value one otherwise.

12 GNU Compiler Collection (GCC) Internals

int __popcountsi2 (int a) [Runtime Function]
int __popcountdi2 (long a) [Runtime Function]
int __popcountti2 (long long a) [Runtime Function]

These functions return the number of bits set in a.

int32_t __bswapsi2 (int32_t a) [Runtime Function]
int64_t __bswapdi2 (int64-t a) [Runtime Function]
These functions return the a byteswapped.

4.2 Routines for floating point emulation

The software floating point library is used on machines which do not have hardware support
for floating point. It is also used whenever ‘-msoft-float’ is used to disable generation of
floating point instructions. (Not all targets support this switch.)

For compatibility with other compilers, the floating point emulation routines can be
renamed with the DECLARE_LIBRARY_RENAMES macro (see Section 17.13 [Library Calls]
page 491). In this section, the default names are used.

)

Presently the library does not support XFmode, which is used for long double on some
architectures.

4.2.1 Arithmetic functions

[Runtime Function]
double __adddf3 (double a, double b) [Runtime Function]
long double __addtf3 (long double a, long double b) [Runtime Function]
long double __addxf3 (long double a, long double b) [Runtime Function]

These functions return the sum of a and b.

float __addsf3 (float a, float b)

float __subsf3 (float a, float b) [Runtime Function]
double __subdf3 (double a, double b) [Runtime Function]
long double __subtf3 (long double a, long double b) [Runtime Function]
long double __subxf3 (long double a, long double b) [Runtime Function]

These functions return the difference between b and a; that is, a — b.

- [Runtime Function
double __muldf3 (double a, double b) [Runtime Function
long double __multf3 (long double a, long double b) [Runtime Function
long double __mulxf3 (long double a, long double b) [Runtime Function

These functions return the product of a and b.

float __mulsf3 (float a, float b)

]
]
]
]

float __divsf3 (float a, float b) [Runtime Function]
double __divdf3 (double a, double b) [Runtime Function]
long double __divtf3 (long double a, long double b) [Runtime Function]
long double __divxf3 (long double a, long double b) [Runtime Function]

These functions return the quotient of a and b; that is, a/b.

double __negdf2 (double a) [Runtime Function]

long double _negtf2 (long double a) [Runtime Function]

float __negsf2 (float a) [Runtime Function]

Chapter 4: The GCC low-level runtime library 13

long double __negxf2 (long double a) [Runtime Function]
These functions return the negation of a. They simply flip the sign bit, so they can
produce negative zero and negative NaN.

4.2.2 Conversion functions

- Runtime Function
long double __extendsftf2 (float a) Runtime Function

double __extendsfdf2 (float a) []
[]
_extendsfxf2 (foat a) [Runtime Function]
[]
[]

long double _ (
long double __extenddftf2 (double a) Runtime Function
long double __extenddfxf2 (double a) Runtime Function

These functions extend a to the wider mode of their return type.

double __truncxfdf2 (long double a) [Runtime Function]
double __trunctfdf2 (long double a) [Runtime Function]
float __truncxfsf2 (long double a) [Runtime Function]
[]

|

float __trunctfsf2 (long double a) Runtime Function

float __truncdfsf2 (double a) [Runtime Function
These functions truncate a to the narrower mode of their return type, rounding toward
zZero.

int __fixsfsi (float a) [Runtime Function]

int __fixdfsi (double a) [Runtime Function]

int __fixtfsi (long double a) [Runtime Function]

int __fixxfsi (long double a) [Runtime Function]

These functions convert a to a signed integer, rounding toward zero.

long __fixsfdi (float a) [Runtime Function]

long __fixdfdi (double a) [Runtime Function]

long __fixtfdi (long double a) [Runtime Function]

long __fixxfdi (long double a) [Runtime Function]
These functions convert a to a signed long, rounding toward zero.

long long __fixsfti (float a) [Runtime Function]

long long __fixdfti (double a) [Runtime Function]

long long __fixtfti (long double a) [Runtime Function]

long long __fixxfti (long double a) [Runtime Function]
These functions convert a to a signed long long, rounding toward zero.

unsigned int __fixunssfsi (float a) [Runtime Function]
unsigned int __fixunsdfsi (double a) [Runtime Function]
unsigned int __fixunstfsi (long double a) [Runtime Function]
unsigned int __fixunsxfsi (long double a) [Runtime Function]

These functions convert a to an unsigned integer, rounding toward zero. Negative
values all become zero.

unsigned long __fixunssfdi (float a) [Runtime Function]
unsigned long __fixunsdfdi (double a) [Runtime Function]
unsigned long __fixunstfdi (long double a) [Runtime Function]

14 GNU Compiler Collection (GCC) Internals

unsigned long __fixunsxfdi (long double a) [Runtime Function]
These functions convert a to an unsigned long, rounding toward zero. Negative values
all become zero.

unsigned long long __fixunssfti (float a) [Runtime Function]
unsigned long long __fixunsdfti (double a) [Runtime Function]
unsigned long long __fixunstfti (long double a) [Runtime Function]
unsigned long long __fixunsxfti (long double a) [Runtime Function]

These functions convert a to an unsigned long long, rounding toward zero. Negative

values all become zero.
float __floatsisf (int i) [Runtime Function]
double __floatsidf (int i) [Runtime Function]
long double __floatsitf (int i) [Runtime Function]
long double __floatsixf (int i) [Runtime Function]
These functions convert i, a signed integer, to floating point.

float __floatdisf (long i) [Runtime Function]

double __floatdidf (long i) [Runtime Function]

long double __floatditf (long i) [Runtime Function]

long double __floatdixf (long i) [Runtime Function]
These functions convert i, a signed long, to floating point.

float __floattisf (long long 1) [Runtime Function]

double __floattidf (long long 1) [Runtime Function]

long double __floattitf (long long i) [Runtime Function]

long double __floattixf (long long i) [Runtime Function]
These functions convert i, a signed long long, to floating point.

float __floatunsisf (unsigned int i) [Runtime Function]
double __floatunsidf (unsigned int 1) [Runtime Function]
long double __floatunsitf (unsigned int i) [Runtime Function]
long double __floatunsixf (unsigned int i) [Runtime Function]

These functions convert i, an unsigned integer, to floating point.

float __floatundisf (unsigned long i) [Runtime Function]

double __floatundidf (unsigned long i) [Runtime Function]

long double __floatunditf (unsigned long i) [Runtime Function]

long double __floatundixf (unsigned long i) [Runtime Function]
These functions convert i, an unsigned long, to floating point.

float __floatuntisf (unsigned long long 1) [Runtime Function]
double __floatuntidf (unsigned long long i) [Runtime Function]
long double __floatuntitf (unsigned long long 1) [Runtime Function]

]

long double __floatuntixf (unsigned long long 1) [Runtime Function
These functions convert i, an unsigned long long, to floating point.

Chapter 4: The GCC low-level runtime library 15

4.2.3 Comparison functions

There are two sets of basic comparison functions.

int __cmpsf2 (float a, float b) [Runtime Function]
int __cmpdf2 (double a, double b) [Runtime Function]
int __cmptf2 (long double a, long double b) [Runtime Function]

These functions calculate a <=> b. That is, if a is less than b, they return —1; if
a is greater than b, they return 1; and if a and b are equal they return 0. If either
argument is NaN they return 1, but you should not rely on this; if NaN is a possibility,
use one of the higher-level comparison functions.

int __unordsf2 (float a, float b) [Runtime Function]
int __unorddf2 (double a, double b) [Runtime Function]
int __unordtf2 (long double a, long double b) [Runtime Function]

These functions return a nonzero value if either argument is NaN, otherwise 0.

There is also a complete group of higher level functions which correspond directly to
comparison operators. They implement the ISO C semantics for floating-point comparisons,
taking NaN into account. Pay careful attention to the return values defined for each set.
Under the hood, all of these routines are implemented as

if (__unordXf2 (a, b))
return E;
return __cmpXf2 (a, b);
where E is a constant chosen to give the proper behavior for NaN. Thus, the meaning
of the return value is different for each set. Do not rely on this implementation; only the
semantics documented below are guaranteed.

int __eqsf2 (float a, float b) [Runtime Function]

int __eqdf2 (double a, double b) [Runtime Function]

int __eqtf2 (long double a, long double b) [Runtime Function]
These functions return zero if neither argument is NalN, and a and b are equal.

int __nesf2 (float a, float b) [Runtime Function]

int __nedf2 (double a, double b) [Runtime Function]

int __netf2 (long double a, long double b) [Runtime Function]
These functions return a nonzero value if either argument is NaN, or if a and b are
unequal.

int __gesf2 (float a, float b) [Runtime Function]

int __gedf2 (double a, double b) [Runtime Function]

int __getf2 (long double a, long double b) [Runtime Function]

These functions return a value greater than or equal to zero if neither argument is
NaN, and a is greater than or equal to b.

int __1tsf2 (float a, float b) [Runtime Function]
int __1tdf2 (double a, double b) [Runtime Function]
int __1ttf2 (long double a, long double b) [Runtime Function]

These functions return a value less than zero if neither argument is NaN, and a is
strictly less than b.

16 GNU Compiler Collection (GCC) Internals

int __lesf2 (float a, float b) [Runtime Function]
int __ledf2 (double a, double b) [Runtime Function]
int __letf2 (long double a, long double b) [Runtime Function]

These functions return a value less than or equal to zero if neither argument is NaN,
and a is less than or equal to b.

int __gtsf2 (float a, float b) [Runtime Function]
int __gtdf2 (double a, double b) [Runtime Function]
int __gttf2 (long double a, long double b) [Runtime Function]

These functions return a value greater than zero if neither argument is NaN, and a is
strictly greater than b.

4.2.4 Other floating-point functions

float __powisf2 (float a, int b) [Runtime Function]

double __powidf2 (double a, int b) [Runtime Function]

long double __powitf2 (long double a, int b) [Runtime Function]

long double __powixf2 (long double a, int b) [Runtime Function]
These functions convert raise a to the power b.

complex float __mulsc3 (float a, float b, float c, float d) [Runtime Function]

complex double __muldc3 (double a, double b, double c, [Runtime Function]
double d)

complex long double __multc3 (long double a, long double [Runtime Function]

b, long double c, long double d)

complex long double __mulxc3 (long double a, long double [Runtime Function]
b, long double c, long double d)

These functions return the product of a 4+ ib and ¢ + id, following the rules of C99

Annex G.
complex float __divsc3 (float a, float b, float c, float d) [Runtime Function]
complex double __divdc3 (double a, double b, double c, [Runtime Function]
double d)

complex long double __divtc3 (long double a, long double [Runtime Function]
b, long double c, long double d)

complex long double __divxc3 (long double a, long double [Runtime Function]
b, long double c, long double d)

These functions return the quotient of a + ib and ¢ + id (i.e., (a+ ib)/(c + id)),
following the rules of C99 Annex G.

4.3 Routines for decimal floating point emulation

The software decimal floating point library implements IEEE 754-2008 decimal floating
point arithmetic and is only activated on selected targets.

The software decimal floating point library supports either DPD (Densely Packed Deci-
mal) or BID (Binary Integer Decimal) encoding as selected at configure time.

Chapter 4: The GCC low-level runtime library

4.3.1 Arithmetic functions

_Decimal32 __ (-Decimal32 a, _Decimal32 b)
_Decimal32 __bid_addsd3 (_Decimal32 a, -Decimal32 b)
_Decimal64 __dpd_adddd3 (-Decimal64 a, -Decimal64 b)
_Decimal64 __bid_adddd3 (-Decimal64 a, -Decimal64 b)
_Decimal128 __dpd_addtd3 (_Decimall28 a, -Decimall28 b)
_Decimall28 __bid_addtd3 (_Decimall28 a, _Decimall28 b)

These functions return the sum of a and b.

dpd_addsd3

_Decimal32 __dpd_subsd3 (_Decimal32 a, -Decimal32 b)
_Decimal32 __bid_subsd3 (_Decimal32 a, -Decimal32 b)
_Decimal64 __dpd_subdd3 (_Decimal64 a, -Decimal64 b)
_Decimal64 __bid_subdd3 (_Decimal64 a, -Decimal64 b)
_Decimal128 __dpd_subtd3 (_Decimall28 a, -Decimall28 b)
_Decimall28 __bid_subtd3 (_Decimall28 a, -Decimall28 b)

17

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function

]
]
]
]
]
]

These functions return the difference between b and a; that is, a — b.

_Decimal32 __dpd_mulsd3

_Decimal32 __bid_mulsd3

_Decimal64 __dpd_muldd3

_Decimal64 __bid_muldd3 (_Decimal64 a, -Decimal64 b)

_Decimall128 __dpd_multd3 (_Decimall28 a, -Decimall28 b)

_Decimall28 __bid_multd3 (_Decimall28 a, -Decimall28 b)
These functions return the product of a and b.

-Decimal32 a, _Decimal32 b)
_Decimal32 a, _Decimal32 b)
_Decimal64 a, _Decimal64 b)

A~ N S~

_Decimal32 __dpd_divsd3 (_Decimal32 a, -Decimal32 b)
_Decimal32 __bid_divsd3 (_Decimal32 a, _Decimal32 b)
_Decimal64 __dpd_divdd3 (_Decimal64 a, -Decimal64 b)
_Decimal64 __bid_divdd3 (-Decimal64 a, -Decimal64 b)
_Decimall128 __dpd_divtd3 (_Decimall28 a, -Decimall28 b)
_Decimall28 __bid_divtd3 (_Decimall28 a, -Decimall28 b)
These functions return the quotient of a and b; that is, a/b.

_Decimal32 __dpd_negsd2 (_Decimal32 a)
_Decimal32 __bid_negsd2 (_Decimal32 a)
_Decimal64 __dpd_negdd2 (_Decimal64 a)
_Decimal64 __bid_negdd2 (-Decimal64 a)
_Decimal128 __dpd_negtd2 (_Decimall28 a)
_Decimal128 __bid_negtd2 (_Decimall28 a)

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function

]
]
]
]
]
]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

These functions return the negation of a. They simply flip the sign bit, so they can

produce negative zero and negative NaN.
4.3.2 Conversion functions

_Decimal64 __dpd_extendsddd2 (_Decimal32 a)
_Decimal64 __bid_extendsddd2 (_Decimal32 a)
_Decimal128 __dpd_extendsdtd2 (_Decimal32 a)
_Decimall28 __bid_extendsdtd2 (_Decimal32 a)

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

18 GNU Compiler Collection (GCC) Internals

Runtime Function
Runtime Function
Runtime Function
Runtime Function

_Decimall128 __dpd_extendddtd2 (_Decimal64 a) []
[]
[]
[]
[Runtime Function]
[]
[]
[]

_Decimall28 __bid_extendddtd2 (_Decimal64 a)
_Decimal32 __dpd_truncddsd2 ecimal64 a)
ecimal64 a)

(
_Decimal32 __bid_truncddsd2 (
_Decimal32 __dpd_trunctdsd2 (_-Decimall28 a)
_Decimal32 __bid_trunctdsd2 (_Decimall28 a)
_Decimal64 __dpd_trunctddd2 (_Decimall28 a) Runtime Function
_Decimal64 __bid_trunctddd2 (_Decimall28 a) Runtime Function
These functions convert the value a from one decimal floating type to another.

_Decimal64 __dpd_extendsfdd (float a)
_Decimal64 __bid_extendsfdd (float a)
_Decimal128 __dpd_extendsftd (float a)
_Decimall28 __bid_extendsftd (float a)
_Decimall28 __dpd_extenddftd (double a)
_Decimall28 __bid_extenddftd (double a)
_Decimall128 __dpd_extendxftd (long double a)

_D
_D
_D
_D

Runtime Function

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
_Decimal128 __bid_extendxftd (long double a) [Runtime Function]
_Decimal32 __dpd_truncdfsd (double a) [Runtime Function]
_Decimal32 __bid_truncdfsd (double a) [Runtime Function]
_Decimal32 __dpd_truncxfsd (long double a) [Runtime Function]
[Runtime Function]

[Runtime Function]

[Runtime Function]

[Runtime Function]

[]

[]

]

(
(
_Decimal32 __bid_truncxfsd (long double a)
_Decimal32 __dpd_trunctfsd (long double a)
_Decimal32 __bid_trunctfsd (long double a)
_Decimal64 __dpd_truncxfdd (long double a)
_Decimal64 __bid_truncxfdd (long double a) Runtime Function
_Decimal64 __dpd_trunctfdd (long double a) Runtime Function
_Decimal64 __bid_trunctfdd (long double a) [Runtime Function
These functions convert the value of a from a binary floating type to a decimal floating
type of a different size.

float __dpd_truncddsf (_Decimal64 a)

float __bid_truncddsf (_Decimal64 a)

float __dpd_trunctdsf (_Decimall28 a)
float __bid_trunctdsf (_Decimall28 a)
double __dpd_extendsddf (-Decimal32 a)
double __bid_extendsddf (.Decimal32 a)
double __dpd_trunctddf (_Decimall28 a) Runtime Function
double __bid_trunctddf (_Decimall28 a) Runtime Function

[Runtime Function]
[]
[]
[]
[]
[]
==
long double __dpd_extendsdxf (_Decimal32 a) [Runtime Function]
[]
[]
[]
[]
[]
[]
[]
[]

Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function

long double __bid_extendsdxf (_Decimal32 a) Runtime Function
long double __dpd_extendddxf (_Decimal64 a) Runtime Function
long double __bid_extendddxf (_Decimal64 a) Runtime Function
long double __dpd_trunctdxf (_Decimall28 a) Runtime Function
long double __bid_trunctdxf (-Decimall28 a) Runtime Function
long double __dpd_extendsdtf (_Decimal32 a) Runtime Function
-Decimal32 a) Runtime Function
_Decimal64 a) Runtime Function

long double __bid_extendsdtf
long double __dpd_extendddtf

—_

Chapter 4: The GCC low-level runtime library

long double __bid_extendddtf (_Decimal64 a)
These functions convert the value of a from a decimal floating type to a binary floating
type of a different size.

_Decimal32 __dpd_extendsfsd (float a)

_Decimal64 __dpd_extenddfdd (double a)

(
_Decimal32 __bid_extendsfsd (float a)

(

(

_Decimal64 __bid_extenddfdd (double a)

_Decimall28 __dpd_extendtftd (long double a)

_Decimall128 __bid_extendtftd (long double a)

float __dpd_truncsdsf (_Decimal32 a)

float __bid_truncsdsf (_Decimal32 a)

double __dpd_truncdddf (-Decimal64 a)

double __bid_truncdddf (-Decimal64 a)

long double __dpd_trunctdtf (_Decimall28 a)

long double __bid_trunctdtf (_Decimall28 a)
These functions convert the value of a between decimal and binary floating types of
the same size.

int __dpd_fixsdsi (
int __bid_fixsdsi (
__dpd_fixddsi (
(
(

int

int __bid_fixddsi
int __dpd_fixtdsi
int __bid_fixtdsi

_Decimal32 a
_Decimal32 a
_Decimal64 a
_Decimal64 a

)
)
)
)

_Decimall28 a)
(-Decimall28 a)

These functions convert a to a signed integer.

long __dpd_fixsddi (
long __bid_fixsddi (
long __dpd_fixdddi (_Decimal64
long __bid_fixdddi (
long __dpd_fixtddi (
long __bid_fixtddi

_Decimal32
_Decimal32

_Decimal64

)
a)
a)
a)

_Decimall28 a)
(-Decimall28 a)

These functions convert a to a signed long.

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

int
int
int
int
int
int

__dpd_fixunssdsi (-Decimal32 a)
(-Decimal32 a)
(-Decimal64 a)
(-Decimal64 a)
(_Decimall28 a)
(-Decimall28 a)
These functions convert a to an unsigned integer. Negative values all become zero.

__bid_fixunssdsi
__dpd_fixunsddsi
__bid_fixunsddsi
__dpd_fixunstdsi
__bid_fixunstdsi

unsigned long __dpd_fixunssddi
unsigned long __bid_fixunssddi

unsigned long __bid_fixunsdddi

(
(
unsigned long __dpd_fixunsdddi (
(
(

unsigned long __dpd_fixunstddi

-Decimal32 a)
_Decimal32 a)
_Decimal64 a)
_Decimal64 a)
_Decimall28 a)

19
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

20

GNU Compiler Collection (GCC) Internals

unsigned long __bid_fixunstddi (_Decimall28 a)
These functions convert a to an unsigned long. Negative values all become zero.

_Decimal32 __dpd_floatsisd
_Decimal32 __bid_floatsisd
_Decimal64 __dpd_floatsidd
_Decimal64 __bid_floatsidd

int 1)
int 1)
int 1)
int 1)

~ A~~~

_Decimall28 __dpd_floatsitd (int i)
_Decimall28 __bid_floatsitd (int i)
These functions convert i, a signed integer, to decimal floating point.

_Decimal32 __dpd_floatdisd (long i)
_Decimal32 __bid_floatdisd (long i)
_Decimal64 __dpd_floatdidd (long i)
_Decimal64 __bid_floatdidd (long i)

_Decimall28

dpd_floatditd (long 1)

_Decimall28 __bid_floatditd (long i)
These functions convert i, a signed long, to decimal floating point.

_Decimal32 __dpd_floatunssisd

_Decimal64 __dpd_floatunssidd

unsigned int i

unsigned int i

()

_Decimal32 __bid_floatunssisd (unsigned int i)
()
(

_Decimal64 __bid_floatunssidd

nsigned int 1)

u
_Decimall28 __dpd_floatunssitd (unsigned int 1)
_Decimall128 __bid_floatunssitd (unsigned int i)
These functions convert i, an unsigned integer, to decimal floating point.

_Decimal32 __dpd_floatunsdisd
_Decimal32 __bid_floatunsdisd

unsigned long 1)
unsigned long 1)
)

(
(

_Decimal64 __dpd_floatunsdidd (unsigned long i
(

_Decimal64 __bid_floatunsdidd (u
_Decimall128 __dpd_floatunsditd (unsigned long i)
_Decimall128 __bid_floatunsditd (unsigned long 1)

nsigned long 1)

[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

These functions convert i, an unsigned long, to decimal floating point.

4.3.3 Comparison functions

int
int
int
int
int
int

__dpd_unordsd?2
__bid_unordsd2
__dpd_unorddd?2
__bid_unorddd2
dpd_unordtd?2

(
(
(
(
(

-Decimal32 a, _Decimal32 b)
-Decimal32 a, _Decimal32 b)
_Decimal64 a, _Decimal64 b)
_Decimal64 a, _Decimal64 b)
_Decimall28 a, _Decimall28 b)

__bid_unordtd2 (_Decimall28 a, -Decimall28 b)
These functions return a nonzero value if either argument is NaN, otherwise 0.

Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function

[]
[]
[]
[]
[]
[]

There is also a complete group of higher level functions which correspond directly to
comparison operators. They implement the ISO C semantics for floating-point comparisons,
taking NaN into account. Pay careful attention to the return values defined for each set.
Under the hood, all of these routines are implemented as

Chapter 4: The GCC low-level runtime library 21

if (__bid_unordXd2 (a, b))
return E;
return __bid_cmpXd2 (a, b);

where E is a constant chosen to give the proper behavior for NaN. Thus, the meaning
of the return value is different for each set. Do not rely on this implementation; only the
semantics documented below are guaranteed.

int __dpd_eqsd2 (_Decimal32 a, _Decimal32 b) [Runtime Function]
int __bid_eqsd2 (_-Decimal32 a, _Decimal32 b) [Runtime Function]
int __dpd_eqdd2 (_Decimal64 a, _Decimal64 b) [Runtime Function]
int __bid_eqdd2 (_-Decimal64 a, Decimal64 b) [Runtime Function]
int __dpd_eqtd2 (_Decimall28 a, Decimall28 b) [Runtime Function]
int __bid_eqtd2 (_Decimall28 a, _Decimall28 b) [Runtime Function]

These functions return zero if neither argument is NalN, and a and b are equal.

Runtime Function
Runtime Function

int __dpd_nesd2 (_Decimal32 a, _Decimal32 b []
[]
[Runtime Function]
[]
[]

]

(-D)
int __bid_nesd2 (_Decimal32 a, _Decimal32 b)
int __dpd_nedd2 (_Decimal64 a, _Decimal64 b)
int __bid_nedd2 (_Decimal64 a, _Decimal64 b)
int __dpd_netd2 (_Decimall28 a, _Decimall28 b)

Runtime Function
Runtime Function

int __bid_netd2 (_Decimall28 a, -Decimall28 b) [Runtime Function
These functions return a nonzero value if either argument is NaN, or if a and b are
unequal.

int __dpd_gesd2 (_Decimal32 a, _Decimal32 b) [Runtime Function]
int __bid_gesd2 (_Decimal32 a, _Decimal32 b) [Runtime Function]
int __dpd_gedd2 (-Decimal64 a, -Decimal64 b) [Runtime Function]
int __bid_gedd2 (_Decimal64 a, _Decimal64 b) [Runtime Function]
int __dpd_getd2 (_Decimall28 a, _Decimall28 b) [Runtime Function]
int __bid_getd2 (_Decimall28 a, -Decimall28 b) [Runtime Function]

These functions return a value greater than or equal to zero if neither argument is

NaN, and a is greater than or equal to b.

int __dpd_1tsd2 (_Decimal32 a, _Decimal32 b)
int __bid_1tsd2 (_Decimal32 a, _Decimal32 b)
)
)

(Runtime Function
(
int __dpd_1tdd2 (_Decimal64 a, -Decimal64 b
(
(

Runtime Function
Runtime Function
int __bid_1tdd2 (_Decimal64 a, _Decimal64 b Runtime Function
int __dpd_1ttd2 (_Decimall28 a, -Decimall28 b) Runtime Function
int __bid_1ttd2 (_Decimall28 a, -Decimall28 b) Runtime Function

These functions return a value less than zero if neither argument is NaN, and a is

strictly less than b.

