The Red Hat newlib C Library

Full Configuration

libc 2.1.0
December 2013

Steve Chamberlain
Roland Pesch

Red Hat Support
Jeff Johnston




sac@cygnus.com, pesch@cygnus.com, jjohnstn@redhat.com The Red Hat newlib C' Library
Copyright (© 1992, 1993, 1994-2004 Red Hat Inc.

‘libc’ includes software developed by the University of California, Berkeley and its contrib-
utors.

‘libc’ includes software developed by Martin Jackson, Graham Haley and Steve Chamber-
lain of Tadpole Technology and released to Cygnus.

‘libc’ uses floating-point conversion software developed at AT& T, which includes this copy-
right information:

(" 2
The author of this software is David M. Gay.

Copyright (c) 1991 by AT&T.

Permission to use, copy, modify, and distribute this software for any purpose without fee
is hereby granted, provided that this entire notice is included in all copies of any software
which is or includes a copy or modification of this software and in all copies of the supporting
documentation for such software.

THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
IMPLIED WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR AT&T
MAKES ANY REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING
THE MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PAR-

TICULAR PURPOSE.
N J

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the
conditions for verbatim copying, subject to the terms of the GNU General Public License,
which includes the provision that the entire resulting derived work is distributed under the
terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions.



Chapter 1: Introduction 1

1 Introduction

This reference manual describes the functions provided by the Red Hat “newlib” version of
the standard ANSI C library. This document is not intended as an overview or a tutorial for
the C library. Each library function is listed with a synopsis of its use, a brief description,
return values (including error handling), and portability issues.

Some of the library functions depend on support from the underlying operating system and
may not be available on every platform. For embedded systems in particular, many of these
underlying operating system services may not be available or may not be fully functional.
The specific operating system subroutines required for a particular library function are
listed in the “Portability” section of the function description. See Chapter 12 [Syscalls],
page 303, for a description of the relevant operating system calls.






Chapter 2: Standard Utility Functions (‘stdlib.h’) 3

2 Standard Utility Functions (‘stdlib.h’)

This chapter groups utility functions useful in a variety of programs. The corresponding
declarations are in the header file ‘std1ib.h’.



4 Red Hat newlib C Library, Full

2.1 _Exit—end program execution with no cleanup
processing
Synopsis

#include <stdlib.h>
void _Exit(int code);

Description

Use _Exit to return control from a program to the host operating environment. Use the
argument code to pass an exit status to the operating environment: two particular values,
EXIT_SUCCESS and EXIT_FAILURE, are defined in ‘stdlib.h’ to indicate success or failure
in a portable fashion.

_Exit differs from exit in that it does not run any application-defined cleanup functions
registered with atexit and it does not clean up files and streams. It is identical to _exit.

Returns
_Exit does not return to its caller.

Portability
_Exit is defined by the C99 standard.

Supporting OS subroutines required: _exit.



Chapter 2: Standard Utility Functions (‘stdlib.h’) 5

2.2 ab4l, 164a——convert between radix-64 ASCII string and
long

Synopsis
#include <stdlib.h>

long a64l(const char *input);
char *164a(long input);

Description

Conversion is performed between long and radix-64 characters. The 164a routine transforms
up to 32 bits of input value starting from least significant bits to the most significant bits.
The input value is split up into a maximum of 5 groups of 6 bits and possibly one group of
2 bits (bits 31 and 30).

Each group of 6 bits forms a value from 0-63 which is translated into a character as follows:
e 0=""
o 1=/
e 2-11 ="0"t0’9
e 12-37T="A"to 7’
e 3863 ="’a’ to’7’
When the remaining bits are zero or all bits have been translated, a null terminator is
appended to the string. An input value of 0 results in the empty string.

The a641 function performs the reverse translation. Each character is used to generate a
6-bit value for up to 30 bits and then a 2-bit value to complete a 32-bit result. The null
terminator means that the remaining digits are 0. An empty input string or NULL string
results in OL. An invalid string results in undefined behavior. If the size of a long is greater
than 32 bits, the result is sign-extended.