[]
[]
[]
[]
[]
[]

int __dpd_lesd2 (_Decimal32 a, _Decimal32 b) [Runtime Function]
int __bid_lesd2 (_Decimal32 a, -Decimal32 b) [Runtime Function]
int __dpd_ledd2 (_Decimal64 a, _Decimal64 b) [Runtime Function]
int __bid_ledd2 (_Decimal64 a, Decimal64 b) [Runtime Function]
int __dpd_letd2 (_Decimall28 a, _Decimall28 b) [Runtime Function]

22 GNU Compiler Collection (GCC) Internals

int __bid_letd2 (_Decimall28 a, -Decimall28 b) [Runtime Function]
These functions return a value less than or equal to zero if neither argument is NaN,
and a is less than or equal to b.

int __dpd_gtsd2 (_Decimal32 a, _Decimal32 b
_Decimal32 a, _Decimal32 b

) Runtime Function
int __bid_gtsd2)
_Decimal64 a, _Decimal64 b)
)

Runtime Function
Runtime Function

[]
[]
int __dpd_gtdd2 []
[Runtime Function]
[]
[]

(
(
int __bid_gtdd2 (-Decimal64 a, -Decimal64 b
int __dpd_gttd2 (_Decimall28 a, -Decimall28 b) Runtime Function
int __bid_gttd2 (_Decimall28 a, Decimall28 b) Runtime Function
These functions return a value greater than zero if neither argument is NaN, and a is
strictly greater than b.

4.4 Routines for fixed-point fractional emulation

The software fixed-point library implements fixed-point fractional arithmetic, and is only
activated on selected targets.

For ease of comprehension fract is an alias for the _Fract type, accum an alias for
_Accum, and sat an alias for _Sat.

For illustrative purposes, in this section the fixed-point fractional type short fract is as-
sumed to correspond to machine mode QQmode; unsigned short fract to UQQmode; fract
to HQmode; unsigned fract to UHQmode; long fract to SQmode; unsigned long fract
to USQmode; long long fract to DQmode; and unsigned long long fract to UDQmode.
Similarly the fixed-point accumulator type short accum corresponds to HAmode;
unsigned short accum to UHAmode; accum to SAmode; unsigned accum to USAmode;
long accum to DAmode; unsigned long accum to UDAmode; long long accum to TAmode;
and unsigned long long accum to UTAmode.

4.4.1 Arithmetic functions

short fract __addqq3 (short fract a, short fract b) Runtime Function
fract __addhq3 (fract a, fract b) Runtime Function

[]
[]
_addsq3 (long fract a, long fract b) [Runtime Function]
[]

long fract _

long long fract __adddq3 (long long fract a, long long fract Runtime Function
b)

unsigned short fract __adduqq3 (unsigned short fract a, [Runtime Function]
unsigned short fract b)

unsigned fract __adduhq3 (unsigned fract a, unsigned fract [Runtime Function]
b)

unsigned long fract __addusq3 (unsigned long fract a, [Runtime Function]

unsigned long fract b)
unsigned long long fract __addudq3 (unsigned long long [Runtime Function]
fract a, unsigned long long fract b)
short accum __addha3 (short accum a, short accum b)
accum __addsa3 (accum a, accum b)
long accum __addda3 (long accum a, long accum b)
long long accum __addta3 (long long accum a, long long

accum b)

Runtime Function
Runtime Function
Runtime Function
Runtime Function

[]
[]
[]
[]

Chapter 4: The GCC low-level runtime library

unsigned short accum __adduha3 (unsigned short accum a,
unsigned short accum b)

unsigned accum __addusa3 (unsigned accum a, unsigned
accum b)

unsigned long accum __adduda3 (unsigned long accum a,
unsigned long accum b)

unsigned long long accum __adduta3 (unsigned long long
accum a, unsigned long long accum b)

These functions return the sum of a and b.

short fract __ssaddqq3 (short fract a, short fract b)

fract __ssaddhq3 (fract a, fract b)

long fract __ssaddsq3 (long fract a, long fract b)

long long fract __ssadddq3 (long long fract a, long long
fract b)

short accum __ssaddha3 (short accum a, short accum b)

accum __ssaddsa3 (accum a, accum b)

long accum __ssaddda3 (long accum a, long accum b)
long long accum __ssaddta3 (long long accum a, long long
accum b)

23

[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

These functions return the sum of a and b with signed saturation.

unsigned short fract __usadduqq3 (unsigned short fract a,
unsigned short fract b)

unsigned fract __usadduhq3 (unsigned fract a, unsigned
fract b)

unsigned long fract __usaddusq3 (unsigned long fract a,
unsigned long fract b)

unsigned long long fract __usaddudq3 (unsigned long
long fract a, unsigned long long fract b)

unsigned short accum __usadduha3 (unsigned short accum
a, unsigned short accum b)

unsigned accum __usaddusa3 (unsigned accum a, unsigned
accum b)

unsigned long accum __usadduda3 (unsigned long accum a,
unsigned long accum b)

unsigned long long accum __usadduta3 (unsigned long
long accum a, unsigned long long accum b)

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]

These functions return the sum of a and b with unsigned saturation.

short fract __subqq3 (short fract a, short fract b)

fract __subhq3 (fract a, fract b)

long fract __subsq3 (long fract a, long fract b)

long long fract __subdq3 (long long fract a, long long fract
b)

unsigned short fract __subuqq3 (unsigned short fract a,
unsigned short fract b)

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]

24 GNU Compiler Collection (GCC) Internals

unsigned fract __subuhq3 (unsigned fract a, unsigned fract
b)

unsigned long fract __subusq3 (unsigned long fract a,
unsigned long fract b)

unsigned long long fract __subudq3 (unsigned long long
fract a, unsigned long long fract b)

short accum __subha3 (short accum a, short accum b)

accum __subsa3 (accum a, accum b)

long accum __subda3 (long accum a, long accum b)

long long accum __subta3 (long long accum a, long long
accum b)

unsigned short accum __subuha3 (unsigned short accum a,
unsigned short accum b)

unsigned accum __subusa3 (unsigned accum a, unsigned
accum b)

unsigned long accum __subuda3 (unsigned long accum a,
unsigned long accum b)

unsigned long long accum __subuta3 (unsigned long long
accum a, unsigned long long accum b)

These functions return the difference of a and b; that is, a - b.

short fract

sssubqq3 (short fract a, short fract b)

fract __sssubhqg3 (fract a, fract b)

long fract __sssubsq3 (long fract a, long fract b)

long long fract __sssubdq3 (long long fract a, long long
fract b)

short accum __sssubha3 (short accum a, short accum b)

accum __sssubsa3 (accum a, accum b)

long accum __sssubda3 (long accum a, long accum b)
long long accum __sssubta3 (long long accum a, long long
accum b)

[Runtime Function]
[Runtime Function]
[Runtime Function]

Runtime Function
Runtime Function
Runtime Function
Runtime Function

[]
[]
[]
[]

[Runtime Function]
[Runtime Function]

[Runtime Function]

[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

These functions return the difference of a and b with signed saturation; that is, a -

b.

unsigned short fract __ussubuqq3 (unsigned short fract a,
unsigned short fract b)

unsigned fract __ussubuhq3 (unsigned fract a, unsigned
fract b)

unsigned long fract __ussubusq3 (unsigned long fract a,
unsigned long fract b)

unsigned long long fract __ussubudq3 (unsigned long
long fract a, unsigned long long fract b)

unsigned short accum __ussubuha3 (unsigned short accum
a, unsigned short accum b)

unsigned accum __ussubusa3 (unsigned accum a, unsigned
accum b)

unsigned long accum __ussubuda3 (unsigned long accum a,
unsigned long accum b)

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]

Chapter 4: The GCC low-level runtime library

unsigned long long accum __ussubuta3 (unsigned long
long accum a, unsigned long long accum b)

25

[Runtime Function]

These functions return the difference of a and b with unsigned saturation; that is, a

- b.

short fract __mulqq3 (short fract a, short fract b)

fract __mulhq3 (fract a, fract b)

long fract __mulsq3 (long fract a, long fract b)

long long fract __muldq3 (long long fract a, long long fract
b)

unsigned short fract __muluqq3 (unsigned short fract a,
unsigned short fract b)

unsigned fract __muluhq3 (unsigned fract a, unsigned fract
b)

unsigned long fract __mulusq3 (unsigned long fract a,
unsigned long fract b)

unsigned long long fract __muludq3 (unsigned long long
fract a, unsigned long long fract b)

short accum __mulha3 (short accum a, short accum b)

accum __mulsa3 (accum a, accum b)

long accum __mulda3 (long accum a, long accum b)

long long accum __multa3 (long long accum a, long long
accum b)

unsigned short accum __muluha3 (unsigned short accum a,
unsigned short accum b)

unsigned accum __mulusa3 (unsigned accum a, unsigned
accum b)

unsigned long accum __muluda3 (unsigned long accum a,
unsigned long accum b)

unsigned long long accum __muluta3 (unsigned long long
accum a, unsigned long long accum b)

These functions return the product of a and b.

short fract __ssmulqq3 (short fract a, short fract b)

fract __ssmulhq3 (fract a, fract b)

long fract __ssmulsq3 (long fract a, long fract b)

long long fract __ssmuldq3 (long long fract a, long long
fract b)

short accum __ssmulha3 (short accum a, short accum b)

accum __ssmulsa3 (accum a, accum b)

long accum __ssmulda3 (long accum a, long accum b)
long long accum __ssmulta3 (long long accum a, long long
accum b)

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]

[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

These functions return the product of a and b with signed saturation.

26 GNU Compiler Collection (GCC) Internals

unsigned short fract __usmuluqq3 (unsigned short fract a,
unsigned short fract b)

unsigned fract __usmuluhq3 (unsigned fract a, unsigned
fract b)

unsigned long fract __usmulusq3 (unsigned long fract a,
unsigned long fract b)

unsigned long long fract __usmuludq3 (unsigned long
long fract a, unsigned long long fract b)

unsigned short accum __usmuluha3 (unsigned short accum
a, unsigned short accum b)

unsigned accum __usmulusa3 (unsigned accum a, unsigned
accum b)

unsigned long accum __usmuluda3 (unsigned long accum a,
unsigned long accum b)

unsigned long long accum __usmuluta3 (unsigned long
long accum a, unsigned long long accum b)

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]

These functions return the product of a and b with unsigned saturation.

short fract __divqq3 (short fract a, short fract b)

fract __divhq3 (fract a, fract b)

long fract __divsq3 (long fract a, long fract b)

long long fract __divdq3 (long long fract a, long long fract
b)

short accum __divha3 (short accum a, short accum b)

accum __divsa3 (accum a, accum b)

long accum __divda3 (long accum a, long accum b)

long long accum __divta3 (long long accum a, long long
accum b)

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

These functions return the quotient of the signed division of a and b.

unsigned short fract __udivuqq3 (unsigned short fract a,
unsigned short fract b)

unsigned fract __udivuhq3 (unsigned fract a, unsigned fract
b)

unsigned long fract __udivusq3 (unsigned long fract a,
unsigned long fract b)

unsigned long long fract __udivudq3 (unsigned long long
fract a, unsigned long long fract b)

unsigned short accum __udivuha3 (unsigned short accum a,
unsigned short accum b)

unsigned accum __udivusa3 (unsigned accum a, unsigned
accum b)

unsigned long accum __udivuda3 (unsigned long accum a,
unsigned long accum b)

unsigned long long accum __udivuta3 (unsigned long long
accum a, unsigned long long accum b)

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]

These functions return the quotient of the unsigned division of a and b.

Chapter 4: The GCC low-level runtime library

short fract __ssdivqq3 (short fract a, short fract b)

fract __ssdivhqg3 (fract a, fract b)

long fract __ssdivsq3 (long fract a, long fract b)

long long fract __ssdivdq3 (long long fract a, long long
fract b)

short accum __ssdivha3 (short accum a, short accum b)

accum __ssdivsa3 (accum a, accum b)

long accum __ssdivda3 (long accum a, long accum b)
long long accum __ssdivta3 (long long accum a, long long
accum b)

27

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

These functions return the quotient of the signed division of a and b with signed

saturation.

unsigned short fract __usdivuqq3 (unsigned short fract a,
unsigned short fract b)

unsigned fract __usdivuhq3 (unsigned fract a, unsigned
fract b)

unsigned long fract __usdivusq3 (unsigned long fract a,
unsigned long fract b)

unsigned long long fract __usdivudq3 (unsigned long
long fract a, unsigned long long fract b)

unsigned short accum __usdivuha3 (unsigned short accum
a, unsigned short accum b)

unsigned accum __usdivusa3 (unsigned accum a, unsigned
accum b)

unsigned long accum __usdivuda3 (unsigned long accum a,
unsigned long accum b)

unsigned long long accum __usdivuta3 (unsigned long
long accum a, unsigned long long accum b)

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]

These functions return the quotient of the unsigned division of a and b with unsigned

saturation.

short fract __negqq2 (short fract a)

fract __neghq2 (fract a)

long fract __negsq2 (long fract a)

long long fract __negdq2 (long long fract a)

unsigned short fract __neguqq2 (unsigned short fract a)

unsigned fract __neguhq2 (unsigned fract a)

unsigned long fract __negusq2 (unsigned long fract a)

unsigned long long fract __negudq2 (unsigned long long
fract a)

short accum __negha?2 (short accum a)

accum __negsa2 (accum a)

long accum __negda2 (long accum a)

long long accum __negta2 (long long accum a)

unsigned short accum __neguha2 (unsigned short accum a)

unsigned accum __negusa2 (unsigned accum a)

unsigned long accum __neguda2 (unsigned long accum a)

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

28 GNU Compiler Collection (GCC) Internals

unsigned long long accum __neguta2 (unsigned long long
accum a)

These functions return the negation of a.

short fract __ssnegqq2 (short fract a)

fract __ssneghq2 (fract a)

long fract __ssnegsq2 (long fract a)

long long fract __ssnegdq2 (long long fract a)
short accum __ssnegha?2 (short accum a)

accum __ssnegsa2 (accum a)

long accum __ssnegda2 (long accum a)

long long accum __ssnegta2 (long long accum a)

These functions return the negation of a with signed saturation.

unsigned short fract __usneguqq2 (unsigned short fract a)

unsigned fract __usneguhq2 (unsigned fract a)

unsigned long fract __usnegusq2 (unsigned long fract a)

unsigned long long fract __usnegudq2 (unsigned long
long fract a)

unsigned short accum
a)

unsigned accum __usnegusa2 (unsigned accum a)

unsigned long accum __usneguda?2 (unsigned long accum a)

unsigned long long accum __usneguta2 (unsigned long
long accum a)

__usneguha?2 (unsigned short accum

[Runtime Function]

Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function

[]
[]
[]
[]
[]
[]
[]
[]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

These functions return the negation of a with unsigned saturation.

short fract __ashlqq3 (short fract a, int b)

fract __ashlhq3 (fract a, int b)

long fract __ashlsq3 (long fract a, int b)

long long fract __ashldq3 (long long fract a, int b)

unsigned short fract __ashluqq3 (unsigned short fract a,
int b)

unsigned fract __ashluhq3 (unsigned fract a, int b)

unsigned long fract __ashlusq3 (unsigned long fract a, int
b)

unsigned long long fract
fract a, int b)

short accum __ashlha3 (short accum a, int b)

accum __ashlsa3 (accum a, int b)

long accum __ashlda3 (long accum a, int b)

long long accum __ashlta3 (long long accum a, int b)

unsigned short accum __ashluha3 (unsigned short accum a,
int b)

unsigned accum __ashlusa3 (unsigned accum a, int b)

unsigned long accum __ashluda3 (unsigned long accum a,

int b)

_ashludqg3 (unsigned long long

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

Chapter 4: The GCC low-level runtime library

unsigned long long accum __ashluta3 (unsigned long long
accum a, int b)

These functions return the result of shifting a left by b bits.

short fract __ashrqq3 (short fract a, int b)

fract __ashrhq3 (fract a, int b)

long fract __ashrsq3 (long fract a, int b)

long long fract __ashrdq3 (long long fract a, int b)
short accum __ashrha3 (short accum a, int b)

accum __ashrsa3 (accum a, int b)

long accum __ashrda3 (long accum a, int b)

long long accum __ashrta3 (long long accum a, int b)

29
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

These functions return the result of arithmetically shifting a right by b bits.

unsigned short fract
int b)

unsigned fract __lshruhq3 (unsigned fract a, int b)

unsigned long fract __lshrusq3 (unsigned long fract a, int
b)

unsigned long long fract
fract a, int b)

unsigned short accum
int b)

unsigned accum __lshrusa3 (unsigned accum a, int b)

unsigned long accum __lshruda3 (unsigned long accum a,
int b)

unsigned long long accum
accum a, int b)

_1shruqqg3 (unsigned short fract a,

_1shrudqg3 (unsigned long long

_1lshruha3 (unsigned short accum a,

_1lshruta3 (unsigned long long

[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]

These functions return the result of logically shifting a right by b bits.

fract __ssashlhq3 (fract a, int b)

long fract __ssashlsq3 (long fract a, int b)

long long fract __ssashldq3 (long long fract a, int b)
short accum __ssashlha3 (short accum a, int b)

accum __ssashlsa3 (accum a, int b)

long accum __ssashlda3 (long accum a, int b)

long long accum __ssashlta3 (long long accum a, int b)

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

These functions return the result of shifting a left by b bits with signed saturation.

unsigned short fract
a, int b)

unsigned fract __usashluhq3 (unsigned fract a, int b)

unsigned long fract __usashlusq3 (unsigned long fract a,
int b)

unsigned long long fract
long fract a, int b)

unsigned short accum
a, int b)

_usashluqq3 (unsigned short fract

_usashludq3 (unsigned long

_usashluha3 (unsigned short accum

[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]

[Runtime Function]

30 GNU Compiler Collection (GCC) Internals

unsigned accum __usashlusa3 (unsigned accum a, int b) [Runtime Function]

unsigned long accum __usashluda3 (unsigned long accum [Runtime Function]
a, int b)
unsigned long long accum __usashluta3 (unsigned long [Runtime Function]

long accum a, int b)
These functions return the result of shifting a left by b bits with unsigned saturation.

4.4.2 Comparison functions

The following functions implement fixed-point comparisons. These functions implement a
low-level compare, upon which the higher level comparison operators (such as less than and
greater than or equal to) can be constructed. The returned values lie in the range zero
to two, to allow the high-level operators to be implemented by testing the returned result
using either signed or unsigned comparison.

Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function

int __cmpqq2 (short fract a, short fract b)

int __cmphq2 (fract a, fract b)

int __cmpsq2 (long fract a, long fract b)

int __cmpdq2 (long long fract a, long long fract b)

int __cmpuqq2 (unsigned short fract a, unsigned short fract b)

int __cmpuhq2 (unsigned fract a, unsigned fract b)

int __cmpusq2 (unsigned long fract a, unsigned long fract b)

int __cmpudq2 (unsigned long long fract a, unsigned long long

fract b)

int __cmpha2 (short accum a, short accum b) [Runtime Function]

int __cmpsa2 (accum a, accum b) [Runtime Function]
(Iong accum a, long accum b) [Runtime Function]
([]

[]

[]
[]
[]
[]
[]
[]
[]
[]

int __cmpda2
int __cmpta2 (long long accum a, long long accum b) Runtime Function
Runtime Function

int __cmpuha?2 (unsigned short accum a, unsigned short accum

b)

int __cmpusa2 (unsigned accum a, unsigned accum b) [Runtime Function]

int __cmpuda2 (unsigned long accum a, unsigned long accum b) [Runtime Function]

int __cmputa2 (unsigned long long accum a, unsigned long long [Runtime Function]
accum b)

These functions perform a signed or unsigned comparison of a and b (depending on
the selected machine mode). If a is less than b, they return 0; if a is greater than b,
they return 2; and if a and b are equal they return 1.

4.4.3 Conversion functions

Runtime Function
Runtime Function

Runtime Function
short accum __fractqgha (short fract a) Runtime Function

fract __fractqqhq2 (short fract a) []
[]
e
accum __fractqqgsa (short fract a) [Runtime Function]
[]
[]
[]
[]

long fract __fractqqgsq2 (short fract a)
long long fract __fractqqdq2 (short fract a)

long accum __fractqqgda (short fract a) Runtime Function
long long accum __fractqqta (short fract a) Runtime Function
unsigned short fract __fractqquqq (short fract a) Runtime Function

Runtime Function

unsigned fract __fractqquhq (short fract a)

Chapter 4: The GCC low-level runtime library

unsigned long fract __fractqqusq (short fract a)
unsigned long long fract __fractqqudq (short fract a)
unsigned short accum __fractqquha (short fract a)
unsigned accum __fractqqusa (short fract a)

unsigned long accum __fractqquda (short fract a)
unsigned long long accum __fractqquta (short fract a)
signed char __fractqqqi (short fract a)

short __fractqqhi (short fract a)

int __fractqqsi (short fract a)

long __fractqqdi (short fract a)

long long __fractqqti (short fract a)

float __fractqqgsf (short fract a)

double __fractqqdf (short fract a)
short fract __fracthqqq2 (fract a)
long fract __fracthqgsq2 (fract a)

long long fract __fracthqdq2 (fract a)
short accum __fracthgha (fract a)
accum __fracthqgsa (fract a)

long accum __fracthqda (fract a)
long long accum __fracthqta (fract a)
unsigned short fract __fracthquqq (
unsigned fract __fracthquhq (fract a)
unsigned long fract __fracthqusq (fract a)
unsigned long long fract __fracthqudq (fract a)
unsigned short accum __fracthquha (fract a)
unsigned accum __fracthqusa (fract a)

unsigned long accum __fracthquda (fract a)
unsigned long long accum __fracthquta (fract a)
signed char __fracthqqi (fract a)

short __fracthqhi (fract a)

int __fracthqgsi (fract a)

long __fracthqdi (fract a)

long long __fracthqti (fract a)

float __fracthqgsf (fract a)

double __fracthqdf (fract a)

short fract __fractsqqq2 (long fract a)

fract __fractsqhq2 (long fract a)

long long fract __fractsqdq2 (long fract a)
short accum __fractsqgha (long fract a)

accum __fractsqgsa (long fract a)

long accum __fractsqda (long fract a)

long long accum __fractsqta (long fract a)
unsigned short fract __fractsquqq (long fract a)
unsigned fract __fractsquhq (long fract a)
unsigned long fract __fractsqusq (long fract a)
unsigned long long fract __fractsqudq (long fract a)

unsigned short accum __fractsquha (long fract a)

fract a)

31

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

32 GNU Compiler Collection (GCC) Internals

_fractsqusa (long fract a)

_fractsquda (long fract a)

unsigned long long accum __fractsquta (long fract a)

signed char __fractsqqi (long fract a)

short __fractsqhi (long fract a)

int __fractsqgsi (long fract a)

long __fractsqdi (long fract a)

long long __fractsqti (long fract a)

float __fractsqsf (long fract a)

double __fractsqdf (long fract a)

short fract __fractdqqq2 (long long fract a)

fract __fractdqhq2 (long long fract a)

long fract __fractdgsq2 (long long fract a)

short accum __fractdgha (long long fract a)

accum __fractdgsa (long long fract a)

long accum __fractdqda (long long fract a)

long long accum __fractdqta (long long fract a)

unsigned short fract __fractdquqq (long long fract a)

unsigned fract __fractdquhq (long long fract a)

unsigned long fract __fractdqusq (long long fract a)

unsigned long long fract __fractdqudq (long long fract
)

unsigned short accum __fractdquha (long long fract a)

unsigned accum __fractdqusa (long long fract a)

unsigned long accum __fractdquda (long long fract a)

unsigned long long accum __fractdquta (long long fract
)

signed char __fractdqqi (long long fract a)

short __fractdghi (long long fract a)

int __fractdqgsi (long long fract a)

long __fractdqdi (long long fract a)

long long __fractdqti (long long fract a)

float __fractdqgsf (long long fract a)

double __fractdqdf (long long fract a)

short fract __fracthaqq (short accum a)

fract __fracthahq (short accum a)

long fract __fracthasq (short accum a)

long long fract __fracthadq (short accum a)

accum __fracthasa2 (short accum a)

long accum __fracthada2 (short accum a)

long long accum __fracthata2 (short accum a)

unsigned short fract __fracthauqq (short accum a)

unsigned fract __fracthauhq (short accum a)

unsigned long fract __fracthausq (short accum a)

unsigned long long fract __fracthaudq (short accum a)

unsigned short accum __fracthauha (short accum a)

unsigned accum __fracthausa (short accum a)

unsigned accum _
unsigned long accum _

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

Chapter 4: The GCC low-level runtime library

unsigned long accum __fracthauda (short accum a)
unsigned long long accum __fracthauta (short accum a)
signed char __fracthaqi (short accum a)

short __fracthahi (short accum a)

int __fracthasi (short accum a)

long __fracthadi (short accum a)

long long __fracthati (short accum a)

float __fracthasf (short accum a)

double __fracthadf (short accum a)

short fract __fractsaqq (accum a)

fract __fractsahq (accum a)

long fract __fractsasq (accum a)

long long fract __fractsadq (accum a)

short accum __fractsaha2 (accum a)

long accum __fractsada2 (accum a)

long long accum __fractsata2 (accum a)
unsigned short fract __fractsauqq (accum a)
unsigned fract __fractsauhq (accum a)

unsigned long fract __fractsausq (accum a)
unsigned long long fract __fractsaudq (accum a)
unsigned short accum __fractsauha (accum a)
unsigned accum __fractsausa (accum a)

unsigned long accum __fractsauda (accum a)
unsigned long long accum __fractsauta (accum a)
signed char __fractsaqi (accum a)

short __fractsahi (accum a)

int __fractsasi (accum a)

long __fractsadi (accum a)

long long __fractsati (accum a)

float __fractsasf (accum a)

double __fractsadf (accum a)

short fract __fractdaqq (long accum a)

fract __fractdahq (long accum a)

long fract __fractdasq (long accum a)

long long fract __fractdadq (long accum a)

short accum __fractdaha2 (long accum a)

accum __fractdasa2 (long accum a)

long long accum __fractdata2 (long accum a)
unsigned short fract __fractdauqq (long accum a)
unsigned fract __fractdauhq (long accum a)
unsigned long fract __fractdausq (long accum a)
unsigned long long fract __fractdaudq (long accum a)
unsigned short accum __fractdauha (long accum a)
unsigned accum __fractdausa (long accum a)
unsigned long accum __fractdauda (long accum a)
unsigned long long accum __fractdauta (long accum a)
signed char __fractdaqi (long accum a)

33

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

34 GNU Compiler Collection (GCC) Internals

short __fractdahi (long accum a)

int __fractdasi (long accum a)

long __fractdadi (long accum a)

long long __fractdati (long accum a)

float __fractdasf (long accum a)

double __fractdadf (long accum a)

short fract __fracttaqq (long long accum a)

fract __fracttahq (long long accum a)

long fract __fracttasq (long long accum a)

long long fract __fracttadq (long long accum a)

short accum __fracttaha2 (long long accum a)

accum __fracttasa2 (long long accum a)

long accum __fracttada2 (long long accum a)

unsigned short fract __fracttauqq (long long accum a)

unsigned fract __fracttauhq (long long accum a)

unsigned long fract __fracttausq (long long accum a)

unsigned long long fract __fracttaudq (long long accum
)

unsigned short accum __fracttauha (long long accum a)

unsigned accum __fracttausa (long long accum a)

unsigned long accum __fracttauda (long long accum a)

unsigned long long accum __fracttauta (long long accum
)

signed char __fracttaqi (long long accum a)

short __fracttahi (long long accum a)

int __fracttasi (long long accum a)

long __fracttadi (long long accum a)

long long __fracttati (long long accum a)

float __fracttasf (long long accum a)

double __fracttadf (long long accum a)

short fract __fractuqqqq (unsigned short fract a)

fract __fractuqqghq (unsigned short fract a)

long fract __fractuqqgsq (unsigned short fract a)

long long fract __fractuqqdq (unsigned short fract a)

short accum __fractuqgha (unsigned short fract a)

accum __fractuqqgsa (unsigned short fract a)

long accum __fractuqqda (unsigned short fract a)

long long accum __fractuqqta (unsigned short fract a)

unsigned fract __fractuqquhq2 (unsigned short fract a)

unsigned long fract __fractuqqusq2 (unsigned short fract
a)

unsigned long long fract __fractuqqudq2 (unsigned
short fract a)

unsigned short accum
a)

unsigned accum

_fractuqquha (unsigned short fract

_fractuqqusa (unsigned short fract a)

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]

Chapter 4: The GCC low-level runtime library

unsigned long accum __fractuqquda (unsigned short fract
a)

unsigned long long accum
fract a)

signed char __fractuqqqi (unsigned short fract a)

short __fractuqqghi (unsigned short fract a)

int __fractuqqgsi (unsigned short fract a)

long __fractuqqdi (unsigned short fract a)

long long __fractuqqti (unsigned short fract a)

float __fractuqqsf (unsigned short fract a)

double __fractuqqdf (unsigned short fract a)

short fract __fractuhqqq (unsigned fract a)

_fractuqquta (unsigned short

fract __fractuhghq (unsigned fract a)

long fract __fractuhqgsq (unsigned fract a)

long long fract __fractuhqdq (unsigned fract a)

short accum __fractuhgha (unsigned fract a)

accum __fractuhqgsa (unsigned fract a)

long accum __fractuhqda (unsigned fract a)

long long accum __fractuhqta (unsigned fract a)

unsigned short fract __fractuhquqq?2 (unsigned fract a)

unsigned long fract __fractuhqusq2 (unsigned fract a)

unsigned long long fract __fractuhqudq2 (unsigned
fract a)

unsigned short accum __fractuhquha (unsigned fract a)

unsigned accum __fractuhqusa (unsigned fract a)

unsigned long accum __fractuhquda (unsigned fract a)

unsigned long long accum __fractuhquta (unsigned fract
)

signed char __fractuhqqi (unsigned fract a)

short __fractuhqhi (unsigned fract a)

int __fractuhqgsi (unsigned fract a)

long __fractuhqdi (unsigned fract a)

long long __fractuhqti (unsigned fract a)

float __fractuhqsf (unsigned fract a)

double __fractuhqdf (unsigned fract a)

short fract __fractusqqq (unsigned long fract a)

fract __fractusqhq (unsigned long fract a)

long fract __fractusqsq (unsigned long fract a)

long long fract __fractusqdq (unsigned long fract a)

short accum __fractusgha (unsigned long fract a)

accum __fractusqgsa (unsigned long fract a)

long accum __fractusqda (unsigned long fract a)

long long accum __fractusqta (unsigned long fract a)

unsigned short fract __fractusquqq2 (unsigned long fract
a)

unsigned fract

_fractusquhq2 (unsigned long fract a)

35

[Runtime Function]
[Runtime Function]

Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function

[]
[]
[]
[]
[]
[]
[]
[]
[]
[]
[]
[]
[]
[]
[]
[]
[]
[]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]

36 GNU Compiler Collection (GCC) Internals

unsigned long long fract __fractusqudq2 (unsigned long
fract a)

unsigned short accum
)

unsigned accum __fractusqusa (unsigned long fract a)

unsigned long accum __fractusquda (unsigned long fract a)

unsigned long long accum __fractusquta (unsigned long
fract a)

signed char __fractusqqi (unsigned long fract a)

short __fractusqhi (unsigned long fract a)

int __fractusqsi (unsigned long fract a)

long __fractusqdi (unsigned long fract a)

long long __fractusqti (unsigned long fract a)

float __fractusqsf (unsigned long fract a)

double __fractusqdf (unsigned long fract a)

short fract __fractudqqq (unsigned long long fract a)

fract __fractudghq (unsigned long long fract a)

long fract __fractudqgsq (unsigned long long fract a)

long long fract __fractudqdq (unsigned long long fract a)

short accum __fractudgha (unsigned long long fract a)

accum __fractudqgsa (unsigned long long fract a)

long accum __fractudqda (unsigned long long fract a)

long long accum __fractudqta (unsigned long long fract a)

unsigned short fract __fractudquqq2 (unsigned long long
fract a)

unsigned fract __fractudquhq2 (unsigned long long fract a)

unsigned long fract __fractudqusq2 (unsigned long long
fract a)

unsigned short accum
fract a)

unsigned accum __fractudqusa (unsigned long long fract a)

unsigned long accum __fractudquda (unsigned long long
fract a)

unsigned long long accum __fractudquta (unsigned long
long fract a)

signed char __fractudqqi (unsigned long long fract a)

short __fractudqhi (unsigned long long fract a)

int __fractudqsi (unsigned long long fract a)

long __fractudqdi (unsigned long long fract a)

long long __fractudqti (unsigned long long fract a)

float __fractudqgsf (unsigned long long fract a)

double __fractudqdf (unsigned long long fract a)

short fract __fractuhaqq (unsigned short accum a)

fract __fractuhahq (unsigned short accum a)

long fract __fractuhasq (unsigned short accum a)

long long fract __fractuhadq (unsigned short accum a)

short accum __fractuhaha (unsigned short accum a)

_fractusquha (unsigned long fract

_fractudquha (unsigned long long

[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

Chapter 4: The GCC low-level runtime library

accum __fractuhasa (unsigned short accum a)

long accum __fractuhada (unsigned short accum a)

long long accum __fractuhata (unsigned short accum a)

unsigned short fract __fractuhauqq (unsigned short
accum a)

unsigned fract __fractuhauhq (unsigned short accum a)

unsigned long fract __fractuhausq (unsigned short accum
)

unsigned long long fract __fractuhaudq (unsigned short
accum a)

unsigned accum

unsigned long accum
accum a)

unsigned long long accum
short accum a)

signed char __fractuhaqi (unsigned short accum a)

short __fractuhahi (unsigned short accum a)

int __fractuhasi (unsigned short accum a)

long __fractuhadi (unsigned short accum a)

long long __fractuhati (unsigned short accum a)

float __fractuhasf (unsigned short accum a)

double __fractuhadf (unsigned short accum a)

short fract __fractusaqq (unsigned accum a)

fract __fractusahq (unsigned accum a)

long fract __fractusasq (unsigned accum a)

long long fract __fractusadq (unsigned accum a)

short accum __fractusaha (unsigned accum a)

accum __fractusasa (unsigned accum a)

long accum __fractusada (unsigned accum a)

long long accum __fractusata (unsigned accum a)

unsigned short fract __fractusauqq (unsigned accum a)

unsigned fract __fractusauhq (unsigned accum a)

unsigned long fract __fractusausq (unsigned accum a)

unsigned long long fract __fractusaudq (unsigned
accum a)

unsigned short accum __fractusauha2 (unsigned accum a)

unsigned long accum __fractusauda2 (unsigned accum a)

unsigned long long accum __fractusauta2 (unsigned
accum a)

signed char __fractusaqi (unsigned accum a)

short __fractusahi (unsigned accum a)

int __fractusasi (unsigned accum a)

long __fractusadi (unsigned accum a)

long long __fractusati (unsigned accum a)

float __fractusasf (unsigned accum a)

double __fractusadf (unsigned accum a)

short fract __fractudaqq (unsigned long accum a)

__fractuhausa2 (unsigned short accum a)
_fractuhauda2 (unsigned short

_fractuhauta2 (unsigned

37

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

38 GNU Compiler Collection (GCC) Internals

fract __fractudahq (unsigned long accum a)

long fract __fractudasq (unsigned long accum a)

long long fract __fractudadq (unsigned long accum a)

short accum __fractudaha (unsigned long accum a)

accum __fractudasa (unsigned long accum a)

long accum __fractudada (unsigned long accum a)

long long accum __fractudata (unsigned long accum a)

unsigned short fract __fractudauqq (unsigned long
accum a)

unsigned fract __fractudauhq (unsigned long accum a)

unsigned long fract __fractudausq (unsigned long accum

a)

unsigned long long fract __fractudaudq (unsigned long
accum a)

unsigned short accum __fractudauha?2 (unsigned long
accum a)

unsigned accum __fractudausa2 (unsigned long accum a)

unsigned long long accum __fractudauta2 (unsigned long
accum a)

signed char __fractudaqi (unsigned long accum a)

short __fractudahi (unsigned long accum a)

int __fractudasi (unsigned long accum a)

long __fractudadi (unsigned long accum a)

long long __fractudati (unsigned long accum a)

float __fractudasf (unsigned long accum a)

double __fractudadf (unsigned long accum a)

short fract __fractutaqq (unsigned long long accum a)

fract __fractutahq (unsigned long long accum a)

long fract __fractutasq (unsigned long long accum a)

long long fract __fractutadq (unsigned long long accum a)

short accum __fractutaha (unsigned long long accum a)

accum __fractutasa (unsigned long long accum a)

long accum __fractutada (unsigned long long accum a)

long long accum __fractutata (unsigned long long accum a)

unsigned short fract __fractutauqq (unsigned long long
accum a)

unsigned fract __fractutauhq (unsigned long long accum a)

unsigned long fract __fractutausq (unsigned long long
accum a)

unsigned long long fract
long accum a)

unsigned short accum
accum a)

unsigned accum
a)

unsigned long accum
accum a)

_fractutaudq (unsigned long

__fractutauha? (unsigned long long

_fractutausa2 (unsigned long long accum

_fractutauda2 (unsigned long long

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]

Chapter 4: The GCC low-level runtime library

signed char __fractutaqi (unsigned long long accum a)
short __fractutahi (unsigned long long accum a)
int __fractutasi (unsigned long long accum a)
long __fractutadi (unsigned long long accum a)
long long __fractutati (unsigned long long accum a)
float __fractutasf (unsigned long long accum a)
double __fractutadf (unsigned long long accum a)
short fract __fractqiqq (signed char a)

fract __fractqihq (signed char a)

long fract __fractqisq (signed char a)

long long fract __fractqidq (signed char a)
short accum __fractqiha (signed char a)

accum __fractqisa (signed char a)

long accum __fractqida (signed char a)

long long accum __fractqita (signed char a)
unsigned short fract __fractqiuqq (signed char a)
unsigned fract __fractqiuhq (signed char a)
unsigned long fract __fractqiusq (signed char a)
unsigned long long fract __fractqiudq (signed char a)
unsigned short accum __fractqiuha (signed char a)
unsigned accum __fractqiusa (signed char a)
unsigned long accum __fractqiuda (signed char a)
unsigned long long accum __fractqiuta (signed char a)
short fract __fracthiqq (short a)

fract __fracthihq (short a)

long fract __fracthisq (short a)

long long fract __fracthidq (short a)

short accum __fracthiha (short a)

accum __fracthisa (short a)

long accum __fracthida (short a)

long long accum __fracthita (short a)

unsigned short fract __fracthiuqq (short a)
unsigned fract __fracthiuhq (short a)

unsigned long fract __fracthiusq (short a)
unsigned long long fract __fracthiudq (short a)
unsigned short accum __fracthiuha (short a)
unsigned accum __fracthiusa (short a)

unsigned long accum __fracthiuda (short a)
unsigned long long accum __fracthiuta (short a)
short fract __fractsiqq (int a)

fract __fractsihq (int a)

long fract __fractsisq (int a)

long long fract __fractsidq (int a)

short accum __fractsiha (int a)

accum __fractsisa (int a)

long accum __fractsida (int a)

long long accum __fractsita (int a)

39

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

40

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

GNU Compiler Collection (GCC) Internals

short fract __fractsiuqq (int a)
fract __fractsiuhq (int a)

long fract __fractsiusq (int a)

long long fract __fractsiudq (int a)
short accum __fractsiuha (int a)
accum __fractsiusa (int a)

long accum __fractsiuda (int a)

long long accum __fractsiuta (int a)

short fract __fractdiqq (long a)
fract __fractdihq (long a)

long fract
long long fract
short accum

__fractdisq (long a)
__fractdidq (long a)
fractdiha (long a)

accum __fractdisa (long a)

long accum
long long accum

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

__fractdida (long a)
__fractdita (long a)

short fract __fractdiuqq (long a)
fract __fractdiuhq (long a)

long fract __fractdiusq (long a)

long long fract __fractdiudq (long a)
short accum __fractdiuha (long a)
accum __fractdiusa (long a)

long accum __fractdiuda (long a)

long long accum __fractdiuta (long a)

short fract __fracttiqq (long long a)

fract

_fracttihq (long long a)

long fract __fracttisq (long long a)

long long fract
short accum
__fracttisa (long long a)
long accum
long long accum

accum

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

__fracttidq (long long a)
__fracttiha (long long a)
_fracttida (long long a)
__fracttita (long long a)

short fract __fracttiuqq (long long a)
fract __fracttiuhq (long long a)

long fract __fracttiusq (long long a)

long long fract __fracttiudq (long long a)
short accum __fracttiuha (long long a)
accum __fracttiusa (long long a)

long accum __fracttiuda (long long a)

long long accum __fracttiuta (long long a)

short fract __fractsfqq (float a)
fract __fractsfhq (float a)

long fract
long long fract
short accum
_fractsfsa (float a)

accum

long accum

_fractsfsq (float a)
__fractsfdq (float a)
__fractsfha (float a)

_fractsfda (float a)

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

Chapter 4: The GCC low-level runtime library

long long accum __fractsfta (float a)

unsigned short fract __fractsfuqq (float a)
unsigned fract __fractsfuhq (float a)

unsigned long fract __fractsfusq (foat a)
unsigned long long fract __fractsfudq (float a)
unsigned short accum __fractsfuha (float a)
unsigned accum __fractsfusa (float a)

unsigned long accum __fractsfuda (float a)
unsigned long long accum __fractsfuta (float a)
short fract __fractdfqq (double a)

fract __fractdfhq (double a)

long fract __fractdfsq (double a)

long long fract __fractdfdq (double a)

short accum __fractdfha (double a)

accum __fractdfsa (double a)

long accum __fractdfda (double a)

long long accum __fractdfta (double a)

unsigned short fract __fractdfuqq (double a)
unsigned fract __fractdfuhq (double a)

unsigned long fract __fractdfusq (double a)
unsigned long long fract __fractdfudq (double a)
unsigned short accum __fractdfuha (double a)
unsigned accum __fractdfusa (double a)

unsigned long accum __fractdfuda (double a)
unsigned long long accum __fractdfuta (double a)

41

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

These functions convert from fractional and signed non-fractionals to fractionals and

signed non-fractionals, without saturation.

fract __satfractqqhq2 (short fract a)

long fract __satfractqqsq2 (short fract a)

long long fract __satfractqqdq2 (short fract a)

short accum __satfractqgha (short fract a)

accum __satfractqqgsa (short fract a)

long accum __satfractqqda (short fract a)

long long accum __satfractqqta (short fract a)

unsigned short fract __satfractqquqq (short fract a)

unsigned fract __satfractqquhq (short fract a)

unsigned long fract __satfractqqusq (short fract a)

unsigned long long fract __satfractqqudq (short fract
)

unsigned short accum

unsigned accum _

unsigned long accum __

unsigned long long accum
)

short fract __satfracthqqq2 (fract a)

long fract __satfracthqsq2 (fract a)

__satfractqquha (short fract a)
_satfractqqusa (short fract a)
satfractqquda (short fract a)
satfractqquta (short fract

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

42 GNU Compiler Collection (GCC) Internals

long long fract __satfracthqdq2 (fract a)

short accum __satfracthgha (fract a)

accum __satfracthqgsa (fract a)

long accum __satfracthqda (fract a)

long long accum __satfracthqta (fract a)

unsigned short fract __satfracthquqq (

unsigned fract __satfracthquhq (fract a)

unsigned long fract __satfracthqusq (fract a)

unsigned long long fract __satfracthqudq (fract a)

unsigned short accum __satfracthquha (fract a)

unsigned accum __satfracthqusa (fract a)

unsigned long accum __satfracthquda (fract a)

unsigned long long accum __satfracthquta (fract a)

short fract __satfractsqqq2 (long fract a)

fract __satfractsqhq2 (long fract a)

long long fract __satfractsqdq2 (long fract a)

short accum __satfractsqha (long fract a)

accum __satfractsqsa (long fract a)

long accum __satfractsqda (long fract a)

long long accum __satfractsqta (long fract a)

unsigned short fract __satfractsquqq (long fract a)

unsigned fract __satfractsquhq (long fract a)

unsigned long fract __satfractsqusq (long fract a)

unsigned long long fract __satfractsqudq (long fract a)

unsigned short accum __satfractsquha (long fract a)

unsigned accum __satfractsqusa (long fract a)

unsigned long accum __satfractsquda (long fract a)

unsigned long long accum __satfractsquta (long fract a)

short fract __satfractdqqq2 (long long fract a)

fract __satfractdqhq2 (long long fract a)

long fract __satfractdqsq2 (long long fract a)

short accum __satfractdgha (long long fract a)

accum __satfractdqgsa (long long fract a)

long accum __satfractdqda (long long fract a)

long long accum __satfractdqta (long long fract a)

unsigned short fract __satfractdquqq (long long fract a)

unsigned fract __satfractdquhq (long long fract a)

unsigned long fract __satfractdqusq (long long fract a)

unsigned long long fract __satfractdqudq (long long
fract a)

unsigned short accum __satfractdquha (long long fract a)

unsigned accum __satfractdqusa (long long fract a)

unsigned long accum __satfractdquda (long long fract a)

unsigned long long accum __satfractdquta (long long

fract a)

fract a)
short fract __satfracthaqq (short accum a)
fract __satfracthahq (short accum a)

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

Runtime Function
Runtime Function
Runtime Function
Runtime Function

[]
[]
[]
[]

[Runtime Function]
[Runtime Function]

Chapter 4: The GCC low-level runtime library

long fract __satfracthasq (short accum a)
long long fract __satfracthadq (short accum a)
accum __satfracthasa2 (short accum a)
long accum __satfracthada?2 (short accum a)
long long accum __satfracthata2 (short accum a)
unsigned short fract __satfracthauqq (short accum a)
unsigned fract __satfracthauhq (short accum a)
unsigned long fract __satfracthausq (short accum a)
unsigned long long fract __satfracthaudq (short accum
a)
unsigned short accum __satfracthauha (short accum a)
unsigned accum __satfracthausa (short accum a)
unsigned long accum __satfracthauda (short accum a)
unsigned long long accum __satfracthauta (short accum

a)
short fract __satfractsaqq (accum a)
fract __satfractsahq (accum a)
long fract __satfractsasq (accum a)

long long fract __satfractsadq (accum a)

short accum __satfractsaha2 (accum a)

long accum __satfractsada2 (accum a)

long long accum __satfractsata2 (accum a)

unsigned short fract __satfractsauqq (accum a)

unsigned fract __satfractsauhq (accum a)

unsigned long fract __satfractsausq (accum a)

unsigned long long fract __satfractsaudq (accum a)

unsigned short accum __satfractsauha (accum a)

unsigned accum __satfractsausa (accum a)

unsigned long accum __satfractsauda (accum a)

unsigned long long accum __satfractsauta (accum a)

short fract __satfractdaqq (long accum a)

fract __satfractdahq (long accum a)

long fract __satfractdasq (long accum a)

long long fract __satfractdadq (long accum a)

short accum __satfractdaha2 (long accum a)

accum __satfractdasa2 (long accum a)

long long accum __satfractdata2 (long accum a)

unsigned short fract __satfractdauqq (long accum a)

unsigned fract __satfractdauhq (long accum a)

unsigned long fract __satfractdausq (long accum a)

unsigned long long fract __satfractdaudq (long accum
)

unsigned short accum __satfractdauha (long accum a)

unsigned accum __satfractdausa (long accum a)

unsigned long accum __satfractdauda (long accum a)

unsigned long long accum __satfractdauta (long accum

a)

43

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

Runtime Function]
Runtime Function]
Runtime Function]
Runtime Function]
Runtime Function]
Runtime Function]
Runtime Function]
Runtime Function]
Runtime Function]
Runtime Function]
Runtime Function]
Runtime Function]
Runtime Function]
Runtime Function]
Runtime Function]
Runtime Function]
Runtime Function]
Runtime Function]
Runtime Function]
Runtime Function]
Runtime Function]
Runtime Function]
Runtime Function]
Runtime Function]
Runtime Function]
Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

44 GNU Compiler Collection (GCC) Internals

short fract __satfracttaqq (long long accum a)

fract __satfracttahq (long long accum a)

long fract __satfracttasq (long long accum a)

long long fract __satfracttadq (long long accum a)

short accum __satfracttaha2 (long long accum a)

accum __satfracttasa2 (long long accum a)

long accum __satfracttada2 (long long accum a)

unsigned short fract __satfracttauqq (long long accum
)

unsigned fract __satfracttauhq (long long accum a)

unsigned long fract __satfracttausq (long long accum a)

unsigned long long fract __satfracttaudq (long long
accum a)

unsigned short accum
a)

unsigned accum __satfracttausa (long long accum a)

unsigned long accum __satfracttauda (long long accum a)

unsigned long long accum __satfracttauta (long long
accum a)

short fract __satfractuqqqq (unsigned short fract a)

fract __satfractuqqhq (unsigned short fract a)

long fract __satfractuqqsq (unsigned short fract a)

long long fract __satfractuqqdq (unsigned short fract a)

short accum __satfractuqqgha (unsigned short fract a)

accum __satfractuqqgsa (unsigned short fract a)

long accum __satfractuqqda (unsigned short fract a)

long long accum __satfractuqqta (unsigned short fract a)

unsigned fract __satfractuqquhq?2 (unsigned short fract a)

unsigned long fract __satfractuqqusq2 (unsigned short
fract a)

unsigned long long fract
short fract a)

unsigned short accum
fract a)

unsigned accum __satfractuqqusa (unsigned short fract a)

unsigned long accum __satfractuqquda (unsigned short
fract a)

unsigned long long accum
short fract a)

short fract __satfractuhqqq (unsigned fract a)

fract __satfractuhqhq (unsigned fract a)

long fract __satfractuhqsq (unsigned fract a)

long long fract __satfractuhqdq (unsigned fract a)

short accum __satfractuhqgha (unsigned fract a)

accum __satfractuhqgsa (unsigned fract a)

long accum __satfractuhqda (unsigned fract a)

long long accum __satfractuhqta (unsigned fract a)