Returns
164a returns a null-terminated string of 0 to 6 characters. a641 returns the 32-bit translated
value from the input character string.

Portability
164a and a641 are non-ANSI and are defined by the Single Unix Specification.

Supporting OS subroutines required: None.



6 Red Hat newlib C Library, Full

2.3 abort—abnormal termination of a program
Synopsis

#include <stdlib.h>
void abort(void);

Description
Use abort to signal that your program has detected a condition it cannot deal with. Nor-
mally, abort ends your program’s execution.

Before terminating your program, abort raises the exception SIGABRT (using
‘raise (SIGABRT)’). If you have used signal to register an exception handler for this
condition, that handler has the opportunity to retain control, thereby avoiding program
termination.

In this implementation, abort does not perform any stream- or file-related cleanup (the
host environment may do so; if not, you can arrange for your program to do its own cleanup
with a SIGABRT exception handler).

Returns
abort does not return to its caller.

Portability
ANSI C requires abort.

Supporting OS subroutines required: _exit and optionally, write.



Chapter 2: Standard Utility Functions (‘stdlib.h’) 7

2.4 abs—integer absolute value (magnitude)
Synopsis

#include <stdlib.h>
int abs(int i);

Description
abs returns |z|, the absolute value of i (also called the magnitude of i). That is, if i is
negative, the result is the opposite of i, but if i is nonnegative the result is i.

The similar function labs uses and returns long rather than int values.

Returns
The result is a nonnegative integer.

Portability
abs is ANSI.

No supporting OS subroutines are required.



8 Red Hat newlib C Library, Full

2.5 assert—macro for debugging diagnostics
Synopsis

#include <assert.h>
void assert(int expression);

Description

Use this macro to embed debuggging diagnostic statements in your programs. The argument
expression should be an expression which evaluates to true (nonzero) when your program
is working as you intended.

When expression evaluates to false (zero), assert calls abort, after first printing a message
showing what failed and where:

Assertion failed: expression, file filename, line lineno, function: func
If the name of the current function is not known (for example, when using a C89 compiler
that does not understand __func__), the function location is omitted.
The macro is defined to permit you to turn off all uses of assert at compile time by defining
NDEBUG as a preprocessor variable. If you do this, the assert macro expands to

(void(0))

Returns
assert does not return a value.

Portability
The assert macro is required by ANSI, as is the behavior when NDEBUG is defined.

Supporting OS subroutines required (only if enabled): close, fstat, getpid, isatty, kill,
1seek, read, sbrk, write.



Chapter 2: Standard Utility Functions (‘stdlib.h’) 9

2.6 atexit—request execution of functions at program exit
Synopsis

#include <stdlib.h>
int atexit (void (*function) (void));

Description

You can use atexit to enroll functions in a list of functions that will be called when your
program terminates normally. The argument is a pointer to a user-defined function (which
must not require arguments and must not return a result).

The functions are kept in a LIFO stack; that is, the last function enrolled by atexit will
be the first to execute when your program exits.

There is no built-in limit to the number of functions you can enroll in this list; however,
after every group of 32 functions is enrolled, atexit will call malloc to get space for the
next part of the list. The initial list of 32 functions is statically allocated, so you can always
count on at least that many slots available.

Returns
atexit returns O if it succeeds in enrolling your function, -1 if it fails (possible only if no
space was available for malloc to extend the list of functions).

Portability
atexit is required by the ANSI standard, which also specifies that implementations must
support enrolling at least 32 functions.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.



10 Red Hat newlib C Library, Full

2.7 atof, atoff—string to double or float
Synopsis
#include <stdlib.h>

double atof(const char *s);
float atoff(const char *s);

Description
atof converts the initial portion of a string to a double. atoff converts the initial portion
of a string to a float.

The functions parse the character string s, locating a substring which can be converted to
a floating-point value. The substring must match the format:

[+|-1digits[.1[digits][(elE) [+|-]1digits]
The substring converted is the longest initial fragment of s that has the expected format,
beginning with the first non-whitespace character. The substring is empty if str is empty,
consists entirely of whitespace, or if the first non-whitespace character is something other
than +, -, ., or a digit.
atof (s) is implemented as strtod(s, NULL). atoff(s) is implemented as strtof (s,
NULL).

Returns

atof returns the converted substring value, if any, as a double; or 0.0, if no conversion
could be performed. If the correct value is out of the range of representable values, plus
or minus HUGE_VAL is returned, and ERANGE is stored in errno. If the correct value would
cause underflow, 0.0 is returned and ERANGE is stored in errno.

atoff obeys the same rules as atof, except that it returns a float.

Portability

atof is ANSI C. atof, atoi, and atol are subsumed by strod and strol, but are used
extensively in existing code. These functions are less reliable, but may be faster if the
argument is verified to be in a valid range.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.



Chapter 2: Standard Utility Functions (‘stdlib.h’) 11

2.8 atoi, atol—string to integer

Synopsis
#include <stdlib.h>
int atoi(const char *s);
long atol(const char *s);
int _atoi_r(struct _reent *ptr, const char *s);
long _atol_r(struct _reent *ptr, const char *s);

Description

atoi converts the initial portion of a string to an int. atol converts the initial portion of
a string to a long.

atoi(s) is implemented as (int)strtol(s, NULL, 10). atol(s) is implemented as
strtol(s, NULL, 10).

_atoi_r and _atol_r are reentrant versions of atoi and atol respectively, passing the
reentrancy struct pointer.

Returns
The functions return the converted value, if any. If no conversion was made, 0 is returned.

Portability
atoi, atol are ANSI.

No supporting OS subroutines are required.



12 Red Hat newlib C Library, Full

2.9 atoll—convert a string to a long long integer
Synopsis
#include <stdlib.h>

long long atoll(const char *str);
long long _atoll_r(struct _reent *ptr, const char *str);

Description

The function atoll converts the initial portion of the string pointed to by *str to a type
long long. A call to atoll(str) in this implementation is equivalent to strtoll(str, (char
*)NULL, 10) including behavior on error.

The alternate function _atoll_r is a reentrant version. The extra argument reent is a
pointer to a reentrancy structure.

Returns
The converted value.

Portability
atoll is ISO 9899 (C99) and POSIX 1003.1-2001 compatable.

No supporting OS subroutines are required.



Chapter 2: Standard Utility Functions (‘stdlib.h’) 13

2.10 bsearch—binary search
Synopsis
#include <stdlib.h>
void *bsearch(const void *key, const void *base,

size_t nmemb, size_t size,
int (*compar) (const void *, const void *));

Description
bsearch searches an array beginning at base for any element that matches key, using binary
search. nmemb is the element count of the array; size is the size of each element.

The array must be sorted in ascending order with respect to the comparison function compar
(which you supply as the last argument of bsearch).

You must define the comparison function (*compar) to have two arguments; its result must
be negative if the first argument is less than the second, zero if the two arguments match,
and positive if the first argument is greater than the second (where “less than” and “greater
than” refer to whatever arbitrary ordering is appropriate).

Returns
Returns a pointer to an element of array that matches key. If more than one matching
element is available, the result may point to any of them.

Portability
bsearch is ANSI.

No supporting OS subroutines are required.



14 Red Hat newlib C Library, Full

2.11 calloc—allocate space for arrays

Synopsis

#include <stdlib.h>

void *calloc(size_t n, size_t s);

void *_calloc_r(void *reent, size_t n, size_t s);
Description
Use calloc to request a block of memory sufficient to hold an array of n elements, each of
which has size s.
The memory allocated by calloc comes out of the same memory pool used by malloc, but
the memory block is initialized to all zero bytes. (To avoid the overhead of initializing the
space, use malloc instead.)
The alternate function _calloc_r is reentrant. The extra argument reent is a pointer to a
reentrancy structure.

Returns
If successful, a pointer to the newly allocated space.

If unsuccessful, NULL.

Portability
calloc is ANSIL

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.