_satfracttauha (long long accum

_satfractuqqudq?2 (unsigned

_satfractuqquha (unsigned short

__satfractuqquta (unsigned

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]

Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function

[]
[]
[]
[]
[]
[]
[]
[]
[]
[]

[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

Chapter 4: The GCC low-level runtime library

unsigned short fract
a)

unsigned long fract
)

unsigned long long fract
fract a)

unsigned short accum
)

unsigned accum __satfractuhqusa (unsigned fract a)

unsigned long accum __satfractuhquda (unsigned fract a)

unsigned long long accum __satfractuhquta (unsigned
fract a)

short fract __satfractusqqq (unsigned long fract a)

fract __satfractusqhq (unsigned long fract a)

long fract __satfractusqsq (unsigned long fract a)

long long fract __satfractusqdq (unsigned long fract a)

short accum __satfractusqgha (unsigned long fract a)

accum __satfractusqsa (unsigned long fract a)

long accum __satfractusqda (unsigned long fract a)

long long accum __satfractusqta (unsigned long fract a)

unsigned short fract __satfractusquqq2 (unsigned long
fract a)

unsigned fract __satfractusquhq2 (unsigned long fract a)

unsigned long long fract __satfractusqudq2 (unsigned
long fract a)

unsigned short accum
fract a)

unsigned accum __satfractusqusa (unsigned long fract a)

unsigned long accum __satfractusquda (unsigned long
fract a)

unsigned long long accum
long fract a)

short fract __satfractudqqq (unsigned long long fract a)

fract __satfractudqhq (unsigned long long fract a)

long fract __satfractudqsq (unsigned long long fract a)

long long fract __satfractudqdq (unsigned long long fract
2)

short accum __satfractudgha (unsigned long long fract a)

accum __satfractudqgsa (unsigned long long fract a)

long accum __satfractudqda (unsigned long long fract a)

long long accum __satfractudqta (unsigned long long fract
2)

unsigned short fract
long fract a)

unsigned fract __satfractudquhq2 (unsigned long long
fract a)

_satfractuhquqq?2 (unsigned fract

__satfractuhqusq2 (unsigned fract

_satfractuhqudq?2 (unsigned

_satfractuhquha (unsigned fract

_satfractusquha (unsigned long

_satfractusquta (unsigned

_satfractudquqq2 (unsigned long

45

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]

[Runtime Function]

46 GNU Compiler Collection (GCC) Internals

unsigned long fract __satfractudqusq2 (unsigned long
long fract a)

unsigned short accum
long fract a)

unsigned accum __satfractudqusa (unsigned long long fract
a)

unsigned long accum
long fract a)

unsigned long long accum
long long fract a)

short fract __satfractuhaqq (unsigned short accum a)

fract __satfractuhahq (unsigned short accum a)

long fract __satfractuhasq (unsigned short accum a)

long long fract __satfractuhadq (unsigned short accum a)

short accum __satfractuhaha (unsigned short accum a)

accum __satfractuhasa (unsigned short accum a)

long accum __satfractuhada (unsigned short accum a)

long long accum __satfractuhata (unsigned short accum a)

unsigned short fract __satfractuhauqq (unsigned short
accum a)

unsigned fract __satfractuhauhq (unsigned short accum a)

unsigned long fract __satfractuhausq (unsigned short
accum a)

unsigned long long fract
short accum a)

unsigned accum __satfractuhausa2 (unsigned short accum
a)

unsigned long accum
accum a)

unsigned long long accum
short accum a)

short fract __satfractusaqq (unsigned accum a)

fract __satfractusahq (unsigned accum a)

long fract __satfractusasq (unsigned accum a)

long long fract __satfractusadq (unsigned accum a)

short accum __satfractusaha (unsigned accum a)

accum __satfractusasa (unsigned accum a)

long accum __satfractusada (unsigned accum a)

long long accum __satfractusata (unsigned accum a)

unsigned short fract __satfractusauqq (unsigned accum
a)

unsigned fract __satfractusauhq (unsigned accum a)

unsigned long fract __satfractusausq (unsigned accum
a)

unsigned long long fract
accum a)

__satfractudquha (unsigned long

_satfractudquda (unsigned long

_satfractudquta (unsigned

__satfractuhaudq (unsigned

_satfractuhauda?2 (unsigned short

__satfractuhauta2 (unsigned

__satfractusaudq (unsigned

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]

Chapter 4: The GCC low-level runtime library

unsigned short accum __satfractusauha2 (unsigned

accum a)

unsigned long accum __satfractusauda2 (unsigned accum
a)

unsigned long long accum __satfractusauta2 (unsigned
accum a)

short fract __satfractudaqq (unsigned long accum a)

fract __satfractudahq (unsigned long accum a)

long fract __satfractudasq (unsigned long accum a)

long long fract __satfractudadq (unsigned long accum a)

short accum __satfractudaha (unsigned long accum a)

accum __satfractudasa (unsigned long accum a)

long accum __satfractudada (unsigned long accum a)

long long accum __satfractudata (unsigned long accum a)

unsigned short fract __satfractudauqq (unsigned long
accum a)

unsigned fract __satfractudauhq (unsigned long accum a)

unsigned long fract __satfractudausq (unsigned long
accum a)

unsigned long long fract
long accum a)

unsigned short accum
accum a)

unsigned accum
a)

unsigned long long accum
long accum a)

short fract __satfractutaqq (unsigned long long accum a)

fract __satfractutahq (unsigned long long accum a)

long fract __satfractutasq (unsigned long long accum a)

long long fract __satfractutadq (unsigned long long
accum a)

short accum __satfractutaha (unsigned long long accum a)

accum __satfractutasa (unsigned long long accum a)

long accum __satfractutada (unsigned long long accum a)

long long accum __satfractutata (unsigned long long
accum a)

unsigned short fract
long accum a)

unsigned fract __satfractutauhq (unsigned long long
accum a)

unsigned long fract
long accum a)

unsigned long long fract
long long accum a)

unsigned short accum __satfractutauha2 (unsigned long
long accum a)

_satfractudaudq (unsigned

_satfractudauha2 (unsigned long

_satfractudausa2 (unsigned long accum

_satfractudauta2 (unsigned

__satfractutauqq (unsigned long
__satfractutausq (unsigned long

_satfractutaudq (unsigned

47

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[]

Runtime Function

[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]

[Runtime Function]

48 GNU Compiler Collection (GCC) Internals

unsigned accum
accum a)

unsigned long accum
long accum a)

short fract __satfractqiqq (signed char a)

fract __satfractqihq (signed char a)

long fract __satfractqisq (signed char a)

long long fract __satfractqidq (signed char a)

short accum __satfractqiha (signed char a)

accum __satfractqisa (signed char a)

long accum __satfractqida (signed char a)

long long accum __satfractqita (signed char a)

unsigned short fract __satfractqiuqq (signed char a)

unsigned fract __satfractqiuhq (signed char a)

unsigned long fract __satfractqiusq (signed char a)

unsigned long long fract __satfractqiudq (signed char
)

unsigned short accum __satfractqiuha (signed char a)

unsigned accum __satfractqiusa (signed char a)

unsigned long accum __satfractqiuda (signed char a)

unsigned long long accum __satfractqiuta (signed char

_satfractutausa2 (unsigned long long

_satfractutauda2 (unsigned long

a)
short fract __satfracthiqq (short a)
fract __satfracthihq (short a)
long fract __satfracthisq (short a)

long long fract __satfracthidq (short a)

short accum __satfracthiha (short a)

accum __satfracthisa (short a)

long accum __satfracthida (short a)

long long accum __satfracthita (short a)
unsigned short fract __satfracthiuqq (short a)
unsigned fract __satfracthiuhq (short a)
unsigned long fract __satfracthiusq (short a)
unsigned long long fract __satfracthiudq (short a)
unsigned short accum __satfracthiuha (short a)
unsigned accum __satfracthiusa (short a)
unsigned long accum __satfracthiuda (short a)
unsigned long long accum __satfracthiuta (short a)
short fract __satfractsiqq (int a)

fract __satfractsihq (int a)

long fract __satfractsisq (int a)

long long fract __satfractsidq (int a)

short accum __satfractsiha (int a)

accum __satfractsisa (int a)

long accum __satfractsida (int a)

long long accum __satfractsita (int a)
unsigned short fract __satfractsiuqq (int a)

[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

Chapter 4: The GCC low-level runtime library

unsigned fract __satfractsiuhq (int a)

unsigned long fract __satfractsiusq (int a)
unsigned long long fract __satfractsiudq (int a)
unsigned short accum __satfractsiuha (int a)
unsigned accum __satfractsiusa (int a)

unsigned long accum __satfractsiuda (int a)
unsigned long long accum __satfractsiuta (int a)
short fract __satfractdiqq (long a)

fract __satfractdihq (long a)

long fract __satfractdisq (long a)

long long fract __satfractdidq (long a)

short accum __satfractdiha (long a)

accum __satfractdisa (long a)

long accum __satfractdida (long a)

long long accum __satfractdita (long a)

unsigned short fract __satfractdiuqq (long a)
unsigned fract __satfractdiuhq (long a)

unsigned long fract __satfractdiusq (long a)
unsigned long long fract __satfractdiudq (long a)
unsigned short accum __satfractdiuha (long a)
unsigned accum __satfractdiusa (long a)

unsigned long accum __satfractdiuda (long a)
unsigned long long accum __satfractdiuta (long a)
short fract __satfracttiqq (long long a)

fract __satfracttihq (long long a)

long fract __satfracttisq (long long a)

long long fract __satfracttidq (long long a)
short accum __satfracttiha (long long a)
accum __satfracttisa (long long a)

long accum __satfracttida (long long a)

long long accum __satfracttita (long long a)

unsigned short fract __satfracttiuqq (long long a)
unsigned fract __satfracttiuhq (long long a)

unsigned long fract __satfracttiusq (long long a)
unsigned long long fract __satfracttiudq (long long a)
unsigned short accum __satfracttiuha (long long a)
unsigned accum __satfracttiusa (long long a)

unsigned long accum __satfracttiuda (long long a)
unsigned long long accum __satfracttiuta (long long a)
short fract __satfractsfqq (float a)

fract __satfractsfhq (float a)

long fract __satfractsfsq (float a)

long long fract __satfractsfdq (float a)

short accum __satfractsfha (float a)

accum __satfractsfsa (float a)

long accum __satfractsfda (float a)

long long accum __satfractsfta (float a)

49

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

50

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

short fract
_satfractdfhq (double a)

fract

long fract __
long long fract
short accum
satfractdfsa (double a)

accum

long accum __
long long accum

GNU Compiler Collection (GCC) Internals

short fract __satfractsfuqq (float a)

fract __satfractsfuhq (float a)

long fract __satfractsfusq (foat a)

long long fract __satfractsfudq (float a)

short accum __satfractsfuha (float a)

accum __satfractsfusa (float a)

long accum __satfractsfuda (foat a)

long long accum __satfractsfuta (float a)
__satfractdfqq (double a)

satfractdfsq (double a)

__satfractdfdq (double a)

__satfractdfha (double a)

satfractdfda (double a)
satfractdfta (double a)

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function

Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function

unsigned short fract __satfractdfuqq (double a)

unsigned fract __satfractdfuhq (double a)

unsigned long fract __satfractdfusq (double a)

unsigned long long fract __satfractdfudq (double a)

unsigned short accum __satfractdfuha (double a)

unsigned accum __satfractdfusa (double a)

unsigned long accum __satfractdfuda (double a)

unsigned long long accum __satfractdfuta (double a)
The functions convert from fractional and signed non-fractionals to fractionals, with
saturation.

unsigned char __fractunsqqqi (short fract a)

unsigned short __fractunsqghi (short fract a)

unsigned int __fractunsqqgsi (short fract a)

unsigned long __fractunsqqdi (short fract a)

unsigned long long __fractunsqqti (short fract a)

unsigned char __fractunshqqi (fract a)

unsigned short __fractunshqghi (fract a)

unsigned int __fractunshqsi (fract a)

unsigned long __fractunshqdi (fract a)

unsigned long long __fractunshqti (fract a)

unsigned char __fractunssqqi (long fract a)

unsigned short __fractunssqghi (long fract a)

unsigned int __fractunssqsi (long fract a)

unsigned long __fractunssqdi (long fract a)

unsigned long long __fractunssqti (long fract a)

unsigned char __fractunsdqqi (long long fract a)

unsigned short __fractunsdghi (long long fract a)

unsigned int __fractunsdqsi (long long fract a)

unsigned
unsigned

long __fractunsdqdi (long long fract a)
long long __fractunsdqti (long long fract a)

Runtime Function
Runtime Function
Runtime Function

[]
[]
[]
[]
[]
[]
[]
[]
[]
[]
[Runtime Function]
[]
[]
[]
[]
[]
[]
[]
[]
[]

Chapter 4:

The GCC low-level runtime library

unsigned char __fractunshaqi (short accum a)

unsigned short __fractunshahi (short accum a)

unsigned int __fractunshasi (short accum a)

unsigned long __fractunshadi (short accum a)

unsigned long long __fractunshati (short accum a)

unsigned char __fractunssaqi (accum a)

unsigned short __fractunssahi (accum a)

unsigned int __fractunssasi (accum a)

unsigned long __fractunssadi (accum a)

unsigned long long __fractunssati (accum a)

unsigned char __fractunsdaqi (long accum a)

unsigned short __fractunsdahi (long accum a)

unsigned int __fractunsdasi (long accum a)

unsigned long __fractunsdadi (long accum a)

unsigned long long __fractunsdati (long accum a)

unsigned char __fractunstaqi (long long accum a)

unsigned short __fractunstahi (long long accum a)

unsigned int __fractunstasi (long long accum a)

unsigned long __fractunstadi (long long accum a)

unsigned long long __fractunstati (long long accum a)

unsigned char __fractunsuqqqi (unsigned short fract a)

unsigned short __fractunsuqqghi (unsigned short fract a)

unsigned int __fractunsuqqgsi (unsigned short fract a)

unsigned long __fractunsuqqdi (unsigned short fract a)

unsigned long long __fractunsuqqti (unsigned short fract
a)

unsigned char __fractunsuhqqi (unsigned fract a)

unsigned short __fractunsuhqghi (unsigned fract a)

unsigned int __fractunsuhqgsi (unsigned fract a)

unsigned long __fractunsuhqdi (unsigned fract a)

unsigned long long __fractunsuhqti (unsigned fract a)

unsigned char __fractunsusqqi (unsigned long fract a)

unsigned short __fractunsusqghi (unsigned long fract a)

unsigned int __fractunsusqsi (unsigned long fract a)

unsigned long __fractunsusqdi (unsigned long fract a)

unsigned long long __fractunsusqti (unsigned long fract
)

unsigned char __fractunsudqqi (unsigned long long fract a)

unsigned short __fractunsudghi (unsigned long long fract
a)

unsigned int __fractunsudqsi (unsigned long long fract a)

unsigned long __fractunsudqdi (unsigned long long fract a)

unsigned long long __fractunsudqti (unsigned long long
fract a)

unsigned char __fractunsuhaqi (unsigned short accum a)

unsigned short __fractunsuhahi (unsigned short accum a)

unsigned

int __fractunsuhasi (unsigned short accum a)

o1

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]

52 GNU Compiler Collection (GCC) Internals

unsigned long __fractunsuhadi (unsigned short accum a)
unsigned long long __fractunsuhati (unsigned short
accum a)
unsigned char __fractunsusaqi (unsigned accum a)
unsigned short __fractunsusahi (unsigned accum a)
unsigned int __fractunsusasi (unsigned accum a)
unsigned long __fractunsusadi (unsigned accum a)
unsigned long long __fractunsusati (unsigned accum a)
unsigned char __fractunsudaqi (unsigned long accum a)
unsigned short __fractunsudahi (unsigned long accum a)
unsigned int __fractunsudasi (unsigned long accum a)
unsigned long __fractunsudadi (unsigned long accum a)
unsigned long long __fractunsudati (unsigned long

accum a)

unsigned char __fractunsutaqi (unsigned long long accum
a)

unsigned short __fractunsutahi (unsigned long long accum
a)

unsigned int __fractunsutasi (unsigned long long accum a)

unsigned long __fractunsutadi (unsigned long long accum
a)

unsigned long long __fractunsutati (unsigned long long
accum a)

short fract __fractunsqiqq (unsigned char a)

fract __fractunsqihq (unsigned char a)

long fract __fractunsqisq (unsigned char a)

long long fract __fractunsqidq (unsigned char a)

short accum __fractunsqiha (unsigned char a)

accum __fractunsqisa (unsigned char a)

long accum __fractunsqida (unsigned char a)

long long accum __fractunsqita (unsigned char a)

unsigned short fract __fractunsqiuqq (unsigned char a)

unsigned fract __fractunsqiuhq (unsigned char a)

unsigned long fract __fractunsqiusq (unsigned char a)

unsigned long long fract __fractunsqiudq (unsigned
char a)

unsigned short accum __fractunsqiuha (unsigned char a)

unsigned accum __fractunsqiusa (unsigned char a)

unsigned long accum __fractunsqiuda (unsigned char a)

unsigned long long accum __fractunsqiuta (unsigned
char a)

short fract __fractunshiqq (unsigned short a)

fract __fractunshihq (unsigned short a)

long fract __fractunshisq (unsigned short a)

long long fract __fractunshidq (unsigned short a)

short accum __fractunshiha (unsigned short a)

accum __fractunshisa (unsigned short a)

[Runtime Function]
[Runtime Function]

Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function

[]
[]
[]
[]
[]
[]
[]
[]
[]
[]

[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]

Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function

[]
[]
[]
[]
[]
[]
[]
[]
[]
[]
[]
[]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

Chapter 4: The GCC low-level runtime library

long accum __fractunshida (unsigned short a)

long long accum __fractunshita (unsigned short a)

unsigned short fract __fractunshiuqq (unsigned short a)

unsigned fract __fractunshiuhq (unsigned short a)

unsigned long fract __fractunshiusq (unsigned short a)

unsigned long long fract __fractunshiudq (unsigned
short a)

unsigned short accum __fractunshiuha (unsigned short a)

unsigned accum __fractunshiusa (unsigned short a)

unsigned long accum __fractunshiuda (unsigned short a)

unsigned long long accum __fractunshiuta (unsigned
short a)

short fract __fractunssiqq (unsigned int a)

fract __fractunssihq (unsigned int a)

long fract __fractunssisq (unsigned int a)

long long fract __fractunssidq (unsigned int a)

short accum __fractunssiha (unsigned int a)

accum __fractunssisa (unsigned int a)

long accum __fractunssida (unsigned int a)

long long accum __fractunssita (unsigned int a)

unsigned short fract __fractunssiuqq (unsigned int a)

unsigned fract __fractunssiuhq (unsigned int a)

unsigned long fract __fractunssiusq (unsigned int a)

unsigned long long fract __fractunssiudq (unsigned int
a)

unsigned short accum __fractunssiuha (unsigned int a)

unsigned accum __fractunssiusa (unsigned int a)

unsigned long accum __fractunssiuda (unsigned int a)

unsigned long long accum __fractunssiuta (unsigned int
a)

short fract __fractunsdiqq (unsigned long a)

fract __fractunsdihq (unsigned long a)

long fract __fractunsdisq (unsigned long a)

long long fract __fractunsdidq (unsigned long a)

short accum __fractunsdiha (unsigned long a)

accum __fractunsdisa (unsigned long a)

long accum __fractunsdida (unsigned long a)

long long accum __fractunsdita (unsigned long a)

unsigned short fract __fractunsdiuqq (unsigned long a)

unsigned fract __fractunsdiuhq (unsigned long a)

unsigned long fract __fractunsdiusq (unsigned long a)

unsigned long long fract __fractunsdiudq (unsigned
long a)

unsigned short accum __fractunsdiuha (unsigned long a)

unsigned accum __fractunsdiusa (unsigned long a)

unsigned long accum __fractunsdiuda (unsigned long a)

93

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

54 GNU Compiler Collection (GCC) Internals

unsigned long long accum __fractunsdiuta (unsigned
long a)

short fract __fractunstiqq (unsigned long long a)

fract __fractunstihq (unsigned long long a)

long fract __fractunstisq (unsigned long long a)

long long fract __fractunstidq (unsigned long long a)

short accum __fractunstiha (unsigned long long a)

accum __fractunstisa (unsigned long long a)

long accum __fractunstida (unsigned long long a)

long long accum __fractunstita (unsigned long long a)

unsigned short fract __fractunstiuqq (unsigned long
long a)

unsigned fract __fractunstiuhq (unsigned long long a)

unsigned long fract __fractunstiusq (unsigned long long
a)

unsigned long long fract
long long a)

unsigned short accum
long a)

unsigned accum _

unsigned long accum
)

unsigned long long accum
long long a)

_fractunstiudq (unsigned

_fractunstiuha (unsigned long

_fractunstiusa (unsigned long long a)
_fractunstiuda (unsigned long long

__fractunstiuta (unsigned

[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]

These functions convert from fractionals to unsigned non-fractionals; and from un-

signed non-fractionals to fractionals, without saturation.

short fract __satfractunsqiqq (unsigned char a)

fract __satfractunsqihq (unsigned char a)

long fract __satfractunsqisq (unsigned char a)

long long fract __satfractunsqidq (unsigned char a)

short accum __satfractunsqiha (unsigned char a)

accum __satfractunsqisa (unsigned char a)

long accum __satfractunsqida (unsigned char a)

long long accum __satfractunsqita (unsigned char a)

unsigned short fract __satfractunsqiuqq (unsigned char
)

unsigned fract __satfractunsqiuhq (unsigned char a)

unsigned long fract __satfractunsqiusq (unsigned char
)

unsigned long long fract
(unsigned char a)

unsigned short accum __satfractunsqiuha (unsigned char
a)

unsigned accum _

unsigned long accum

a)

_satfractunsqiudq

_satfractunsqiusa (unsigned char a)
_satfractunsqiuda (unsigned char

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

Chapter 4: The GCC low-level runtime library

unsigned long long accum
(unsigned char a)

short fract __satfractunshiqq (unsigned short a)

fract __satfractunshihq (unsigned short a)

long fract __satfractunshisq (unsigned short a)

long long fract __satfractunshidq (unsigned short a)

short accum __satfractunshiha (unsigned short a)

accum __satfractunshisa (unsigned short a)

long accum __satfractunshida (unsigned short a)

long long accum __satfractunshita (unsigned short a)

unsigned short fract __satfractunshiuqq (unsigned
short a)

unsigned fract __satfractunshiuhq (unsigned short a)

unsigned long fract __satfractunshiusq (unsigned short
a)

unsigned long long fract
(unsigned short a)

unsigned short accum
short a)

unsigned accum __satfractunshiusa (unsigned short a)

unsigned long accum __satfractunshiuda (unsigned short
)

unsigned long long accum
(unsigned short a)

short fract __satfractunssiqq (unsigned int a)

fract __satfractunssihq (unsigned int a)

long fract __satfractunssisq (unsigned int a)

long long fract __satfractunssidq (unsigned int a)

short accum __satfractunssiha (unsigned int a)

accum __satfractunssisa (unsigned int a)

long accum __satfractunssida (unsigned int a)

long long accum __satfractunssita (unsigned int a)

unsigned short fract __satfractunssiuqq (unsigned int
)

unsigned fract __satfractunssiuhq (unsigned int a)

unsigned long fract __satfractunssiusq (unsigned int a)

unsigned long long fract __satfractunssiudq
(unsigned int a)

unsigned short accum
a)

unsigned accum __satfractunssiusa (unsigned int a)

unsigned long accum __satfractunssiuda (unsigned int a)

unsigned long long accum __satfractunssiuta
(unsigned int a)

short fract __satfractunsdiqq (unsigned long a)

fract __satfractunsdihq (unsigned long a)

long fract __satfractunsdisq (unsigned long a)

_satfractunsqiuta

_satfractunshiudq

_satfractunshiuha (unsigned

__satfractunshiuta

_satfractunssiuha (unsigned int

95

[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]

56 GNU Compiler Collection (GCC) Internals

long long fract __satfractunsdidq (unsigned long a)

short accum __satfractunsdiha (unsigned long a)

accum __satfractunsdisa (unsigned long a)

long accum __satfractunsdida (unsigned long a)

long long accum __satfractunsdita (unsigned long a)

unsigned short fract __satfractunsdiuqq (unsigned long
a)

unsigned fract __satfractunsdiuhq (unsigned long a)

unsigned long fract __satfractunsdiusq (unsigned long
a)

unsigned long long fract
(unsigned long a)

unsigned short accum
)

unsigned accum __satfractunsdiusa (unsigned long a)

unsigned long accum __satfractunsdiuda (unsigned long
)

unsigned long long accum
(unsigned long a)

short fract __satfractunstiqq (unsigned long long a)

fract __satfractunstihq (unsigned long long a)

long fract __satfractunstisq (unsigned long long a)

long long fract __satfractunstidq (unsigned long long a)

short accum __satfractunstiha (unsigned long long a)

accum __satfractunstisa (unsigned long long a)

long accum __satfractunstida (unsigned long long a)

long long accum __satfractunstita (unsigned long long a)

unsigned short fract __satfractunstiuqq (unsigned long
long a)

unsigned fract __satfractunstiuhq (unsigned long long a)

unsigned long fract __satfractunstiusq (unsigned long
long a)

unsigned long long fract
(unsigned long long a)

unsigned short accum __satfractunstiuha (unsigned long
long a)

unsigned accum __satfractunstiusa (unsigned long long a)

unsigned long accum __satfractunstiuda (unsigned long
long a)

unsigned long long accum
(unsigned long long a)

__satfractunsdiudq

_satfractunsdiuha (unsigned long

_satfractunsdiuta

_satfractunstiudq

_satfractunstiuta

Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function

[]
[]
[]
[]
[]
[]

[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]

These functions convert from unsigned non-fractionals to fractionals, with saturation.