Chapter 2: Standard Utility Functions (‘stdlib.h’) 15

2.12 div—divide two integers
Synopsis

#include <stdlib.h>
div_t div(int n, int d);

Description
Divide n/d, returning quotient and remainder as two integers in a structure div_t.

Returns
The result is represented with the structure

typedef struct
{
int quot;
int rem;
} div_t;
where the quot field represents the quotient, and rem the remainder. For nonzero d, if ‘r =
div(a,d);’ then n equals ‘r.rem + d*r.quot’.

To divide long rather than int values, use the similar function 1div.

Portability
div is ANSL

No supporting OS subroutines are required.



16 Red Hat newlib C Library, Full

2.13 ecvt, ecvtf, fcvt, fcvtf—double or float to string
Synopsis
#include <stdlib.h>

char *ecvt(double val, int chars, int *decpt, int *sgn);
char xecvtf(float val, int chars, int *decpt, int *sgn);

char *fcvt(double val, int decimals,
int *decpt, int *sgn);

char *fcvtf(float val, int decimals,
int *decpt, int *sgn);

Description

ecvt and fcvt produce (null-terminated) strings of digits representating the double num-
ber val. ecvtf and fcvtf produce the corresponding character representations of float
numbers.

(The stdlib functions ecvtbuf and fcvtbuf are reentrant versions of ecvt and fcvt.)

The only difference between ecvt and fcvt is the interpretation of the second argument
(chars or decimals). For ecvt, the second argument chars specifies the total number of
characters to write (which is also the number of significant digits in the formatted string,
since these two functions write only digits). For fcvt, the second argument decimals speci-
fies the number of characters to write after the decimal point; all digits for the integer part
of val are always included.

Since ecvt and fcvt write only digits in the output string, they record the location of the
decimal point in *decpt, and the sign of the number in *sgn. After formatting a number,
xdecpt contains the number of digits to the left of the decimal point. *sgn contains 0 if
the number is positive, and 1 if it is negative.

Returns
All four functions return a pointer to the new string containing a character representation
of val.

Portability
None of these functions are ANSI C.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.



Chapter 2: Standard Utility Functions (‘stdlib.h’) 17

2.14 gvcvt, gcvtf—+format double or float as string

Synopsis
#include <stdlib.h>

char *gcvt(double val, int precision, char *buf);
char *gcvtf(float val, int precision, char *buf);

Description
gevt writes a fully formatted number as a null-terminated string in the buffer xbuf. gdvtf
produces corresponding character representations of float numbers.

gcvt uses the same rules as the printf format ‘% . precisiong’—only negative values are
signed (with ‘=’), and either exponential or ordinary decimal-fraction format is chosen de-
pending on the number of significant digits (specified by precision).

Returns
The result is a pointer to the formatted representation of val (the same as the argument

buf).

Portability
Neither function is ANSI C.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.



18 Red Hat newlib C Library, Full

2.15 ecvtbuf, fcvtbuf—double or float to string
Synopsis
#include <stdio.h>

char *ecvtbuf (double val, int chars, int *decpt,
int *sgn, char *buf);

char *fcvtbuf(double val, int decimals, int *decpt,
int *sgn, char *buf);

Description
ecvtbuf and fcvtbuf produce (null-terminated) strings of digits representating the double
number val.

The only difference between ecvtbuf and fcvtbuf is the interpretation of the second ar-
gument (chars or decimals). For ecvtbuf, the second argument chars specifies the total
number of characters to write (which is also the number of significant digits in the format-
ted string, since these two functions write only digits). For fcvtbuf, the second argument
decimals specifies the number of characters to write after the decimal point; all digits for
the integer part of val are always included.

Since ecvtbuf and fcvtbuf write only digits in the output string, they record the location
of the decimal point in *decpt, and the sign of the number in *sgn. After formatting
a number, *decpt contains the number of digits to the left of the decimal point. *sgn
contains 0 if the number is positive, and 1 if it is negative. For both functions, you supply
a pointer buf to an area of memory to hold the converted string.

Returns
Both functions return a pointer to buf, the string containing a character representation of
val.

Portability
Neither function is ANSI C.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.



Chapter 2: Standard Utility Functions (‘stdlib.h’) 19

2.16 __env_lock env_unlock—Ilock environ variable

- P R——

Synopsis
#include <envlock.h>

void __env_lock (struct _reent *reent);
void __env_unlock (struct _reent *reent);

Description

The setenv family of routines call these functions when they need to modify the environ
variable. The version of these routines supplied in the library use the lock API defined
in sys/lock.h. If multiple threads of execution can call setenv, or if setenv can be called
reentrantly, then you need to define your own versions of these functions in order to safely
lock the memory pool during a call. If you do not, the memory pool may become corrupted.

A call to setenv may call __env_lock recursively; that is, the sequence of calls may go
__env_lock, __env_lock env_unlock env_unlock. Any implementation of these
routines must be careful to avoid causing a thread to wait for a lock that it already holds.

) —— ) ——



20 Red Hat newlib C Library, Full

2.17 exit—end program execution
Synopsis

#include <stdlib.h>
void exit(int code);

Description

Use exit to return control from a program to the host operating environment. Use the
argument code to pass an exit status to the operating environment: two particular values,
EXIT_SUCCESS and EXIT_FAILURE, are defined in ‘stdlib.h’ to indicate success or failure
in a portable fashion.

exit does two kinds of cleanup before ending execution of your program. First, it calls
all application-defined cleanup functions you have enrolled with atexit. Second, files and
streams are cleaned up: any pending output is delivered to the host system, each open file
or stream is closed, and files created by tmpfile are deleted.

Returns
exit does not return to its caller.

Portability
ANSI C requires exit, and specifies that EXIT_SUCCESS and EXIT_FAILURE must be defined.

Supporting OS subroutines required: _exit.



Chapter 2: Standard Utility Functions (‘stdlib.h’) 21

2.18 getenv—Ilook up environment variable

Synopsis
#include <stdlib.h>
char *getenv(const char *name);

Description

getenv searches the list of environment variable names and values (using the global pointer
“char **environ”) for a variable whose name matches the string at name. If a variable
name matches, getenv returns a pointer to the associated value.

Returns
A pointer to the (string) value of the environment variable, or NULL if there is no such
environment variable.

Portability
getenv is ANSI, but the rules for properly forming names of environment variables vary
from one system to another.

getenv requires a global pointer environ.



22 Red Hat newlib C Library, Full

2.19 labs—Ilong integer absolute value
Synopsis

#include <stdlib.h>
long labs(long 1i);

Description
labs returns |z|, the absolute value of i (also called the magnitude of i). That is, if i is
negative, the result is the opposite of i, but if i is nonnegative the result is i.

The similar function abs uses and returns int rather than long values.

Returns
The result is a nonnegative long integer.

Portability
labs is ANSI.

No supporting OS subroutine calls are required.



Chapter 2: Standard Utility Functions (‘stdlib.h’) 23

2.20 ldiv—divide two long integers
Synopsis

#include <stdlib.h>
ldiv_t 1div(long n, long d);

Description
Divide n/d, returning quotient and remainder as two long integers in a structure 1div_t.

Returns
The result is represented with the structure

typedef struct
{
long quot;
long rem;
} 1ldiv_t;
where the quot field represents the quotient, and rem the remainder. For nonzero d, if ‘r =
1div(n,d);’ then n equals ‘r.rem + d*r.quot’.

To divide int rather than long values, use the similar function div.

Portability
1div is ANSI.

No supporting OS subroutines are required.



24 Red Hat newlib C Library, Full

2.21 1llabs——compute the absolute value of an long long
integer.
Synopsis

#include <stdlib.h>
long long llabs(long long j);

Description
The 1labs function computes the absolute value of the long long integer argument j (also
called the magnitude of j).

The similar function labs uses and returns long rather than long long values.

Returns
A nonnegative long long integer.

Portability
1labs is ISO 9899 (C99) compatable.

No supporting OS subroutines are required.