4.5 Language-independent routines for exception handling

document me!

_Unwind_DeleteException

Chapter 4: The GCC low-level runtime library 57

_Unwind_Find_FDE
_Unwind_ForcedUnwind
_Unwind_GetGR

_Unwind_GetIP
_Unwind_GetLanguageSpecificData
_Unwind_GetRegionStart
_Unwind_GetTextRelBase
_Unwind_GetDataRelBase
_Unwind_RaiseException
_Unwind_Resume

_Unwind_SetGR

_Unwind_SetIP
_Unwind_FindEnclosingFunction
_Unwind_SjLj_Register
_Unwind_SjLj_Unregister
_Unwind_SjLj_RaiseException
_Unwind_SjLj_ForcedUnwind
_Unwind_SjLj_Resume
__deregister_frame
__deregister_frame_info
__deregister_frame_info_bases
__register_frame
__register_frame_info
__register_frame_info_bases
__register_frame_info_table
__register_frame_info_table_bases
__register_frame_table

4.6 Miscellaneous runtime library routines
4.6.1 Cache control functions

void __clear_cache (char *beg, char *end) [Runtime Function]
This function clears the instruction cache between beg and end.

4.6.2 Split stack functions and variables

size_t len, void **next_segment, void **next_sp, void **initial_sp)
When using ‘-fsplit-stack’, this call may be used to iterate over the stack segments.
It may be called like this:

void * __splitstack_find (void *segment_arg, void *sp, [Runtime Function]

void *next_segment = NULL;
void *next_sp = NULL;

void *initial_sp = NULL;
void *stack;

size_t stack_size;

while ((stack =

splitstack_find (next_segment, next_sp,
&stack_size, &next_segment,
&next_sp, &initial_sp))
!= NULL)
{
/* Stack segment starts at stack and is
stack_size bytes long. */

58 GNU Compiler Collection (GCC) Internals

There is no way to iterate over the stack segments of a different thread. However,
what is permitted is for one thread to call this with the segment_arg and sp argu-
ments NULL, to pass next_segment, next_sp, and initial_sp to a different thread, and
then to suspend one way or another. A different thread may run the subsequent
__splitstack_find iterations. Of course, this will only work if the first thread is
suspended while the second thread is calling __splitstack_find. If not, the second
thread could be looking at the stack while it is changing, and anything could happen.

__morestack_segments [Variable]
__morestack_current_segment [Variable]
__morestack_initial_sp [Variable]

Internal variables used by the ‘-fsplit-stack’ implementation.

Chapter 5: Language Front Ends in GCC 59

5 Language Front Ends in GCC

The interface to front ends for languages in GCC, and in particular the tree structure (see
Chapter 11 [GENERIC], page 181), was initially designed for C, and many aspects of it
are still somewhat biased towards C and C-like languages. It is, however, reasonably well
suited to other procedural languages, and front ends for many such languages have been
written for GCC.

Writing a compiler as a front end for GCC, rather than compiling directly to assembler
or generating C code which is then compiled by GCC, has several advantages:

e GCC front ends benefit from the support for many different target machines already
present in GCC.

e GCC front ends benefit from all the optimizations in GCC. Some of these, such as
alias analysis, may work better when GCC is compiling directly from source code then
when it is compiling from generated C code.

e Better debugging information is generated when compiling directly from source code
than when going via intermediate generated C code.

Because of the advantages of writing a compiler as a GCC front end, GCC front ends
have also been created for languages very different from those for which GCC was designed,
such as the declarative logic/functional language Mercury. For these reasons, it may also
be useful to implement compilers created for specialized purposes (for example, as part of
a research project) as GCC front ends.

Chapter 6: Source Tree Structure and Build System 61

6 Source Tree Structure and Build System

This chapter describes the structure of the GCC source tree, and how GCC is built. The
user documentation for building and installing GCC is in a separate manual (http://gcc.
gnu.org/install/), with which it is presumed that you are familiar.

6.1 Configure Terms and History

The configure and build process has a long and colorful history, and can be confusing
to anyone who doesn’t know why things are the way they are. While there are other
documents which describe the configuration process in detail, here are a few things that
everyone working on GCC should know.

There are three system names that the build knows about: the machine you are building
on (build), the machine that you are building for (host), and the machine that GCC will
produce code for (target). When you configure GCC, you specify these with ‘--build=’,
‘-~host=’, and ‘--target=".

Specifying the host without specifying the build should be avoided, as configure may
(and once did) assume that the host you specify is also the build, which may not be true.

If build, host, and target are all the same, this is called a native. If build and host are the
same but target is different, this is called a cross. If build, host, and target are all different
this is called a canadian (for obscure reasons dealing with Canada’s political party and the
background of the person working on the build at that time). If host and target are the
same, but build is different, you are using a cross-compiler to build a native for a different
system. Some people call this a host-x-host, crossed native, or cross-built native. If build
and target are the same, but host is different, you are using a cross compiler to build a cross
compiler that produces code for the machine you’re building on. This is rare, so there is no
common way of describing it. There is a proposal to call this a crossback.

If build and host are the same, the GCC you are building will also be used to build the
target libraries (like libstdc++). If build and host are different, you must have already
built and installed a cross compiler that will be used to build the target libraries (if you
configured with ‘--target=foo-bar’, this compiler will be called foo-bar-gcc).

In the case of target libraries, the machine you’re building for is the machine you specified
with ‘--target’. So, build is the machine you’re building on (no change there), host is the
machine you’re building for (the target libraries are built for the target, so host is the target
you specified), and target doesn’t apply (because you're not building a compiler, you're
building libraries). The configure/make process will adjust these variables as needed. It
also sets $with_cross_host to the original ‘--host’ value in case you need it.

The 1libiberty support library is built up to three times: once for the host, once for the
target (even if they are the same), and once for the build if build and host are different.
This allows it to be used by all programs which are generated in the course of the build
process.

6.2 Top Level Source Directory

The top level source directory in a GCC distribution contains several files and directories
that are shared with other software distributions such as that of GNU Binutils. It also
contains several subdirectories that contain parts of GCC and its runtime libraries:

http://gcc.gnu.org/install/
http://gcc.gnu.org/install/

62 GNU Compiler Collection (GCC) Internals

‘boehm-gc’
The Boehm conservative garbage collector, used as part of the Java runtime
library.

‘config’ Autoconf macros and Makefile fragments used throughout the tree.

‘contrib’ Contributed scripts that may be found useful in conjunction with GCC. One
of these, ‘contrib/texi2pod.pl’, is used to generate man pages from Texinfo
manuals as part of the GCC build process.

‘fixincludes’
The support for fixing system headers to work with GCC. See
‘fixincludes/README’ for more information. The headers fixed by this mech-
anism are installed in ‘1ibsubdir/include-fixed’. Along with those headers,
‘README-fixinc’ is also installed, as ‘1ibsubdir/include-fixed/README’.

gcc The main sources of GCC itself (except for runtime libraries), including op-
timizers, support for different target architectures, language front ends, and
testsuites. See Section 6.3 [The ‘gcc’ Subdirectory], page 63, for details.

‘gnattools’
Support tools for GNAT.

‘include’ Headers for the 1libiberty library.

‘intl’ GNU 1libintl, from GNU gettext, for systems which do not include it in
libc.

‘libada’ The Ada runtime library.

‘libatomic’
The runtime support library for atomic operations (e.g. for __sync and __
atomic).
‘libcpp’ The C preprocessor library.
‘libdecnumber’
The Decimal Float support library.
‘libffi’ The libffi library, used as part of the Java runtime library.
‘libgcc’” The GCC runtime library.
‘libgfortran’
The Fortran runtime library.
‘libgo’ The Go runtime library. The bulk of this library is mirrored from the master

Go repository.
‘libgomp’ The GNU OpenMP runtime library.
‘libiberty’
The libiberty library, used for portability and for some generally useful data

structures and algorithms. See Section “Introduction” in GNU libiberty, for
more information about this library.

‘libitm’ The runtime support library for transactional memory.

http://code.google.com/p/go/
http://code.google.com/p/go/

Chapter 6: Source Tree Structure and Build System 63

‘libjava’ The Java runtime library.

‘libmudflap’
The 1ibmudflap library, used for instrumenting pointer and array dereferencing
operations.

‘libobjc’ The Objective-C and Objective-C++ runtime library.

‘libquadmath’
The runtime support library for quad-precision math operations.

‘libssp’ The Stack protector runtime library.

‘libstdc++-v3’
The C++ runtime library.

‘1to-plugin’
Plugin used by gold if link-time optimizations are enabled.

‘maintainer-scripts’
Scripts used by the gccadmin account on gcc.gnu.org.

‘z1ib’ The z1ib compression library, used by the Java front end, as part of the Java
runtime library, and for compressing and uncompressing GCC’s intermediate
language in LTO object files.

The build system in the top level directory, including how recursion into subdirectories
works and how building runtime libraries for multilibs is handled, is documented in a sepa-
rate manual, included with GNU Binutils. See Section “GNU configure and build system”
in The GNU configure and build system, for details.

6.3 The ‘gcc’ Subdirectory

The ‘gcc’ directory contains many files that are part of the C sources of GCC, other files used
as part of the configuration and build process, and subdirectories including documentation
and a testsuite. The files that are sources of GCC are documented in a separate chapter.
See Chapter 9 [Passes and Files of the Compiler], page 115.

6.3.1 Subdirectories of ‘gcc’
The ‘gec’ directory contains the following subdirectories:

‘language’

Subdirectories for various languages. Directories containing a file
‘config-lang.in’ are language subdirectories. The contents of the
subdirectories ‘c’ (for C), ‘cp’ (for C++), ‘objc’ (for Objective-C), ‘objcp’
(for Objective-C++), and ‘lto’ (for LTO) are documented in this manual
(see Chapter 9 [Passes and Files of the Compiler|, page 115); those for other
languages are not. See Section 6.3.8 [Anatomy of a Language Front End],
page 71, for details of the files in these directories.

‘common’ Source files shared between the compiler drivers (such as gcc) and the compilers
proper (such as ‘cc1’). If an architecture defines target hooks shared between
those places, it also has a subdirectory in ‘common/config’. See Section 17.1
[Target Structure|, page 415.

64 GNU Compiler Collection (GCC) Internals

‘config’ Configuration files for supported architectures and operating systems. See
Section 6.3.9 [Anatomy of a Target Back End], page 75, for details of the files
in this directory.

Texinfo documentation for GCC, together with automatically generated man
pages and support for converting the installation manual to HTML. See
Section 6.3.7 [Documentation|, page 69.

‘doc

‘ginclude’
System headers installed by GCC, mainly those required by the C standard of
freestanding implementations. See Section 6.3.6 [Headers Installed by GCC],
page 68, for details of when these and other headers are installed.

po Message catalogs with translations of messages produced by GCC into various
languages, ‘language.po’. This directory also contains ‘gcc.pot’, the template
for these message catalogues, ‘exgettext’, a wrapper around gettext to ex-
tract the messages from the GCC sources and create ‘gcc.pot’, which is run
by ‘make gcc.pot’, and ‘EXCLUDES’, a list of files from which messages should
not be extracted.

‘testsuite’
The GCC testsuites (except for those for runtime libraries). See Chapter 7
[Testsuites|, page 79.

6.3.2 Configuration in the ‘gcc’ Directory

The ‘gcc’ directory is configured with an Autoconf-generated script ‘configure’. The
‘configure’ script is generated from ‘configure.ac’ and ‘aclocal.m4’. From the files
‘configure.ac’ and ‘acconfig.h’, Autoheader generates the file ‘config.in’. The file
‘cstamp-h.in’ is used as a timestamp.

6.3.2.1 Scripts Used by ‘configure’

‘configure’ uses some other scripts to help in its work:

e The standard GNU ‘config.sub’ and ‘config.guess’ files, kept in the top level direc-
tory, are used.

e The file ‘config.gcc’ is used to handle configuration specific to the particular target
machine. The file ‘config.build’ is used to handle configuration specific to the par-
ticular build machine. The file ‘config.host’ is used to handle configuration specific
to the particular host machine. (In general, these should only be used for features
that cannot reasonably be tested in Autoconf feature tests.) See Section 6.3.2.2 [The
‘config.build’; ‘config.host’; and ‘config.gcc’ Files], page 65, for details of the
contents of these files.

e Fach language subdirectory has a file ‘language/config-lang.in’ that is used for
front-end-specific configuration. See Section 6.3.8.2 [The Front End ‘config-lang.in’
File], page 73, for details of this file.

e A helper script ‘configure.frag’ is used as part of creating the output of ‘configure’.

Chapter 6: Source Tree Structure and Build System 65

6.3.2.2 The ‘config.build’; ‘config.host’; and ‘config.gcc’ Files

The ‘config.build’ file contains specific rules for particular systems which GCC is built
on. This should be used as rarely as possible, as the behavior of the build system can always
be detected by autoconf.

The ‘config.host’ file contains specific rules for particular systems which GCC will run
on. This is rarely needed.

The ‘config.gcc’ file contains specific rules for particular systems which GCC will gen-
erate code for. This is usually needed.

Each file has a list of the shell variables it sets, with descriptions, at the top of the file.

FIXME: document the contents of these files, and what variables should be set to control
build, host and target configuration.

6.3.2.3 Files Created by configure

Here we spell out what files will be set up by ‘configure’ in the ‘gcc’ directory. Some
other files are created as temporary files in the configuration process, and are not used in
the subsequent build; these are not documented.

e ‘Makefile’ is constructed from ‘Makefile.in’, together with the host and target frag-
ments (see Chapter 19 [Makefile Fragments|, page 587) ‘t-target’ and ‘x-host’ from
‘config’, if any, and language Makefile fragments ‘language/Make-lang.in’.

e ‘auto-host.h’ contains information about the host machine determined by
‘configure’. If the host machine is different from the build machine, then
‘auto-build.h’ is also created, containing such information about the build machine.

e ‘config.status’ is a script that may be run to recreate the current configuration.

e ‘configargs.h’is a header containing details of the arguments passed to ‘configure’
to configure GCC, and of the thread model used.

e ‘cstamp-h’ is used as a timestamp.

e If a language ‘config-lang.in’ file (see Section 6.3.8.2 [The Front End
‘config-lang.in’ File], page 73) sets outputs, then the files listed in outputs there
are also generated.

The following configuration headers are created from the Makefile, using ‘mkconfig.sh’,
rather than directly by ‘configure’. ‘config.h’, ‘bconfig.h’ and ‘tconfig.h’ all contain
the ‘xm-machine.h’ header, if any, appropriate to the host, build and target machines
respectively, the configuration headers for the target, and some definitions; for the host
and build machines, these include the autoconfigured headers generated by ‘configure’.
The other configuration headers are determined by ‘config.gcc’. They also contain the
typedefs for rtx, rtvec and tree.

e ‘config.h’; for use in programs that run on the host machine.
e ‘beconfig.h’, for use in programs that run on the build machine.
e ‘tconfig.h’, for use in programs and libraries for the target machine.

e ‘tm_p.h’, which includes the header ‘machine-protos.h’ that contains prototypes
for functions in the target ‘machine.c’ file. The header ‘machine-protos.h’
can include prototypes of functions that use rtl and tree data structures inside
appropriate #ifdef RTX_CODE and #ifdef TREE_CODE conditional code segements.

66

GNU Compiler Collection (GCC) Internals

The ‘machine-protos.h’ is included after the ‘rtl.h’ and/or ‘tree.h’ would have
been included. The ‘tm_p.h’ also includes the header ‘tm-preds.h’ which is generated
by ‘genpreds’ program during the build to define the declarations and inline functions
for the predicate functions.

6.3.3 Build System in the ‘gcc’ Directory

FIXME: describe the build system, including what is built in what stages. Also list the
various source files that are used in the build process but aren’t source files of GCC itself
and so aren’t documented below (see Chapter 9 [Passes|, page 115).

6.3.4 Makefile Targets

These targets are available from the ‘gcc’ directory:

all This is the default target. Depending on what your build/host/target configu-
ration is, it coordinates all the things that need to be built.

doc Produce info-formatted documentation and man pages. Essentially it calls
‘make man’ and ‘make info’.

dvi Produce DVI-formatted documentation.

pdf Produce PDF-formatted documentation.

html Produce HTML-formatted documentation.

man Generate man pages.

info Generate info-formatted pages.

mostlyclean
Delete the files made while building the compiler.

clean That, and all the other files built by ‘make all’.

distclean

That, and all the files created by configure.

maintainer-clean

srcextra

srcinfo
srcman

install

uninstall

check

Distclean plus any file that can be generated from other files. Note that addi-
tional tools may be required beyond what is normally needed to build GCC.

Generates files in the source directory that are not version-controlled but should
go into a release tarball.

Copies the info-formatted and manpage documentation into the source directory
usually for the purpose of generating a release tarball.

Installs GCC.

Deletes installed files, though this is not supported.

Run the testsuite. This creates a ‘testsuite’ subdirectory that has various
‘.sum’ and ‘.log’ files containing the results of the testing. You can run subsets

Chapter 6: Source Tree Structure and Build System 67

with, for example, ‘make check-gcc’. You can specify specific tests by setting
RUNTESTFLAGS to be the name of the ‘.exp’ file, optionally followed by (for
some tests) an equals and a file wildcard, like:

make check-gcc RUNTESTFLAGS="execute.exp=19980413-*"

Note that running the testsuite may require additional tools be installed, such
as Tcl or DejaGnu.

The toplevel tree from which you start GCC compilation is not the GCC directory,
but rather a complex Makefile that coordinates the various steps of the build, including
bootstrapping the compiler and using the new compiler to build target libraries.

When GCC is configured for a native configuration, the default action for make is to
do a full three-stage bootstrap. This means that GCC is built three times—once with the
native compiler, once with the native-built compiler it just built, and once with the compiler
it built the second time. In theory, the last two should produce the same results, which
‘make compare’ can check. Each stage is configured separately and compiled into a separate
directory, to minimize problems due to ABI incompatibilities between the native compiler
and GCC.

If you do a change, rebuilding will also start from the first stage and “bubble” up the
change through the three stages. Each stage is taken from its build directory (if it had
been built previously), rebuilt, and copied to its subdirectory. This will allow you to, for
example, continue a bootstrap after fixing a bug which causes the stage2 build to crash.
It does not provide as good coverage of the compiler as bootstrapping from scratch, but it
ensures that the new code is syntactically correct (e.g., that you did not use GCC extensions
by mistake), and avoids spurious bootstrap comparison failures'.

Other targets available from the top level include:

bootstrap-lean
Like bootstrap, except that the various stages are removed once they’re no
longer needed. This saves disk space.

bootstrap2

bootstrap2-lean
Performs only the first two stages of bootstrap. Unlike a three-stage bootstrap,
this does not perform a comparison to test that the compiler is running prop-
erly. Note that the disk space required by a “lean” bootstrap is approximately
independent of the number of stages.

stageN-bubble (N =1...4, profile, feedback)
Rebuild all the stages up to N, with the appropriate flags, “bubbling” the
changes as described above.

all-stageN (N=1...4, profile, feedback)
Assuming that stage N has already been built, rebuild it with the appropriate
flags. This is rarely needed.

cleanstrap
Remove everything (‘make clean’) and rebuilds (‘make bootstrap’).

1 Except if the compiler was buggy and miscompiled some of the files that were not modified. In this case,
it’s best to use make restrap.

68 GNU Compiler Collection (GCC) Internals

compare Compares the results of stages 2 and 3. This ensures that the compiler is
running properly, since it should produce the same object files regardless of
how it itself was compiled.

profiledbootstrap
Builds a compiler with profiling feedback information. In this case, the second
and third stages are named ‘profile’ and ‘feedback’, respectively. For more
information, see Section “Building with profile feedback” in Installing GCC.

restrap Restart a bootstrap, so that everything that was not built with the system
compiler is rebuilt.

stageN-start (N=1...4, profile, feedback)
For each package that is bootstrapped, rename directories so that, for example,
‘gcc’ points to the stageN GCC, compiled with the stageN-1 GCC?2.

You will invoke this target if you need to test or debug the stageN GCC. If
you only need to execute GCC (but you need not run ‘make’ either to rebuild it
or to run test suites), you should be able to work directly in the ‘stageN-gcc’
directory. This makes it easier to debug multiple stages in parallel.

stage For each package that is bootstrapped, relocate its build directory to indicate
its stage. For example, if the ‘gcc’ directory points to the stage2 GCC, after
invoking this target it will be renamed to ‘stage2-gcc’.

If you wish to use non-default GCC flags when compiling the stage2 and stage3 compilers,
set BOOT_CFLAGS on the command line when doing ‘make’.

Usually, the first stage only builds the languages that the compiler is written in: typically,
C and maybe Ada. If you are debugging a miscompilation of a different stage2 front-end (for
example, of the Fortran front-end), you may want to have front-ends for other languages in
the first stage as well. To do so, set STAGE1_LANGUAGES on the command line when doing
‘make’.

For example, in the aforementioned scenario of debugging a Fortran front-end miscompi-
lation caused by the stagel compiler, you may need a command like

make stage2-bubble STAGE1_LANGUAGES=c,fortran
Alternatively, you can use per-language targets to build and test languages that are not

enabled by default in stagel. For example, make £951 will build a Fortran compiler even in
the stagel build directory.

6.3.5 Library Source Files and Headers under the ‘gcc’ Directory

FIXME: list here, with explanation, all the C source files and headers under the ‘gcc’
directory that aren’t built into the GCC executable but rather are part of runtime libraries
and object files, such as ‘crtstuff.c’ and ‘unwind-dw2.c’. See Section 6.3.6 [Headers
Installed by GCC], page 68, for more information about the ‘ginclude’ directory.

6.3.6 Headers Installed by GCC

In general, GCC expects the system C library to provide most of the headers to be used
with it. However, GCC will fix those headers if necessary to make them work with GCC,

2 Customarily, the system compiler is also termed the ‘stage0’ GCC.

Chapter 6: Source Tree Structure and Build System 69

and will install some headers required of freestanding implementations. These headers are
installed in ‘1ibsubdir/include’. Headers for non-C runtime libraries are also installed by
GCC; these are not documented here. (FIXME: document them somewhere.)

Several of the headers GCC installs are in the ‘ginclude’ directory. These
headers, ‘iso646.h’, ‘stdarg.h’, ‘stdbool.h’; and ‘stddef.h’, are installed in
‘libsubdir/include’, unless the target Makefile fragment (see Section 19.1 [Target
Fragment|, page 587) overrides this by setting USER_H.

In addition to these headers and those generated by fixing system headers to work with
GCC, some other headers may also be installed in ‘Iibsubdir/include’. ‘config.gcc’
may set extra_headers; this specifies additional headers under ‘config’ to be installed on
some systems.

GCC installs its own version of <float.h>, from ‘ginclude/float.h’. This is done to
cope with command-line options that change the representation of floating point numbers.

GCC also installs its own version of <limits.h>; this is generated from ‘glimits.h’; to-
gether with ‘1imitx.h’ and ‘limity.h’ if the system also has its own version of <limits.h>.
(GCC provides its own header because it is required of ISO C freestanding implementations,
but needs to include the system header from its own header as well because other stan-
dards such as POSIX specify additional values to be defined in <1imits.h>.) The system’s
<limits.h> header is used via ‘Iibsubdir/include/syslimits.h’, which is copied from
‘gsyslimits.h’if it does not need fixing to work with GCC; if it needs fixing, ‘syslimits.h’
is the fixed copy.

GCC can also install <tgmath.h>. It will do this when ‘config.gcc’ sets use_gcc_tgmath
to yes.