Chapter 2: Standard Utility Functions (‘stdlib.h’) 25

2.22 11div—divide two long long integers
Synopsis

#include <stdlib.h>
11div_t 11div(long long n, long long d);

Description
Divide n/d, returning quotient and remainder as two long long integers in a structure
11div_t.

Returns
The result is represented with the structure

typedef struct

{

long long quot;

long long rem;

} 1ldiv_t;
where the quot field represents the quotient, and rem the remainder. For nonzero d, if ‘r =
1div(n,d);’ then n equals ‘r.rem + d*r.quot’.

To divide long rather than long long values, use the similar function 1div.

Portability
11div is ISO 9899 (C99) compatable.

No supporting OS subroutines are required.



26 Red Hat newlib C Library, Full

2.23 malloc, realloc, free—manage memory
Synopsis

#include <stdlib.h>

void #*malloc(size_t nbytes);

void *realloc(void *aptr, size_t nbytes);
void *reallocf(void *aptr, size_t nbytes);
void free(void *aptr);

void #*memalign(size_t align, size_t nbytes);
size_t malloc_usable_size(void *aptr);

void *_malloc_r(void *reent, size_t nbytes);
void *_realloc_r(void *reent,
void *aptr, size_t nbytes);
void *_reallocf_r(void *reent,
void *aptr, size_t nbytes);
void _free_r(void *reent, void *aptr);

void *_memalign r(void *reent,
size_t align, size_t nbytes);

size_t _malloc_usable_size_r(void *reent, void *aptr);

Description
These functions manage a pool of system memory.

Use malloc to request allocation of an object with at least nbytes bytes of storage available.
If the space is available, malloc returns a pointer to a newly allocated block as its result.

If you already have a block of storage allocated by malloc, but you no longer need all the
space allocated to it, you can make it smaller by calling realloc with both the object
pointer and the new desired size as arguments. realloc guarantees that the contents of
the smaller object match the beginning of the original object.

Similarly, if you need more space for an object, use realloc to request the larger size; again,
realloc guarantees that the beginning of the new, larger object matches the contents of
the original object.

When you no longer need an object originally allocated by malloc or realloc (or the
related function calloc), return it to the memory storage pool by calling free with the
address of the object as the argument. You can also use realloc for this purpose by calling
it with 0 as the nbytes argument.

The reallocf function behaves just like realloc except if the function is required to
allocate new storage and this fails. In this case reallocf will free the original object
passed in whereas realloc will not.

The memalign function returns a block of size nbytes aligned to a align boundary. The
align argument must be a power of two.



Chapter 2: Standard Utility Functions (‘stdlib.h’) 27

The malloc_usable_size function takes a pointer to a block allocated by malloc. It
returns the amount of space that is available in the block. This may or may not be more
than the size requested from malloc, due to alignment or minimum size constraints.

The alternate functions _malloc_r, _realloc_r, _reallocf_r, _free_r, _memalign_r,
and _malloc_usable_size_r are reentrant versions. The extra argument reent is a pointer
to a reentrancy structure.

If you have multiple threads of execution which may call any of these routines, or if any
of these routines may be called reentrantly, then you must provide implementations of the
__malloc_lock and __malloc_unlock functions for your system. See the documentation
for those functions.

These functions operate by calling the function _sbrk_r or sbrk, which allocates space.
You may need to provide one of these functions for your system. _sbrk_r is called with
a positive value to allocate more space, and with a negative value to release previously
allocated space if it is no longer required. See Section 12.1 [Stubs|, page 303.

Returns
malloc returns a pointer to the newly allocated space, if successful; otherwise it returns
NULL. If your application needs to generate empty objects, you may use malloc(0) for this
purpose.

realloc returns a pointer to the new block of memory, or NULL if a new block could not
be allocated. NULL is also the result when you use ‘realloc(aptr,0)’ (which has the
same effect as ‘free(aptr)’). You should always check the result of realloc; successful
reallocation is not guaranteed even when you request a smaller object.

free does not return a result.
memalign returns a pointer to the newly allocated space.

malloc_usable_size returns the usable size.

Portability
malloc, realloc, and free are specified by the ANSI C standard, but other conforming
implementations of malloc may behave differently when nbytes is zero.

memalign is part of SVRA.
malloc_usable_size is not portable.

Supporting OS subroutines required: sbrk.



28 Red Hat newlib C Library, Full

2.24 mallinfo, malloc_stats, mallopt—malloc support
Synopsis

#include <malloc.h>

struct mallinfo mallinfo(void);

void malloc_stats(void);
int mallopt(int parameter, value);

struct mallinfo _mallinfo_r(void *reent);
void _malloc_stats_r(void *reent);
int _mallopt_r(void *reent, int parameter, value);

Description

mallinfo returns a structure describing the current state of memory allocation. The struc-
ture is defined in malloc.h. The following fields are defined: arena is the total amount of
space in the heap; ordblks is the number of chunks which are not in use; uordblks is the
total amount of space allocated by malloc; fordblks is the total amount of space not in
use; keepcost is the size of the top most memory block.

malloc_stats print some statistics about memory allocation on standard error.

mallopt takes a parameter and a value. The parameters are defined in malloc.h, and may
be one of the following: M_TRIM_THRESHOLD sets the maximum amount of unused space in
the top most block before releasing it back to the system in free (the space is released by
calling _sbrk_r with a negative argument); M_TOP_PAD is the amount of padding to allocate
whenever _sbrk_r is called to allocate more space.

The alternate functions _mallinfo_r, _malloc_stats_r, and _mallopt_r are reentrant
versions. The extra argument reent is a pointer to a reentrancy structure.

Returns
mallinfo returns a mallinfo structure. The structure is defined in malloc.h.

malloc_stats does not return a result.

mallopt returns zero if the parameter could not be set, or non-zero if it could be set.

Portability
mallinfo and mallopt are provided by SVR4, but mallopt takes different parameters on
different systems. malloc_stats is not portable.



Chapter 2: Standard Utility Functions (‘stdlib.h’) 29

2.25 __malloc_lock

malloc_unlock—Ilock malloc pool

[ J——
Synopsis
#include <malloc.h>

void __malloc_lock (struct _reent *reent);
void __malloc_unlock (struct _reent *reent);

Description

The malloc family of routines call these functions when they need to lock the memory pool.
The version of these routines supplied in the library use the lock API defined in sys/lock.h.
If multiple threads of execution can call malloc, or if malloc can be called reentrantly, then
you need to define your own versions of these functions in order to safely lock the memory
pool during a call. If you do not, the memory pool may become corrupted.

A call tomalloc may call __malloc_lock recursively; that is, the sequence of calls may go __
malloc_lock, __malloc_lock, __malloc_unlock, __malloc_unlock. Any implementation
of these routines must be careful to avoid causing a thread to wait for a lock that it already
holds.

) —— ) ——



30 Red Hat newlib C Library, Full

2.26 mblen—minimal multibyte length function

Synopsis
#include <stdlib.h>
int mblen(const char *s, size_t n);

Description

When _.MB_CAPABLE is not defined, this is a minimal ANSI-conforming implementation
of mblen. In this case, the only “multi-byte character sequences” recognized are single
bytes, and thus 1 is returned unless s is the null pointer or has a length of 0 or is the empty
string.

When -MB_CAPABLE is defined, this routine calls _mbtowc_r to perform the conversion,
passing a state variable to allow state dependent decoding. The result is based on the locale
setting which may be restricted to a defined set of locales.

Returns

This implementation of mblen returns O if s is NULL or the empty string; it returns 1 if not
_MB_CAPABLE or the character is a single-byte character; it returns -1 if the multi-byte
character is invalid; otherwise it returns the number of bytes in the multibyte character.

Portability
mblen is required in the ANSI C standard. However, the precise effects vary with the locale.

mblen requires no supporting OS subroutines.