6.3.7 Building Documentation

The main GCC documentation is in the form of manuals in Texinfo format. These are
installed in Info format; DVI versions may be generated by ‘make dvi’, PDF versions by
‘make pdf’, and HT'ML versions by ‘make html’. In addition, some man pages are generated
from the Texinfo manuals, there are some other text files with miscellaneous documentation,
and runtime libraries have their own documentation outside the ‘gcc’ directory. FIXME:
document the documentation for runtime libraries somewhere.

6.3.7.1 Texinfo Manuals

The manuals for GCC as a whole, and the C and C++ front ends, are in files ‘doc/*.texi’.
Other front ends have their own manuals in files ‘language/*.texi’. Common files
‘doc/include/*.texi’ are provided which may be included in multiple manuals; the
following files are in ‘doc/include’:

‘fdl.texi’
The GNU Free Documentation License.

‘funding.texi’
The section “Funding Free Software”.

‘gcc-common. texi’
Common definitions for manuals.

70 GNU Compiler Collection (GCC) Internals

‘gpl_v3.texi’
The GNU General Public License.

‘texinfo.tex’
A copy of ‘texinfo.tex’ known to work with the GCC manuals.

DVI-formatted manuals are generated by ‘make dvi’, which uses texi2dvi (via the Make-
file macro $ (TEXI2DVI)). PDF-formatted manuals are generated by ‘make pdf’, which uses
texi2pdf (via the Makefile macro $ (TEXI2PDF)). HTML formatted manuals are generated
by ‘make html’. Info manuals are generated by ‘make info’ (which is run as part of a boot-
strap); this generates the manuals in the source directory, using makeinfo via the Makefile
macro $ (MAKEINFQ), and they are included in release distributions.

Manuals are also provided on the GCC web site, in both HTML and PostScript forms.
This is done via the script ‘maintainer-scripts/update_web_docs_svn’. Each manual to
be provided online must be listed in the definition of MANUALS in that file; a file ‘name.texi’
must only appear once in the source tree, and the output manual must have the same
name as the source file. (However, other Texinfo files, included in manuals but not them-
selves the root files of manuals, may have names that appear more than once in the source
tree.) The manual file ‘name.texi’ should only include other files in its own directory or in
‘doc/include’. HTML manuals will be generated by ‘makeinfo --html’, PostScript manu-
als by texi2dvi and dvips, and PDF manuals by texi2pdf. All Texinfo files that are parts
of manuals must be version-controlled, even if they are generated files, for the generation
of online manuals to work.

The installation manual, ‘doc/install.texi’, is also provided on the GCC web site. The
HTML version is generated by the script ‘doc/install.texi2html’.

6.3.7.2 Man Page Generation

Because of user demand, in addition to full Texinfo manuals, man pages are provided which
contain extracts from those manuals. These man pages are generated from the Texinfo
manuals using ‘contrib/texi2pod.pl’ and pod2man. (The man page for g++, ‘cp/g++.1,
just contains a ‘.so’ reference to ‘gcc.1’, but all the other man pages are generated from
Texinfo manuals.)

Because many systems may not have the necessary tools installed to generate the man
pages, they are only generated if the ‘configure’ script detects that recent enough tools
are installed, and the Makefiles allow generating man pages to fail without aborting the
build. Man pages are also included in release distributions. They are generated in the
source directory.

Magic comments in Texinfo files starting ‘@c man’ control what parts of a Texinfo file
go into a man page. Only a subset of Texinfo is supported by ‘texi2pod.pl’, and it may
be necessary to add support for more Texinfo features to this script when generating new
man pages. To improve the man page output, some special Texinfo macros are provided in
‘doc/include/gcc-common. texi’ which ‘texi2pod.pl’ understands:

O@gcctabopt
Use in the form ‘@table @gcctabopt’ for tables of options, where for printed
output the effect of ‘G@code’ is better than that of ‘@option’ but for man page
output a different effect is wanted.

Chapter 6: Source Tree Structure and Build System 71

Q@gccoptlist
Use for summary lists of options in manuals.

Qgol Use at the end of each line inside ‘@gccoptlist’. This is necessary to avoid
problems with differences in how the ‘@gccoptlist’ macro is handled by dif-
ferent Texinfo formatters.

FIXME: describe the ‘texi2pod.pl’ input language and magic comments in more detail.

6.3.7.3 Miscellaneous Documentation

In addition to the formal documentation that is installed by GCC, there are several other
text files in the ‘gcc’ subdirectory with miscellaneous documentation:

‘ABOUT-GCC-NLS’
Notes on GCC’s Native Language Support. FIXME: this should be part of this
manual rather than a separate file.

‘ABOUT-NLS’
Notes on the Free Translation Project.

‘COPYING’
‘COPYING3’
The GNU General Public License, Versions 2 and 3.

‘COPYING.LIB’
‘COPYING3.LIB’
The GNU Lesser General Public License, Versions 2.1 and 3.

‘*ChangeLog*’
‘*x/ChangeLog*’
Change log files for various parts of GCC.

‘LANGUAGES’
Details of a few changes to the GCC front-end interface. FIXME: the infor-
mation in this file should be part of general documentation of the front-end
interface in this manual.

‘ONEWS’ Information about new features in old versions of GCC. (For recent versions,
the information is on the GCC web site.)

‘README.Portability’
Information about portability issues when writing code in GCC. FIXME: why
isn’t this part of this manual or of the GCC Coding Conventions?

[¢ 9

FIXME: document such files in subdirectories, at least ‘config’, ‘c’, ‘cp’, ‘objc’,
‘testsuite’.

6.3.8 Anatomy of a Language Front End
A front end for a language in GCC has the following parts:

e A directory ‘language’ under ‘gcc’ containing source files for that front end. See
Section 6.3.8.1 [The Front End ‘language’ Directory], page 73, for details.

e A mention of the language in the list of supported languages in ‘gcc/doc/install.texi’ ||

72 GNU Compiler Collection (GCC) Internals

e A mention of the name under which the language’s runtime library is recog-
nized by ‘--enable-shared=package’ in the documentation of that option in
‘gcc/doc/install.texi’.

e A mention of any special prerequisites for building the front end in the documentation
of prerequisites in ‘gcc/doc/install.texi’.

e Details of contributors to that front end in ‘gcc/doc/contrib.texi’. If the details are
in that front end’s own manual then there should be a link to that manual’s list in
‘contrib.texi’.

e Information about support for that language in ‘gcc/doc/frontends.texi’.

e Information about standards for that language, and the front end’s support for them,
in ‘gcc/doc/standards.texi’. This may be a link to such information in the front
end’s own manual.

e Details of source file suffixes for that language and ‘-x lang’ options supported, in
‘gcc/doc/invoke. texi’.

e Entries in default_compilers in ‘gcc.c’ for source file suffixes for that language.
e Preferably testsuites, which may be under ‘gcc/testsuite’ or runtime library direc-
tories. FIXME: document somewhere how to write testsuite harnesses.

e Probably a runtime library for the language, outside the ‘gcc’ directory. FIXME:
document this further.

e Details of the directories of any runtime libraries in ‘gcc/doc/sourcebuild.texi’.

e Check targets in ‘Makefile.def’ for the top-level ‘Makefile’ to check just the compiler
or the compiler and runtime library for the language.

If the front end is added to the official GCC source repository, the following are also
necessary:

e At least one Bugzilla component for bugs in that front end and runtime libraries. This
category needs to be added to the Bugzilla database.

e Normally, one or more maintainers of that front end listed in ‘MAINTAINERS’.

e Mentions on the GCC web site in ‘index.html’ and ‘frontends.html’, with any rele-
vant links on ‘readings.html’. (Front ends that are not an official part of GCC may
also be listed on ‘frontends.html’, with relevant links.)

e A news item on ‘index.html’, and possibly an announcement on the
gcc-announce@gcc. gnu. org mailing list.

e The front end’s manuals should be mentioned in ‘maintainer-scripts/update_web_docs_svn’l]
(see Section 6.3.7.1 [Texinfo Manuals|, page 69) and the online manuals should be
linked to from ‘onlinedocs/index.html’.

e Any old releases or CVS repositories of the front end, before its inclusion in GCC,
should be made available on the GCC FTP site ftp://gcc.gnu.org/pub/gecc/
old-releases/.

e The release and snapshot script ‘maintainer-scripts/gcc_release’ should be up-
dated to generate appropriate tarballs for this front end.

e If this front end includes its own version files that include the current date,
‘maintainer-scripts/update_version’ should be updated accordingly.

mailto:gcc-announce@gcc.gnu.org
ftp://gcc.gnu.org/pub/gcc/old-releases/
ftp://gcc.gnu.org/pub/gcc/old-releases/

Chapter 6: Source Tree Structure and Build System 73

6.3.8.1 The Front End ‘language’ Directory

A front end ‘Ianguage’ directory contains the source files of that front end (but not of any
runtime libraries, which should be outside the ‘gcc’ directory). This includes documenta-
tion, and possibly some subsidiary programs built alongside the front end. Certain files are
special and other parts of the compiler depend on their names:

‘config-lang.in’
This file is required in all language subdirectories. See Section 6.3.8.2 [The
Front End ‘config-lang.in’ File], page 73, for details of its contents

‘Make-lang.in’
This file is required in all language subdirectories. See Section 6.3.8.3 [The
Front End ‘Make-lang.in’ File], page 74, for details of its contents.

‘lang.opt’
This file registers the set of switches that the front end accepts on the command
line, and their ‘--help’ text. See Chapter 8 [Options], page 107.

‘lang-specs.h’
This file provides entries for default_compilers in ‘gcc.c’ which override the
default of giving an error that a compiler for that language is not installed.

‘language-tree.def’
This file, which need not exist, defines any language-specific tree codes.

6.3.8.2 The Front End ‘config-lang.in’ File

Each language subdirectory contains a ‘config-lang.in’ file. This file is a shell script that
may define some variables describing the language:

language This definition must be present, and gives the name of the language for some
purposes such as arguments to ‘--enable-languages’.

lang_requires
If defined, this variable lists (space-separated) language front ends other than
C that this front end requires to be enabled (with the names given being their
language settings). For example, the Java front end depends on the C++ front
end, so sets ‘lang_requires=c++’.

subdir_requires
If defined, this variable lists (space-separated) front end directories other than
C that this front end requires to be present. For example, the Objective-C++
front end uses source files from the C++ and Objective-C front ends, so sets
‘subdir_requires="cp objc"’.

target_libs
If defined, this variable lists (space-separated) targets in the top level ‘Makefile’
to build the runtime libraries for this language, such as target-1libobjc.

lang_dirs
If defined, this variable lists (space-separated) top level directories (parallel to
‘gec’), apart from the runtime libraries, that should not be configured if this
front end is not built.

74 GNU Compiler Collection (GCC) Internals

build_by_default
If defined to ‘no’, this language front end is not built unless enabled in a
‘-—enable-languages’ argument. Otherwise, front ends are built by default,
subject to any special logic in ‘configure.ac’ (as is present to disable the Ada
front end if the Ada compiler is not already installed).

boot_language
If defined to ‘yes’, this front end is built in stagel of the bootstrap. This is
only relevant to front ends written in their own languages.

compilers
If defined, a space-separated list of compiler executables that will be run by the
driver. The names here will each end with ‘\$ (exeext)’.

outputs If defined, a space-separated list of files that should be generated by ‘configure’
substituting values in them. This mechanism can be used to create a file
‘language/Makefile’ from ‘language/Makefile.in’, but this is deprecated,
building everything from the single ‘gcc/Makefile’ is preferred.

gtfiles If defined, a space-separated list of files that should be scanned by ‘gengtype.c’
to generate the garbage collection tables and routines for this language. This
excludes the files that are common to all front ends. See Chapter 22 [Type
Information|, page 595.

6.3.8.3 The Front End ‘Make-lang.in’ File

Each language subdirectory contains a ‘Make-lang.in’ file. It contains targets lang.hook
(where lang is the setting of language in ‘config-lang.in’) for the following values of
hook, and any other Makefile rules required to build those targets (which may if necessary
use other Makefiles specified in outputs in ‘config-lang.in’, although this is deprecated).
It also adds any testsuite targets that can use the standard rule in ‘gcc/Makefile.in’ to
the variable lang_checks.

all.cross
start.encap
rest.encap
FIXME: exactly what goes in each of these targets?

tags Build an etags ‘TAGS’ file in the language subdirectory in the source tree.

info Build info documentation for the front end, in the build directory. This target
is only called by ‘make bootstrap’ if a suitable version of makeinfo is available,
so does not need to check for this, and should fail if an error occurs.

dvi Build DVI documentation for the front end, in the build directory. This should
be done using $(TEXI2DVI), with appropriate ‘-I’ arguments pointing to di-
rectories of included files.

pdf Build PDF documentation for the front end, in the build directory. This should
be done using $(TEXI2PDF), with appropriate ‘-I’ arguments pointing to di-
rectories of included files.

html Build HTML documentation for the front end, in the build directory.

Chapter 6: Source Tree Structure and Build System 75

man Build generated man pages for the front end from Texinfo manuals (see
Section 6.3.7.2 [Man Page Generation|, page 70), in the build directory. This
target is only called if the necessary tools are available, but should ignore
errors so as not to stop the build if errors occur; man pages are optional and
the tools involved may be installed in a broken way.

install-common
Install everything that is part of the front end, apart from the compiler exe-
cutables listed in compilers in ‘config-lang.in’.

install-info
Install info documentation for the front end, if it is present in the source direc-
tory. This target should have dependencies on info files that should be installed.

install-man
Install man pages for the front end. This target should ignore errors.

install-plugin
Install headers needed for plugins.

srcextra Copies its dependencies into the source directory. This generally should be used
for generated files such as Bison output files which are not version-controlled,
but should be included in any release tarballs. This target will be executed
during a bootstrap if ‘--enable-generated-files-in-srcdir’ was specified
as a ‘configure’ option.

srcinfo

srcman Copies its dependencies into the source directory. These targets will be executed
during a bootstrap if ‘-—enable-generated-files-in-srcdir’ was specified
as a ‘configure’ option.

uninstall
Uninstall files installed by installing the compiler. This is currently documented
not to be supported, so the hook need not do anything.

mostlyclean

clean

distclean

maintainer-clean
The language parts of the standard GNU ‘*clean’ targets. See Section “Stan-
dard Targets for Users” in GNU Coding Standards, for details of the standard
targets. For GCC, maintainer-clean should delete all generated files in the
source directory that are not version-controlled, but should not delete anything
that is.

‘Make-lang.in’ must also define a variable lang_0BJS to a list of host object files that
are used by that language.

6.3.9 Anatomy of a Target Back End
A back end for a target architecture in GCC has the following parts:

e A directory ‘machine’ under ‘gcc/config’, containing a machine description
‘machine.md’ file (see Chapter 16 [Machine Descriptions|, page 295), header files

76 GNU Compiler Collection (GCC) Internals

‘machine.h’ and ‘machine-protos.h’ and a source file ‘machine.c’ (see Chapter 17
[Target Description Macros and Functions|, page 415), possibly a target Makefile
fragment ‘t-machine’ (see Section 19.1 [The Target Makefile Fragment|, page 587),
and maybe some other files. The names of these files may be changed from the
defaults given by explicit specifications in ‘config.gcc’.

e If necessary, a file ‘machine-modes.def’ in the ‘machine’ directory, containing addi-
tional machine modes to represent condition codes. See Section 17.16 [Condition Code],
page 500, for further details.

e An optional ‘machine.opt’ file in the ‘machine’ directory, containing a list of target-
specific options. You can also add other option files using the extra_options variable
in ‘config.gcc’. See Chapter 8 [Options], page 107.

e Entries in ‘config.gcc’ (see Section 6.3.2.2 [The ‘config.gcc’ File|, page 65) for the
systems with this target architecture.

e Documentation in ‘gcc/doc/invoke. texi’ for any command-line options supported by
this target (see Section 17.3 [Run-time Target Specification|, page 422). This means
both entries in the summary table of options and details of the individual options.

e Documentation in ‘gcc/doc/extend. texi’ for any target-specific attributes supported
(see Section 17.25 [Defining target-specific uses of __attribute__|, page 558), including
where the same attribute is already supported on some targets, which are enumerated
in the manual.

e Documentation in ‘gcc/doc/extend.texi’ for any target-specific pragmas supported.

e Documentation in ‘gcc/doc/extend. texi’ of any target-specific built-in functions sup-
ported.

e Documentation in ‘gcc/doc/extend.texi’ of any target-specific format checking styles
supported.

e Documentation in ‘gcc/doc/md.texi’ of any target-specific constraint letters (see
Section 16.8.5 [Constraints for Particular Machines|, page 315).

e A note in ‘gcc/doc/contrib.texi’ under the person or people who contributed the
target support.

e Entries in ‘gcc/doc/install.texi’ for all target triplets supported with this target
architecture, giving details of any special notes about installation for this target, or
saying that there are no special notes if there are none.

e Possibly other support outside the ‘gcc’ directory for runtime libraries. FIXME: ref-
erence docs for this. The libstdc++ porting manual needs to be installed as info for
this to work, or to be a chapter of this manual.

If the back end is added to the official GCC source repository, the following are also
necessary:

e An entry for the target architecture in ‘readings.html’ on the GCC web site, with
any relevant links.

e Details of the properties of the back end and target architecture in ‘backends.html’
on the GCC web site.

e A news item about the contribution of support for that target architecture, in
‘index.html’ on the GCC web site.

Chapter 6: Source Tree Structure and Build System 77

e Normally, one or more maintainers of that target listed in ‘MAINTAINERS’. Some existing
architectures may be unmaintained, but it would be unusual to add support for a target
that does not have a maintainer when support is added.

e Target triplets covering all ‘config.gcc’ stanzas for the target, in the list in
‘contrib/config-list.mk’.

Chapter 7: Testsuites 79

7 Testsuites

GCC contains several testsuites to help maintain compiler quality. Most of the runtime
libraries and language front ends in GCC have testsuites. Currently only the C language
testsuites are documented here; FIXME: document the others.

7.1 Idioms Used in Testsuite Code

In general, C testcases have a trailing ‘-n.c’, starting with ‘-1.c’, in case other testcases
with similar names are added later. If the test is a test of some well-defined feature, it
should have a name referring to that feature such as ‘feature-1.c’. If it does not test a
well-defined feature but just happens to exercise a bug somewhere in the compiler, and a
bug report has been filed for this bug in the GCC bug database, ‘prbug-number-1.c’ is
the appropriate form of name. Otherwise (for miscellaneous bugs not filed in the GCC bug
database), and previously more generally, test cases are named after the date on which they
were added. This allows people to tell at a glance whether a test failure is because of a
recently found bug that has not yet been fixed, or whether it may be a regression, but does
not give any other information about the bug or where discussion of it may be found. Some
other language testsuites follow similar conventions.

In the ‘gcc.dg’ testsuite, it is often necessary to test that an error is indeed a hard error
and not just a warning—for example, where it is a constraint violation in the C standard,
which must become an error with ‘-pedantic-errors’. The following idiom, where the
first line shown is line line of the file and the line that generates the error, is used for this:

/* { dg-bogus "warning" "warning in place of error" } x/
/* { dg-error "regexp" "message" { target *-x-x } line } */

It may be necessary to check that an expression is an integer constant expression and has
a certain value. To check that E has value V, an idiom similar to the following is used:

char x[((E) == (V) 71 : -1)];

In ‘gcc.dg’ tests, __typeof__ is sometimes used to make assertions about the types of
expressions. See, for example, ‘gcc.dg/c99-condexpr-1.c’. The more subtle uses depend
on the exact rules for the types of conditional expressions in the C standard; see, for example,
‘gcc.dg/c99-intconst-1.c’.

It is useful to be able to test that optimizations are being made properly. This cannot
be done in all cases, but it can be done where the optimization will lead to code being
optimized away (for example, where flow analysis or alias analysis should show that certain
code cannot be called) or to functions not being called because they have been expanded
as built-in functions. Such tests go in ‘gcc.c-torture/execute’. Where code should be
optimized away, a call to a nonexistent function such as 1link_failure () may be inserted;
a definition

#ifndef __OPTIMIZE__
void

link_failure (void)
{

abort ();

}
#endif

80 GNU Compiler Collection (GCC) Internals

will also be needed so that linking still succeeds when the test is run without optimization.
When all calls to a built-in function should have been optimized and no calls to the non-
built-in version of the function should remain, that function may be defined as static to
call abort () (although redeclaring a function as static may not work on all targets).

All testcases must be portable. Target-specific testcases must have appropriate code to
avoid causing failures on unsupported systems; unfortunately, the mechanisms for this differ
by directory.

FIXME: discuss non-C testsuites here.

7.2 Directives used within DejaGnu tests

7.2.1 Syntax and Descriptions of test directives

Test directives appear within comments in a test source file and begin with dg-. Some of
these are defined within DejaGnu and others are local to the GCC testsuite.

The order in which test directives appear in a test can be important: directives local to
GCC sometimes override information used by the DejaGnu directives, which know nothing
about the GCC directives, so the DejaGnu directives must precede GCC directives.

Several test directives include selectors (see Section 7.2.2 [Selectors], page 84) which are
usually preceded by the keyword target or xfail.

7.2.1.1 Specify how to build the test

{ dg-do do-what-keyword [{ target/xfail selector }] }
do-what-keyword specifies how the test is compiled and whether it is executed.
It is one of:

preprocess
Compile with ‘-E’ to run only the preprocessor.

compile Compile with ‘-S’ to produce an assembly code file.
assemble Compile with ‘=c’ to produce a relocatable object file.
link Compile, assemble, and link to produce an executable file.

run Produce and run an executable file, which is expected to return an
exit code of 0.

The default is compile. That can be overridden for a set of tests by redefining
dg-do-what-default within the .exp file for those tests.

If the directive includes the optional ‘{ target selector } then the test is
skipped unless the target system matches the selector.

If do-what-keyword is run and the directive includes the optional ‘{ xfail
selector }’ and the selector is met then the test is expected to fail. The
xfail clause is ignored for other values of do-what-keyword; those tests can
use directive dg-xfail-if.

Chapter 7: Testsuites 81

7.2.1.2 Specify additional compiler options

{ dg-options options [{ target selector }] }
This DejaGnu directive provides a list of compiler options, to be used if the
target system matches selector, that replace the default options used for this
set of tests.

{ dg-add-options feature ... }
Add any compiler options that are needed to access certain features. This
directive does nothing on targets that enable the features by default, or that
don’t provide them at all. It must come after all dg-options directives. For
supported values of feature see Section 7.2.4 [Add Options|, page 94.

{ dg-additional-options options [{ target selector }] }

This directive provides a list of compiler options, to be used if the target system
matches selector, that are added to the default options used for this set of tests.

7.2.1.3 Modify the test timeout value

The normal timeout limit, in seconds, is found by searching the following in order:
e the value defined by an earlier dg-timeout directive in the test
e variable tool_timeout defined by the set of tests
e gcc,timeout set in the target board
e 300

{ dg-timeout n [{target selector }] }
Set the time limit for the compilation and for the execution of the test to the
specified number of seconds.

{ dg-timeout-factor x [{ target selector }] }
Multiply the normal time limit for compilation and execution of the test by the
specified floating-point factor.

7.2.1.4 Skip a test for some targets

{ dg-skip-if comment { selector } [{ include-opts } [{ exclude-opts }]1] }
Arguments include-opts and exclude-opts are lists in which each element is
a string of zero or more GCC options. Skip the test if all of the following
conditions are met:

e the test system is included in selector

o for at least one of the option strings in include-opts, every option from that
string is in the set of options with which the test would be compiled; use
‘"x"’ for an include-opts list that matches any options; that is the default
if include-opts is not specified

e for each of the option strings in exclude-opts, at least one option from that
string is not in the set of options with which the test would be compiled;
use ‘"" for an empty exclude-opts list; that is the default if exclude-opts
is not specified

For example, to skip a test if option -0s is present:

82 GNU Compiler Collection (GCC) Internals

/* { dg—sklp—lf nn { k—sk—s% } { "—Qs" } { nn } } */
To skip a test if both options -02 and -g are present:
/* { dg—Sklp—lf nn { k—k—% } { "-02 _gn } { nn } } */
To skip a test if either -02 or -03 is present:
/* { dg—Sklp—lf nn { k—k—3% } { n_g2m" "-Q3" } { nn } } */
To skip a test unless option -0s is present:
/* { dg—Sklp—lf nn { k—k—% } { Ny } { "_Qs" } } */
To skip a test if either -02 or -03 is used with -g but not if -fpic is also
present:
/* { dg_skip_if nn { k—sk—s% } { "-02 _gn "-03 _gu } { "—fpiC" } } */

{ dg-require-effective-target keyword [{ selector }] }
Skip the test if the test target, including current multilib flags, is not covered by
the effective-target keyword. If the directive includes the optional ‘{ selector
}’ then the effective-target test is only performed if the target system matches
the selector. This directive must appear after any dg-do directive in the test
and before any dg-additional-sources directive. See Section 7.2.3 [Effective-
Target Keywords], page 84.

{ dg-require-support args }
Skip the test if the target does not provide the required support. These di-
rectives must appear after any dg-do directive in the test and before any dg-
additional-sources directive. They require at least one argument, which can
be an empty string if the specific procedure does not examine the argument. See
Section 7.2.5 [Require Support], page 95, for a complete list of these directives.

7.2.1.5 Expect a test to fail for some targets

{ dg-xfail-if comment { selector } [{ include-opts } [{ exclude-opts }]] }
Expect the test to fail if the conditions (which are the same as for dg-skip-if)
are met. This does not affect the execute step.

{ dg-xfail-run-if comment { selector } [{ include-opts } [{ exclude-opts }1] }
Expect the execute step of a test to fail if the conditions (which are the same
as for dg-skip-if) are met.

7.2.1.6 Expect the test executable to fail

{ dg-shouldfail comment [{ selector } [{ include-opts } [{ exclude-opts }]]] }
Expect the test executable to return a nonzero exit status if the conditions
(which are the same as for dg-skip-if) are met.

7.2.1.7 Verify compiler messages

{ dg-error regexp [comment [{ target/xfail selector } [line] }]] }
This DejaGnu directive appears on a source line that is expected to get an error
message, or else specifies the source line associated with the message. If there is
no message for that line or if the text of that message is not matched by regexp
then the check fails and comment is included in the FAIL message. The check
does not look for the string ‘error’ unless it is part of regexp.

Chapter 7: Testsuites 83

{ dg-warning regexp [comment [{ target/xfail selector } [line] }]1] }
This DejaGnu directive appears on a source line that is expected to get a
warning message, or else specifies the source line associated with the message.
If there is no message for that line or if the text of that message is not matched
by regexp then the check fails and comment is included in the FAIL message.
The check does not look for the string ‘warning’ unless it is part of regexp.

{ dg-message regexp [comment [{ target/xfail selector } [1ine] }]1] }
The line is expected to get a message other than an error or warning. If there is
no message for that line or if the text of that message is not matched by regexp
then the check fails and comment is included in the FAIL message.

{ dg-bogus regexp [comment [{ target/xfail selector } [line] }]1] }
This DejaGnu directive appears on a source line that should not get a message
matching regexp, or else specifies the source line associated with the bogus
message. It is usually used with ‘xfail’ to indicate that the message is a
known problem for a particular set of targets.

{ dg-excess-errors comment [{ target/xfail selector }] }
This DejaGnu directive indicates that the test is expected to fail due to compiler
messages that are not handled by ‘dg-error’, ‘dg-warning’ or ‘dg-bogus’. For
this directive ‘xfail’ has the same effect as ‘target’.

{ dg-prune-output regexp }
Prune messages matching regexp from the test output.

7.2.1.8 Verify output of the test executable

{ dg-output regexp [{ target/xfail selector }] }
This DejaGnu directive compares regexp to the combined output that the test
executable writes to ‘stdout’ and ‘stderr’.

7.2.1.9 Specify additional files for a test

{ dg-additional-files "filelist" }
Specify additional files, other than source files, that must be copied to the
system where the compiler runs.

{ dg-additional-sources "filelist" }
Specify additional source files to appear in the compile line following the main
test file.

7.2.1.10 Add checks at the end of a test

{ dg-final { local-directive } }
This DejaGnu directive is placed within a comment anywhere in the source file
and is processed after the test has been compiled and run. Multiple ‘dg-final’
commands are processed in the order in which they appear in the source file.
See Section 7.2.6 [Final Actions|, page 96, for a list of directives that can be
used within dg-final.

84 GNU Compiler Collection (GCC) Internals

7.2.2 Selecting targets to which a test applies

Several test directives include selectors to limit the targets for which a test is run or to
declare that a test is expected to fail on particular targets.
A selector is:

e one or more target triplets, possibly including wildcard characters; use ‘*-*-—*’ to match
any target

e a single effective-target keyword (see Section 7.2.3 [Effective-Target Keywords|
page 84)

)

e a logical expression

Depending on the context, the selector specifies whether a test is skipped and reported
as unsupported or is expected to fail. A context that allows either ‘target’ or ‘xfail’
also allows ‘{ target selectorl xfail selector2 }’ to skip the test for targets that don’t
match selectorl and the test to fail for targets that match selector2.

A selector expression appears within curly braces and uses a single logical operator: one
of ‘v, ‘&&’, or ‘| |’. An operand is another selector expression, an effective-target keyword,
a single target triplet, or a list of target triplets within quotes or curly braces. For example:

{ target { ! "hppa*x—*-* ia64*—*-*" } }
{ target { powerpcx-*-* && 1p64 } }
{ xfail { 1p64 || vect_no_align } }

7.2.3 Keywords describing target attributes

Effective-target keywords identify sets of targets that support particular functionality. They
are used to limit tests to be run only for particular targets, or to specify that particular
sets of targets are expected to fail some tests.

Effective-target keywords are defined in ‘lib/target-supports.exp’ in the GCC test-
suite, with the exception of those that are documented as being local to a particular test
directory.

The ‘effective target’ takes into account all of the compiler options with which the
test will be compiled, including the multilib options. By convention, keywords ending in
_nocache can also include options specified for the particular test in an earlier dg-options
or dg-add-options directive.

7.2.3.1 Data type sizes

il1p32 Target has 32-bit int, long, and pointers.
1p64 Target has 32-bit int, 64-bit long and pointers.
11p64 Target has 32-bit int and long, 64-bit long long and pointers.

double64 Target has 64-bit double.

double64plus
Target has double that is 64 bits or longer.

int32plus
Target has int that is at 32 bits or longer.

int16 Target has int that is 16 bits or shorter.

Chapter 7: Testsuites 85

long_neq_int
Target has int and long with different sizes

large_double
Target supports double that is longer than float.

large_long_double
Target supports long double that is longer than double.

ptr32plus
Target has pointers that are 32 bits or longer.

size32plus
Target supports array and structure sizes that are 32 bits or longer.

4byte_wchar_t
Target has wchar_t that is at least 4 bytes.

7.2.3.2 Fortran-specific attributes

fortran_integer_16
Target supports Fortran integer that is 16 bytes or longer.

fortran_large_int
Target supports Fortran integer kinds larger than integer(8).

fortran_large_real
Target supports Fortran real kinds larger than real(8).

7.2.3.3 Vector-specific attributes

vect_condition
Target supports vector conditional operations.

vect_double
Target supports hardware vectors of double.

vect_float
Target supports hardware vectors of float.

vect_int Target supports hardware vectors of int.

vect_long
Target supports hardware vectors of long.

vect_long_long
Target supports hardware vectors of long long.

vect_aligned_arrays
Target aligns arrays to vector alignment boundary.

vect_hw_misalign
Target supports a vector misalign access.

vect_no_align
Target does not support a vector alignment mechanism.

86 GNU Compiler Collection (GCC) Internals

vect_no_int_max
Target does not support a vector max instruction on int.

vect_no_int_add
Target does not support a vector add instruction on int.

vect_no_bitwise
Target does not support vector bitwise instructions.

vect_char_mult
Target supports vector char multiplication.

vect_short_mult
Target supports vector short multiplication.

vect_int_mult
Target supports vector int multiplication.

vect_extract_even_odd
Target supports vector even/odd element extraction.

vect_extract_even_odd_wide
Target supports vector even/odd element extraction of vectors with elements
SImode or larger.

vect_interleave
Target supports vector interleaving.

vect_strided
Target supports vector interleaving and extract even/odd.

vect_strided_wide
Target supports vector interleaving and extract even/odd for wide element

types.

vect_perm
Target supports vector permutation.

vect_shift
Target supports a hardware vector shift operation.

vect_widen_sum_hi_to_si
Target supports a vector widening summation of short operands into int re-
sults, or can promote (unpack) from short to int.

vect_widen_sum_qi_to_hi
Target supports a vector widening summation of char operands into short
results, or can promote (unpack) from char to short.

vect_widen_sum_qi_to_si
Target supports a vector widening summation of char operands into int results.

vect_widen_mult_qi_to_hi
Target supports a vector widening multiplication of char operands into short
results, or can promote (unpack) from char to short and perform non-widening
multiplication of short.

Chapter 7: Testsuites 87

vect_widen_mult_hi_to_si
Target supports a vector widening multiplication of short operands into int
results, or can promote (unpack) from short to int and perform non-widening
multiplication of int.

vect_sdot_qi
Target supports a vector dot-product of signed char.

vect_udot_qi
Target supports a vector dot-product of unsigned char.

vect_sdot_hi
Target supports a vector dot-product of signed short.

vect_udot_hi
Target supports a vector dot-product of unsigned short.

vect_pack_trunc
Target supports a vector demotion (packing) of short to char and from int to
short using modulo arithmetic.

vect_unpack
Target supports a vector promotion (unpacking) of char to short and from
char to int.

vect_intfloat_cvt
Target supports conversion from signed int to float.

vect_uintfloat_cvt
Target supports conversion from unsigned int to float.

vect_floatint_cvt
Target supports conversion from float to signed int.

vect_floatuint_cvt
Target supports conversion from float to unsigned int.

7.2.3.4 Thread Local Storage attributes

tls Target supports thread-local storage.

tls_native
Target supports native (rather than emulated) thread-local storage.

tls_runtime

Test system supports executing TLS executables.

7.2.3.5 Decimal floating point attributes

dfp Targets supports compiling decimal floating point extension to C.

dfp_nocache
Including the options used to compile this particular test, the target supports
compiling decimal floating point extension to C.

dfprt Test system can execute decimal floating point tests.

88 GNU Compiler Collection (GCC) Internals

dfprt_nocache
Including the options used to compile this particular test, the test system can
execute decimal floating point tests.

hard_dfp Target generates decimal floating point instructions with current options.

7.2.3.6 ARM-specific attributes

arm32 ARM target generates 32-bit code.
arm_eabi ARM target adheres to the ABI for the ARM Architecture.

arm_hf_eabi
ARM target adheres to the VFP and Advanced SIMD Register Arguments vari-
ant of the ABI for the ARM Architecture (as selected with -mfloat-abi=hard).

arm_hard_vfp_ok
ARM target supports -mfpu=vfp -mfloat-abi=hard. Some multilibs may be
incompatible with these options.

arm_iwmmxt_ok
ARM target supports -mcpu=iwmmxt. Some multilibs may be incompatible with
this option.

arm_neon ARM target supports generating NEON instructions.

arm_neon_hw
Test system supports executing NEON instructions.

arm_neonv2_hw
Test system supports executing NEON v2 instructions.

arm_neon_ok
ARM Target supports -mfpu=neon -mfloat-abi=softfp or compatible op-
tions. Some multilibs may be incompatible with these options.

arm_neonv2_ok
ARM Target supports -mfpu=neon-vfpv4 -mfloat-abi=softfp or compatible
options. Some multilibs may be incompatible with these options.

arm_neon_£fpl6_ok
ARM Target supports -mfpu=neon-fp16 -mfloat-abi=softfp or compatible
options. Some multilibs may be incompatible with these options.

arm_thumbl_ok
ARM target generates Thumb-1 code for -mthumb.

arm_thumb2_ok
ARM target generates Thumb-2 code for —-mthumb.

arm_vip_ok
ARM target supports -mfpu=vfp -mfloat-abi=softfp. Some multilibs may
be incompatible with these options.

arm_v8_vfp_ok
ARM target supports -mfpu=fp-armv8 -mfloat-abi=softfp. Some multilibs
may be incompatible with these options.

Chapter 7: Testsuites 89

arm_v8_neon_ok
ARM target supports -mfpu=neon-fp-armv8 -mfloat-abi=softfp. Some
multilibs may be incompatible with these options.

arm_prefer_ldrd_strd
ARM target prefers LDRD and STRD instructions over LDM and STM instructions.

7.2.3.7 MIPS-specific attributes

mips64 MIPS target supports 64-bit instructions.
nomips16 MIPS target does not produce MIPS16 code.

mipsl6_attribute
MIPS target can generate MIPS16 code.

mips_loongson
MIPS target is a Loongson-2E or -2F target using an ABI that supports the
Loongson vector modes.

mips_newabi_large_long_double
MIPS target supports long double larger than double when using the new
ABL

mpaired_single
MIPS target supports -mpaired-single.

7.2.3.8 PowerPC-specific attributes

powerpc64
Test system supports executing 64-bit instructions.

powerpc_altivec
PowerPC target supports AltiVec.

powerpc_altivec_ok
PowerPC target supports -maltivec.

powerpc_£fprs
PowerPC target supports floating-point registers.

powerpc_hard_double
PowerPC target supports hardware double-precision floating-point.

powerpc_ppu_ok
PowerPC target supports -mcpu=cell.

powerpc_spe
PowerPC target supports PowerPC SPE.

powerpc_spe_nocache
Including the options used to compile this particular test, the PowerPC target
supports PowerPC SPE.

powerpc_spu
PowerPC target supports PowerPC SPU.

90 GNU Compiler Collection (GCC) Internals

spu_auto_overlay
SPU target has toolchain that supports automatic overlay generation.

powerpc_vsx_ok
PowerPC target supports -mvsx.

powerpc_405_nocache
Including the options used to compile this particular test, the PowerPC target
supports PowerPC 405.

vmx_hw PowerPC target supports executing AltiVec instructions.

7.2.3.9 Other hardware attributes

avx Target supports compiling avx instructions.

avx_runtime
Target supports the execution of avx instructions.

cell_hw Test system can execute AltiVec and Cell PPU instructions.

coldfire_fpu
Target uses a ColdFire FPU.

hard_float
Target supports FPU instructions.

sse Target supports compiling sse instructions.

sse_runtime
Target supports the execution of sse instructions.

sse2 Target supports compiling sse2 instructions.

sse2_runtime
Target supports the execution of sse2 instructions.

sync_char_short
Target supports atomic operations on char and short.

sync_int_long
Target supports atomic operations on int and long.

ultrasparc_hw
Test environment appears to run executables on a simulator that accepts only
EM_SPARC executables and chokes on EM_SPARC32PLUS or EM_SPARCV9 executa-
bles.

vect_cmdline_needed
Target requires a command line argument to enable a SIMD instruction set.

7.2.3.10 Environment attributes
c The language for the compiler under test is C.

c++ The language for the compiler under test is C++.

Chapter 7: Testsuites 91

c99_runtime
Target provides a full C99 runtime.

correct_iso_cpp_string_wchar_protos
Target string.h and wchar.h headers provide C++ required overloads for
strchr etc. functions.

dummy_wcsftime
Target uses a dummy wcsftime function that always returns zero.

fd_truncate
Target can truncate a file from a file descriptor, as used by
‘libgfortran/io/unix.c:fd_truncate’; i.e. ftruncate or chsize.

freestanding
Target is ‘freestanding’ as defined in section 4 of the C99 standard. Effec-
tively, it is a target which supports no extra headers or libraries other than
what is considered essential.
init_priority
Target supports constructors with initialization priority arguments.
inttypes_types
Target has the basic signed and unsigned types in inttypes.h. This is for
tests that GCC’s notions of these types agree with those in the header, as some
systems have only inttypes.h.

lax_strtofp
Target might have errors of a few ULP in string to floating-point conversion
functions and overflow is not always detected correctly by those functions.

mmap Target supports mmap.

newlib Target supports Newlib.

powl0 Target provides pow10 function.

pthread Target can compile using pthread.h with no errors or warnings.

pthread_h
Target has pthread.h.

run_expensive_tests
Expensive testcases (usually those that consume excessive amounts of CPU
time) should be run on this target. This can be enabled by setting the GCC_
TEST_RUN_EXPENSIVE environment variable to a non-empty string.

simulator
Test system runs executables on a simulator (i.e. slowly) rather than hardware
(i.e. fast).

stdint_types
Target has the basic signed and unsigned C types in stdint.h. This will be
obsolete when GCC ensures a working stdint.h for all targets.

trampolines
Target supports trampolines.

92 GNU Compiler Collection (GCC) Internals

uclibc Target supports uClibc.

unwrapped
Target does not use a status wrapper.

vxworks_kernel
Target is a VxWorks kernel.

vxworks_rtp
Target is a VxWorks RTP.

wchar Target supports wide characters.

7.2.3.11 Other attributes

automatic_stack_alignment
Target supports automatic stack alignment.

cxa_atexit
Target uses __cxa_atexit.

default_packed
Target has packed layout of structure members by default.

fgraphite
Target supports Graphite optimizations.

fixed_point
Target supports fixed-point extension to C.

fopenmp Target supports OpenMP via ‘~fopenmp’.
fpic Target supports ‘~fpic’ and ‘-fPIC’.
freorder Target supports ‘~-freorder-blocks-and-partition’.

fstack_protector
Target supports ‘~fstack-protector’.

gas Target uses GNU as.

gc_sections
Target supports ‘--gc-sections’.

gld Target uses GNU 1d.

keeps_null_pointer_checks
Target keeps null pointer checks, either due to the wuse of
‘~fno-delete-null-pointer-checks’ or hardwired into the target.

lto Compiler has been configured to support link-time optimization (LTO).

naked_functions
Target supports the naked function attribute.

named_sections
Target supports named sections.

Chapter 7: Testsuites 93

natural_alignment_32
Target uses natural alignment (aligned to type size) for types of 32 bits or less.

target_natural_alignment_64
Target uses natural alignment (aligned to type size) for types of 64 bits or less.

nonpic Target does not generate PIC by default.

pcc_bitfield_type_matters
Target defines PCC_BITFIELD_TYPE_MATTERS.

pe_aligned_commons
Target supports ‘-mpe-aligned-commons’.

pie Target supports ‘-pie’, ‘-fpie’ and ‘~fPIE’.

section_anchors
Target supports section anchors.

short_enums
Target defaults to short enums.

static Target supports ‘-static’.

static_libgfortran
Target supports statically linking ‘libgfortran’.

string_merging
Target supports merging string constants at link time.

ucn Target supports compiling and assembling UCN.

ucn_nocache
Including the options used to compile this particular test, the target supports
compiling and assembling UCN.

unaligned_stack
Target does not guarantee that its STACK_BOUNDARY is greater than or equal to
the required vector alignment.

vector_alignment_reachable
Vector alignment is reachable for types of 32 bits or less.

vector_alignment_reachable_for_64bit
Vector alignment is reachable for types of 64 bits or less.

wchar_t_charl6_t_compatible
Target supports wchar_t that is compatible with char16_t.

wchar_t_char32_t_compatible
Target supports wchar_t that is compatible with char32_t.

7.2.3.12 Local to tests in gcc.target/i386

3dnow Target supports compiling 3dnow instructions.

aes Target supports compiling aes instructions.

94 GNU Compiler Collection (GCC) Internals

fma4d Target supports compiling fma4 instructions.

ms_hook_prologue
Target supports attribute ms_hook_prologue.

pclmul Target supports compiling pclmul instructions.
sse3 Target supports compiling sse3 instructions.
sse4 Target supports compiling sse4 instructions.
sseda Target supports compiling sse4a instructions.
ssse3 Target supports compiling ssse3 instructions.
vaes Target supports compiling vaes instructions.

vpclmul Target supports compiling vpclmul instructions.

xop Target supports compiling xop instructions.

7.2.3.13 Local to tests in gcc.target/spu/ea

ealib Target __ea library functions are available.

7.2.3.14 Local to tests in gcc.test-framework

no Always returns 0.

yes Always returns 1.

7.2.4 Features for dg-add-options

The supported values of feature for directive dg-add-options are:

arm_neon NEON support. Only ARM targets support this feature, and only then in
certain modes; see the [arm_neon_ok effective target keyword], page 88.

arm_neon_£fpl6
NEON and half-precision floating point support. Only ARM targets support
this feature, and only then in certain modes; see the [arm_neon_fp16_ok effective
target keyword], page 88.

bind_pic_locally
Add the target-specific flags needed to enable functions to bind locally when
using pic/PIC passes in the testsuite.

c99_runtime
Add the target-specific flags needed to access the C99 runtime.

ieee Add the target-specific flags needed to enable full IEEE compliance mode.

mipsl6_attribute
mips16 function attributes. Only MIPS targets support this feature, and only
then in certain modes.

tls Add the target-specific flags needed to use thread-local storage.

Chapter 7: Testsuites 95

7.2.5 Variants of dg-require-support
A few of the dg-require directives take arguments.

dg-require-iconv codeset
Skip the test if the target does not support iconv. codeset is the codeset to
convert to.

dg-require-profiling profopt
Skip the test if the target does not support profiling with option profopt.

dg-require-visibility vis
Skip the test if the target does not support the visibility attribute. If vis
is "" support for visibility("hidden") is checked, for visibility("vis")
otherwise.

The original dg-require directives were defined before there was support for effective-
target keywords. The directives that do not take arguments could be replaced with effective-
target keywords.

dg-require-alias ""
Skip the test if the target does not support the ‘alias’ attribute.

dg-require-ascii-locale ""
Skip the test if the host does not support an ASCII locale.

dg-require-compat-dfp ""
Skip this test unless both compilers in a ‘compat’ testsuite support decimal
floating point.

dg-require-cxa-atexit ""
Skip the test if the target does not support __cxa_atexit. This is equivalent
to dg-require-effective-target cxa_atexit.

dg-require-d11 ""
Skip the test if the target does not support DLL attributes.

dg-require-fork ""
Skip the test if the target does not support fork.

dg-require-gc-sections ""
Skip the test if the target’s linker does not support the ——-gc-sections flags.
This is equivalent to dg-require-effective-target gc-sections.

dg-require-host-local ""
Skip the test if the host is remote, rather than the same as the build system.
Some tests are incompatible with DejaGnu’s handling of remote hosts, which
involves copying the source file to the host and compiling it with a relative path
and "-o a.out".

dg-require-mkfifo ""
Skip the test if the target does not support mkfifo.

nn

dg-require-named-sections
Skip the test is the target does not support named sections. This is equivalent
to dg-require-effective-target named_sections.

96 GNU Compiler Collection (GCC) Internals

dg-require-weak ""
Skip the test if the target does not support weak symbols.
dg-require-weak-override ""

Skip the test if the target does not support overriding weak symbols.

7.2.6 Commands for use in dg-final
The GCC testsuite defines the following directives to be used within dg-final.

7.2.6.1 Scan a particular file

scan-file filename regexp [{ target/xfail selector }]
Passes if regexp matches text in filename.

scan-file-not filename regexp [{ target/xfail selector }]
Passes if regexp does not match text in filename.

scan-module module regexp [{ target/xfail selector }]
Passes if regexp matches in Fortran module module.

7.2.6.2 Scan the assembly output

scan-assembler regex [{ target/xfail selector }]
Passes if regex matches text in the test’s assembler output.

scan-assembler-not regex [{ target/xfail selector }]
Passes if regex does not match text in the test’s assembler output.

scan-assembler-times regex num [{ target/xfail selector }]
Passes if regex is matched exactly num times in the test’s assembler output.

scan-assembler-dem regex [{ target/xfail selector }]
Passes if regex matches text in the test’s demangled assembler output.

scan-assembler-dem-not regex [{ target/xfail selector }]
Passes if regex does not match text in the test’s demangled assembler output.

scan-hidden symbol [{ target/xfail selector }]
Passes if symbol is defined as a hidden symbol in the test’s assembly output.

scan-not-hidden symbol [{ target/xfail selector }]
Passes if symbol is not defined as a hidden symbol in the test’s assembly output.

7.2.6.3 Scan optimization dump files

These commands are available for kind of tree, rtl, and ipa.

scan-kind-dump regex suffix [{ target/xfail selector }]
Passes if regex matches text in the dump file with suffix suffix.

scan-kind-dump-not regex suffix [{ target/xfail selector }]
Passes if regex does not match text in the dump file with suffix suffix.

scan-kind-dump-times regex num suffix [{ target/xfail selector }]
Passes if regex is found exactly num times in the dump file with suffix suffix.

Chapter 7: Testsuites 97

scan-kind-dump-dem regex suffix [{ target/xfail selector }]
Passes if regex matches demangled text in the dump file with suffix suffix.

scan-kind-dump-dem-not regex suffix [{ target/xfail selector }]
Passes if regex does not match demangled text in the dump file with suffix
suffix.

7.2.6.4 Verify that an output files exists or not

output-exists [{ target/xfail selector }]
Passes if compiler output file exists.

output-exists-not [{ target/xfail selector }]
Passes if compiler output file does not exist.

7.2.6.5 Check for LTO tests

scan-symbol regexp [{ target/xfail selector }]
Passes if the pattern is present in the final executable.

7.2.6.6 Checks for gcov tests

run-gcov sourcefile
Check line counts in gcov tests.

run-gcov [branches] [calls] { opts sourcefile }
Check branch and/or call counts, in addition to line counts, in gcov tests.

7.2.6.7 Clean up generated test files

cleanup-coverage-files
Removes coverage data files generated for this test.

cleanup-ipa-dump suffix
Removes TPA dump files generated for this test.

cleanup-modules "list-of-extra-modules"
Removes Fortran module files generated for this test, excluding the module
names listed in keep-modules. Cleaning up module files is usually done au-
tomatically by the testsuite by looking at the source files and removing the
modules after the test has been executed.

module MoD1

end module MoD1

module Mod2

end module Mod2

module moD3

end module moD3

module mod4

end module mod4

! { dg-final { cleanup-modules "modl mod2" } } ! redundant
! { dg-final { keep-modules "mod3 mod4" } }

keep-modules "list-of-modules—not-to-delete"
Whitespace separated list of module names that should not be deleted by

cleanup-modules. If the list of modules is empty, all modules defined in this file
are kept.

98 GNU Compiler Collection (GCC) Internals

module maybe_unneeded

end module maybe_unneeded

module keepl

end module keepl

module keep2

end module keep2

! { dg-final { keep-modules "keepl keep2" } } ! just keep these two
! { dg-final { keep-modules "" } } ! keep all

cleanup-profile-file
Removes profiling files generated for this test.

cleanup-repo-files
Removes files generated for this test for ‘-frepo’.

cleanup-rtl-dump suffix
Removes RTL dump files generated for this test.

cleanup-saved-temps
Removes files for the current test which were kept for ‘-save-temps’.

cleanup-tree-dump suffix
Removes tree dump files matching suffix which were generated for this test.

7.3 Ada Language Testsuites

The Ada testsuite includes executable tests from the ACATS testsuite, publicly available
at http://www.ada-auth.org/acats.html.

These tests are integrated in the GCC testsuite in the ‘ada/acats’ directory, and enabled
automatically when running make check, assuming the Ada language has been enabled when
configuring GCC.

You can also run the Ada testsuite independently, using make check-ada, or run a subset
of the tests by specifying which chapter to run, e.g.:

$ make check-ada CHAPTERS="c3 c9"

The tests are organized by directory, each directory corresponding to a chapter of the
Ada Reference Manual. So for example, ‘c9’ corresponds to chapter 9, which deals with
tasking features of the language.

There is also an extra chapter called ‘gcc’ containing a template for creating new exe-
cutable tests, although this is deprecated in favor of the ‘gnat.dg’ testsuite.

The tests are run using two sh scripts: ‘run_acats’ and ‘run_all.sh’. To run the
tests using a simulator or a cross target, see the small customization section at the top of
‘run_all.sh’.

These tests are run using the build tree: they can be run without doing a make install.

7.4 C Language Testsuites
GCC contains the following C language testsuites, in the ‘gcc/testsuite’ directory:

‘gcc.dg’ This contains tests of particular features of the C compiler, using the more
modern ‘dg’ harness. Correctness tests for various compiler features should go
here if possible.

http://www.ada-auth.org/acats.html

Chapter 7: Testsuites 99

gcc.

gcc.

gcc.

gcc.

gcc

gcc

gcc.

gcc

gcc

Magic comments determine whether the file is preprocessed, compiled, linked
or run. In these tests, error and warning message texts are compared against
expected texts or regular expressions given in comments. These tests are run
with the options ‘~ansi -pedantic’ unless other options are given in the test.
Except as noted below they are not run with multiple optimization options.

dg/compat’
This subdirectory contains tests for binary compatibility using
‘lib/compat.exp’, which in turn uses the language-independent support (see
Section 7.9 [Support for testing binary compatibility]|, page 103).

dg/cpp’
This subdirectory contains tests of the preprocessor.

dg/debug’

This subdirectory contains tests for debug formats. Tests in this subdirectory
are run for each debug format that the compiler supports.

dg/format’
This subdirectory contains tests of the ‘-Wformat’ format checking. Tests in
this directory are run with and without ‘~-DWIDE’.

.dg/noncompile’

This subdirectory contains tests of code that should not compile and does not
need any special compilation options. They are run with multiple optimization
options, since sometimes invalid code crashes the compiler with optimization.

.dg/special’

FIXME: describe this.

c-torture’
This contains particular code fragments which have historically broken easily.
These tests are run with multiple optimization options, so tests for features
which only break at some optimization levels belong here. This also contains
tests to check that certain optimizations occur. It might be worthwhile to
separate the correctness tests cleanly from the code quality tests, but it hasn’t
been done yet.

.c-torture/compat’

FIXME: describe this.
This directory should probably not be used for new tests.

.c-torture/compile’

This testsuite contains test cases that should compile, but do not need to link
or run. These test cases are compiled with several different combinations of
optimization options. All warnings are disabled for these test cases, so this
directory is not suitable if you wish to test for the presence or absence of
compiler warnings. While special options can be set, and tests disabled on
specific platforms, by the use of ‘.x’ files, mostly these test cases should not
contain platform dependencies. FIXME: discuss how defines such as NO_LABEL _
VALUES and STACK_SIZE are used.

100 GNU Compiler Collection (GCC) Internals

gcc.c-torture/execute’
This testsuite contains test cases that should compile, link and run; otherwise
the same comments as for ‘gcc.c-torture/compile’ apply.

gcc.c-torture/execute/ieee’
This contains tests which are specific to IEEE floating point.

gcc.c-torture/unsorted’
FIXME: describe this.

This directory should probably not be used for new tests.

gcc.misc-tests’
This directory contains C tests that require special handling. Some of these
tests have individual expect files, and others share special-purpose expect files:

‘bprob*.c’
Test ‘~fbranch-probabilities’ using ‘gcc.misc-tests/bprob.exp’ ||
which in turn uses the generic, language-independent framework
(see Section 7.8 [Support for testing profile-directed optimizations],
page 102).

‘gcovx.c’ Test gcov output using ‘gcov.exp’, which in turn uses the
language-independent support (see Section 7.7 [Support for testing
gcov], page 101).

‘1386-pf—*.c’
Test i386-specific support for data prefetch using
‘i386-prefetch.exp’.

‘gcc.test-framework’

‘dg-*.c’ Test the testsuite itself using ‘gcc.test-framework/test-framework.exp’ ||

FIXME: merge in ‘testsuite/README.gcc’ and discuss the format of test cases and
magic comments more.

7.5 The Java library testsuites.

Runtime tests are executed via ‘make check’ in the ‘target/libjava/testsuite’ directory
in the build tree. Additional runtime tests can be checked into this testsuite.

Regression testing of the core packages in libgcj is also covered by the Mauve testsuite.
The Mauve Project develops tests for the Java Class Libraries. These tests are run as
part of libgcj testing by placing the Mauve tree within the libjava testsuite sources at
‘libjava/testsuite/libjava.mauve/mauve’, or by specifying the location of that tree
when invoking ‘make’; as in ‘make MAUVEDIR="/mauve check’.

To detect regressions, a mechanism in ‘mauve.exp’ compares the failures for a test run
against the list of expected failures in ‘libjava/testsuite/libjava.mauve/xfails’ from
the source hierarchy. Update this file when adding new failing tests to Mauve, or when
fixing bugs in libgcj that had caused Mauve test failures.

We encourage developers to contribute test cases to Mauve.

http://sourceware.org/mauve/

Chapter 7: Testsuites 101

7.6 Support for testing link-time optimizations

Tests for link-time optimizations usually require multiple source files that are compiled
separately, perhaps with different sets of options. There are several special-purpose test
directives used for these tests.

{ dg-1to-do do-what-keyword }
do-what-keyword specifies how the test is compiled and whether it is executed.
It is one of:

assemble Compile with ‘-=c’ to produce a relocatable object file.
link Compile, assemble, and link to produce an executable file.

run Produce and run an executable file, which is expected to return an
exit code of 0.

The default is assemble. That can be overridden for a set of tests by redefining
dg-do-what-default within the .exp file for those tests.

Unlike dg-do, dg-1to-do does not support an optional ‘target’ or ‘xfail’ list.
Use dg-skip-if, dg-xfail-if, or dg-xfail-run-if.

{ dg-1to-options { { options } [{ options }] } [{ target selector }1}
This directive provides a list of one or more sets of compiler options to override
LTO_OPTIONS. Each test will be compiled and run with each of these sets of

options.

{ dg-extra-1d-options options [{ target selector }]1}
This directive adds options to the linker options used.

{ dg-suppress-1d-options options [{ target selector }]1}
This directive removes options from the set of linker options used.

7.7 Support for testing gcov

Language-independent support for testing gcov, and for checking that branch profiling
produces expected values, is provided by the expect file ‘1ib/gcov.exp’. gcov tests also
rely on procedures in ‘1ib/gcc-dg.exp’ to compile and run the test program. A typical
gcov test contains the following DejaGnu commands within comments:

{ dg-options "-fprofile-arcs -ftest-coverage" }

{ dg-do run { target native } }

{ dg-final { run-gcov sourcefile } }

Checks of gcov output can include line counts, branch percentages, and call return per-
centages. All of these checks are requested via commands that appear in comments in the
test’s source file. Commands to check line counts are processed by default. Commands to
check branch percentages and call return percentages are processed if the run-gcov com-
mand has arguments branches or calls, respectively. For example, the following specifies
checking both, as well as passing ‘-b’ to gcov:

{ dg-final { run-gcov branches calls { -b sourcefile } } }

A line count command appears within a comment on the source line that is expected to
get the specified count and has the form count (cnt). A test should only check line counts
for lines that will get the same count for any architecture.

102 GNU Compiler Collection (GCC) Internals

Commands to check branch percentages (branch) and call return percentages (returns)
are very similar to each other. A beginning command appears on or before the first of a
range of lines that will report the percentage, and the ending command follows that range
of lines. The beginning command can include a list of percentages, all of which are expected
to be found within the range. A range is terminated by the next command of the same kind.
A command branch(end) or returns(end) marks the end of a range without starting a
new one. For example:

if (i > 10 & j > i && j < 20) /* branch(27 50 75) */
/* branch(end) */
foo (i, j);

For a call return percentage, the value specified is the percentage of calls reported to
return. For a branch percentage, the value is either the expected percentage or 100 mi-
nus that value, since the direction of a branch can differ depending on the target or the
optimization level.

Not all branches and calls need to be checked. A test should not check for branches that
might be optimized away or replaced with predicated instructions. Don’t check for calls
inserted by the compiler or ones that might be inlined or optimized away.

A single test can check for combinations of line counts, branch percentages, and call
return percentages. The command to check a line count must appear on the line that will
report that count, but commands to check branch percentages and call return percentages
can bracket the lines that report them.

7.8 Support for testing profile-directed optimizations

The file ‘profopt.exp’ provides language-independent support for checking correct execu-
tion of a test built with profile-directed optimization. This testing requires that a test
program be built and executed twice. The first time it is compiled to generate profile data,
and the second time it is compiled to use the data that was generated during the first
execution. The second execution is to verify that the test produces the expected results.

To check that the optimization actually generated better code, a test can be built and
run a third time with normal optimizations to verify that the performance is better with the
profile-directed optimizations. ‘profopt.exp’ has the beginnings of this kind of support.

‘profopt.exp’ provides generic support for profile-directed optimizations. Each set of
tests that uses it provides information about a specific optimization:
tool tool being tested, e.g., gcc

profile_option
options used to generate profile data

feedback_option
options used to optimize using that profile data

prof_ext suffix of profile data files

PROFOPT_QOPTIONS
list of options with which to run each test, similar to the lists for torture tests

{ dg-final-generate { local-directive } }
This directive is similar to dg-final, but the local-directive is run after the
generation of profile data.

Chapter 7: Testsuites 103

{ dg-final-use { local-directive } }
The local-directive is run after the profile data have been used.

7.9 Support for testing binary compatibility

The file ‘compat . exp’ provides language-independent support for binary compatibility test-
ing. It supports testing interoperability of two compilers that follow the same ABI, or of
multiple sets of compiler options that should not affect binary compatibility. It is intended
to be used for testsuites that complement ABI testsuites.

A test supported by this framework has three parts, each in a separate source file: a main
program and two pieces that interact with each other to split up the functionality being
tested.

‘testname_main.suffix’
Contains the main program, which calls a function in file ‘testname_x.suffix’.

‘testname_x.suffix’
Contains at least one call to a function in ‘testname_y.suffix’.

‘testname_y.suffix’
Shares data with, or gets arguments from, ‘testname_x.suffix’.

Within each test, the main program and one functional piece are compiled by the GCC
under test. The other piece can be compiled by an alternate compiler. If no alternate
compiler is specified, then all three source files are all compiled by the GCC under test.
You can specify pairs of sets of compiler options. The first element of such a pair specifies
options used with the GCC under test, and the second element of the pair specifies options
used with the alternate compiler. Each test is compiled with each pair of options.

‘compat . exp’ defines default pairs of compiler options. These can be overridden by defin-

ing the environment variable COMPAT_OPTIONS as:
COMPAT_QOPTIONS="[list [list {tst1} {alt1}]
...[list {tstn} {altn}]1]"

where tsti and alti are lists of options, with tsti used by the compiler under test and alti
used by the alternate compiler. For example, with [list [1ist {-g -00} {-03}] [list
{-fpic} {-fPIC -02}]1], the test is first built with ‘-g -00’ by the compiler under test and
with ‘=03’ by the alternate compiler. The test is built a second time using ‘-fpic’ by the
compiler under test and ‘-fPIC -02’ by the alternate compiler.

An alternate compiler is specified by defining an environment variable to be the full
pathname of an installed compiler; for C define ALT_CC_UNDER_TEST, and for C++ define
ALT_CXX_UNDER_TEST. These will be written to the ‘site.exp’ file used by DejaGnu. The
default is to build each test with the compiler under test using the first of each pair of
compiler options from COMPAT_OPTIONS. When ALT_CC_UNDER_TEST or ALT_CXX_UNDER_
TEST is same, each test is built using the compiler under test but with combinations of the
options from COMPAT_OPTIONS.

To run only the C++ compatibility suite using the compiler under test and another version
of GCC using specific compiler options, do the following from ‘objdir/gcc’:

rm site.exp
make -k \
ALT_CXX_UNDER_TEST=${alt_prefix}/bin/g++ \

104 GNU Compiler Collection (GCC) Internals

COMPAT_OPTIONS="1lists as shown above" \
check-c++ \
RUNTESTFLAGS="compat .exp"

A test that fails when the source files are compiled with different compilers, but passes
when the files are compiled with the same compiler, demonstrates incompatibility of the
generated code or runtime support. A test that fails for the alternate compiler but passes
for the compiler under test probably tests for a bug that was fixed in the compiler under
test but is present in the alternate compiler.

The binary compatibility tests support a small number of test framework commands that
appear within comments in a test file.

dg-require-x*
These commands can be used in ‘testname_main.suffix’ to skip the test if
specific support is not available on the target.

dg-options
The specified options are used for compiling this particular source file, ap-
pended to the options from COMPAT_OPTIONS. When this command appears in
‘testname_main.suffix’ the options are also used to link the test program.

dg-xfail-if
This command can be used in a secondary source file to specify that compilation
is expected to fail for particular options on particular targets.

7.10 Support for torture testing using multiple options

Throughout the compiler testsuite there are several directories whose tests are run
multiple times, each with a different set of options. These are known as torture tests.
‘lib/torture-options.exp’ defines procedures to set up these lists:

torture-init
Initialize use of torture lists.

set-torture-options
Set lists of torture options to use for tests with and without loops. Optionally
combine a set of torture options with a set of other options, as is done with
Objective-C runtime options.

torture-finish
Finalize use of torture lists.

The ‘. exp’ file for a set of tests that use torture options must include calls to these three
procedures if:
e It calls gcc-dg-runtest and overrides DG_-TORTURE_OPTIONS.
e It calls ${tool}-torture or ${tool}-torture-execute, where tool is c, fortran, or
objc.
e [t calls dg-pch.

It is not necessary for a ‘. exp’ file that calls gcc-dg-runtest to call the torture procedures
if the tests should use the list in DG_TORTURE_OPTIONS defined in ‘gcc-dg.exp’.

Chapter 7: Testsuites

Most uses of torture options can
ing TORTURE_OPTIONS or add to
TIONAL_TORTURE_OPTIONS. Define

them to the ‘site.exp’ file; for example

set ADDITIONAL_TORTURE_OPTIONS [list \
{ -02 -ftree-loop-linear } \
{ -02 -fpeel-loops } 1]

105
override the default lists by defin-
the default list by defining ADDI-
these in a ‘.dejagnurc’ file or add

Chapter 8: Option specification files 107

8 Option specification files

Most GCC command-line options are described by special option definition files, the names
of which conventionally end in .opt. This chapter describes the format of these files.

8.1 Option file format

Option files are a simple list of records in which each field occupies its own line and in which
the records themselves are separated by blank lines. Comments may appear on their own
line anywhere within the file and are preceded by semicolons. Whitespace is allowed before
the semicolon.

The files can contain the following types of record:

e A language definition record. These records have two fields: the string ‘Language’ and
the name of the language. Once a language has been declared in this way, it can be
used as an option property. See Section 8.2 [Option properties|, page 109.

e A target specific save record to save additional information. These records have two
fields: the string ‘TargetSave’, and a declaration type to go in the c1_target_option
structure.

e A variable record to define a variable used to store option information. These records
have two fields: the string ‘Variable’; and a declaration of the type and name of the
variable, optionally with an initializer (but without any trailing ‘;’). These records may
be used for variables used for many options where declaring the initializer in a single
option definition record, or duplicating it in many records, would be inappropriate, or
for variables set in option handlers rather than referenced by Var properties.

e A variable record to define a variable used to store option information. These records
have two fields: the string ‘TargetVariable’, and a declaration of the type and
name of the variable, optionally with an initializer (but without any trailing ‘;’).
‘TargetVariable’ is a combination of ‘Variable’ and ‘TargetSave’ records in that the
variable is defined in the gcc_options structure, but these variables are also stored in
the cl_target_option structure. The variables are saved in the target save code and
restored in the target restore code.

e A variable record to record any additional files that the ‘options.h’ file should include.
This is useful to provide enumeration or structure definitions needed for target variables.
These records have two fields: the string ‘HeaderInclude’ and the name of the include
file.

e A wvariable record to record any additional files that the ‘options.c’ or
‘options-save.c’ file should include. This is useful to provide inline functions needed
for target variables and/or #ifdef sequences to properly set up the initialization.
These records have two fields: the string ‘SourceInclude’ and the name of the include
file.

e An enumeration record to define a set of strings that may be used as arguments to an
option or options. These records have three fields: the string ‘Enum’, a space-separated
list of properties and help text used to describe the set of strings in ‘~-help’ output.
Properties use the same format as option properties; the following are valid:

108

GNU Compiler Collection (GCC) Internals

Name (name)
This property is required; name must be a name (suitable for use in C
identifiers) used to identify the set of strings in Enum option properties.

Type (type)
This property is required; type is the C type for variables set by options
using this enumeration together with Var.

UnknownError (message)
The message message will be used as an error message if the argument is
invalid; for enumerations without UnknownError, a generic error message
is used. message should contain a single ‘%qs’ format, which will be used
to format the invalid argument.

An enumeration value record to define one of the strings in a set given in an ‘Enum’
record. These records have two fields: the string ‘EnumValue’ and a space-separated
list of properties. Properties use the same format as option properties; the following
are valid:

Enum (name)
This property is required; name says which ‘Enum’ record this ‘EnumValue’
record corresponds to.

String(string)
This property is required; string is the string option argument being de-
scribed by this record.

Value(value)
This property is required; it says what value (representable as int) should
be used for the given string.

Canonical
This property is optional. If present, it says the present string is the
canonical one among all those with the given value. Other strings yielding
that value will be mapped to this one so specs do not need to handle them.

DriverOnly
This property is optional. If present, the present string will only be ac-
cepted by the driver. This is used for cases such as ‘-march=native’ that
are processed by the driver so that ‘gcc -v’ shows how the options chosen
depended on the system on which the compiler was run.

An option definition record. These records have the following fields:

w»

1. the name of the option, with the leading removed

2. a space-separated list of option properties (see Section 8.2 [Option properties],
page 109)

3. the help text to use for ‘--help’ (omitted if the second field contains the
Undocumented property).

By default, all options beginning with “f”, “W” or “m” are implicitly assumed to take a
“no-” form. This form should not be listed separately. If an option beginning with one
of these letters does not have a “no-” form, you can use the RejectNegative property
to reject it.

Chapter 8: Option specification files 109

The help text is automatically line-wrapped before being displayed. Normally the name
of the option is printed on the left-hand side of the output and the help text is printed
on the right. However, if the help text contains a tab character, the text to the left of
the tab is used instead of the option’s name and the text to the right of the tab forms
the help text. This allows you to elaborate on what type of argument the option takes.

e A target mask record. These records have one field of the form ‘Mask(x)’. The options-
processing script will automatically allocate a bit in target_flags (see Section 17.3
[Run-time Target|, page 422) for each mask name x and set the macro MASK_x to the
appropriate bitmask. It will also declare a TARGET _x macro that has the value 1 when
bit MASK_x is set and 0 otherwise.

They are primarily intended to declare target masks that are not associated with user
options, either because these masks represent internal switches or because the options
are not available on all configurations and yet the masks always need to be defined.

8.2 Option properties

The second field of an option record can specify any of the following properties. When an
option takes an argument, it is enclosed in parentheses following the option property name.
The parser that handles option files is quite simplistic, and will be tricked by any nested
parentheses within the argument text itself; in this case, the entire option argument can be
wrapped in curly braces within the parentheses to demarcate it, e.g.:

Condition({defined (USE_CYGWIN_LIBSTDCXX_WRAPPERS)})

Common The option is available for all languages and targets.
Target The option is available for all languages but is target-specific.
Driver The option is handled by the compiler driver using code not shared with the

compilers proper (‘ccl’ etc.).
language The option is available when compiling for the given language.

It is possible to specify several different languages for the same option. Each lan-
guage must have been declared by an earlier Language record. See Section 8.1
[Option file format], page 107.

RejectDriver
The option is only handled by the compilers proper (‘cc1’ etc.) and should not
be accepted by the driver.

RejectNegative
The option does not have a “no-” form. All options beginning with “f”, “W?”
or “m” are assumed to have a “no-” form unless this property is used.

Negative (othername)
The option will turn off another option othername, which is the option name
with the leading “-” removed. This chain action will propagate through the
Negative property of the option to be turned off.

As a consequence, if you have a group of mutually-exclusive options, their
Negative properties should form a circular chain. For example, if options ‘-a’,
‘-b’ and ‘-c¢’ are mutually exclusive, their respective Negative properties should
be ‘Negative(b)’, ‘Negative(c)’ and ‘Negative(a)’.

110 GNU Compiler Collection (GCC) Internals

Joined

Separate The option takes a mandatory argument. Joined indicates that the option and
argument can be included in the same argv entry (as with -mflush-func=name,
for example). Separate indicates that the option and argument can be separate
argv entries (as with -o). An option is allowed to have both of these properties.

JoinedOrMissing

The option takes an optional argument. If the argument is given, it will be part
of the same argv entry as the option itself.

This property cannot be used alongside Joined or Separate.

MissingArgError (message)

Args(n)

Ulnteger

ToLower

For an option marked Joined or Separate, the message message will be used
as an error message if the mandatory argument is missing; for options without
MissingArgError, a generic error message is used. message should contain a
single ‘%gs’ format, which will be used to format the name of the option passed.

For an option marked Separate, indicate that it takes n arguments. The default
is 1.

The option’s argument is a non-negative integer. The option parser will check
and convert the argument before passing it to the relevant option handler.
UInteger should also be used on options like -falign-loops where both -
falign-loops and -falign-loops=n are supported to make sure the saved
options are given a full integer.

The option’s argument should be converted to lowercase as part of putting it in
canonical form, and before comparing with the strings indicated by any Enum

property.

NoDriverArg

Var (var)

For an option marked Separate, the option only takes an argument in the com-
piler proper, not in the driver. This is for compatibility with existing options
that are used both directly and via ‘~Wp,’; new options should not have this

property.

The state of this option should be stored in variable var (actually a macro for
global_options.x_var). The way that the state is stored depends on the type
of option:

e If the option uses the Mask or InverseMask properties, var is the integer
variable that contains the mask.

e If the option is a normal on/off switch, var is an integer variable that is
nonzero when the option is enabled. The options parser will set the variable
to 1 when the positive form of the option is used and 0 when the “no-”
form is used.

e If the option takes an argument and has the UInteger property, var is an
integer variable that stores the value of the argument.

e If the option takes an argument and has the Enum property, var is a variable
(type given in the Type property of the ‘Enum’ record whose Name property

Chapter 8: Option specification files 111

has the same argument as the Enum property of this option) that stores the
value of the argument.

e If the option has the Defer property, var is a pointer to a
VEC(cl_deferred_option,heap) that stores the option for later
processing. (var is declared with type void * and needs to be cast to
VEC(cl_deferred_option,heap) before use.)

e Otherwise, if the option takes an argument, var is a pointer to the argument
string. The pointer will be null if the argument is optional and wasn’t given.

The option-processing script will usually zero-initialize var. You can modify
this behavior using Init.

Var(var, set)
The option controls an integer variable var and is active when var equals set.
The option parser will set var to set when the positive form of the option is
used and !set when the “no-” form is used.

var is declared in the same way as for the single-argument form described above.

Init(value)
The variable specified by the Var property should be statically initialized to
value. If more than one option using the same variable specifies Init, all must
specify the same initializer.

Mask (name)
The option is associated with a bit in the target_flags variable (see
Section 17.3 [Run-time Target|, page 422) and is active when that bit is set.
You may also specify Var to select a variable other than target_flags.

The options-processing script will automatically allocate a unique bit for the
option. If the option is attached to ‘target_flags’, the script will set the
macro MASK_name to the appropriate bitmask. It will also declare a TARGET_
name macro that has the value 1 when the option is active and 0 ot