Chapter 2: Standard Utility Functions (‘stdlib.h’) 31

2.27 mbsrtowcs, mbsnrtowcs—convert a character string to a
wide-character string

Synopsis

#include <wchar.h>

size_t mbsrtowcs(wchar_t *__restrict dst,
const char **__restrict src,
size_t len,
mbstate_t *__restrict ps);

#include <wchar.h>

size_t _mbsrtowcs_r(struct _reent *ptr, wchar_t *dst,
const char **src, size_t len,
mbstate_t *ps);

#include <wchar.h>
size_t mbsnrtowcs(wchar_t *__ restrict dst,
const char **__restrict src, size_t nms,

size_t len, mbstate_t *__restrict ps);

#include <wchar.h>

size_t _mbsnrtowcs_r(struct _reent *ptr, wchar_t *dst,
const char **src, size_t nms,
size_t len, mbstate_t *ps);

Description

The mbsrtowcs function converts a sequence of multibyte characters pointed to indirectly
by src into a sequence of corresponding wide characters and stores at most len of them in
the wchar_t array pointed to by dst, until it encounters a terminating null character ("\0’).

If dst is NULL, no characters are stored.

If dst is not NULL, the pointer pointed to by src is updated to point to the character
after the one that conversion stopped at. If conversion stops because a null character is
encountered, *src is set to NULL.

The mbstate_t argument, ps, is used to keep track of the shift state. If it is NULL,
mbsrtowcs uses an internal, static mbstate_t object, which is initialized to the initial con-
version state at program startup.

The mbsnrtowcs function behaves identically to mbsrtowcs, except that conversion stops
after reading at most nms bytes from the buffer pointed to by src.

Returns
The mbsrtowcs and mbsnrtowcs functions return the number of wide characters stored in
the array pointed to by dst if successful, otherwise it returns (size_t)-1.

Portability
mbsrtowcs is defined by the C99 standard. mbsnrtowcs is defined by the POSIX.1-2008
standard.



32

Red Hat newlib C Library, Full



Chapter 2: Standard Utility Functions (‘stdlib.h’) 33

2.28 mbstowcs—minimal multibyte string to wide char
converter

Synopsis
#include <stdlib.h>
int mbstowcs(wchar_t *restrict pwc, const char *restrict s, size_t n);

Description

When _.MB_CAPABLE is not defined, this is a minimal ANSI-conforming implementation
of mbstowcs. In this case, the only “multi-byte character sequences” recognized are single
bytes, and they are “converted” to wide-char versions simply by byte extension.

When _-MB_CAPABLE is defined, this routine calls _mbstowcs_r to perform the conversion,
passing a state variable to allow state dependent decoding. The result is based on the locale
setting which may be restricted to a defined set of locales.

Returns

This implementation of mbstowcs returns 0 if s is NULL or is the empty string; it returns -1 if
_MB_CAPABLE and one of the multi-byte characters is invalid or incomplete; otherwise it
returns the minimum of: n or the number of multi-byte characters in s plus 1 (to compensate
for the nul character). If the return value is -1, the state of the pwc string is indeterminate.
If the input has a length of 0, the output string will be modified to contain a wchar_t nul
terminator.

Portability
mbstowcs is required in the ANSI C standard. However, the precise effects vary with the
locale.

mbstowcs requires no supporting OS subroutines.



34 Red Hat newlib C Library, Full

2.29 mbtowc—minimal multibyte to wide char converter
Synopsis

#include <stdlib.h>
int mbtowc(wchar_t *restrict pwc, const char *restrict s, size_t n);

Description

When _.MB_CAPABLE is not defined, this is a minimal ANSI-conforming implementation
of mbtowc. In this case, only “multi-byte character sequences” recognized are single bytes,
and they are “converted” to themselves. Each call to mbtowc copies one character from *s
to *pwc, unless s is a null pointer. The argument n is ignored.

When -MB_CAPABLE is defined, this routine calls _mbtowc_r to perform the conversion,
passing a state variable to allow state dependent decoding. The result is based on the locale
setting which may be restricted to a defined set of locales.

Returns

This implementation of mbtowc returns 0 if s is NULL or is the empty string; it returns 1 if
not _-MB_CAPABLE or the character is a single-byte character; it returns -1 if n is 0 or the
multi-byte character is invalid; otherwise it returns the number of bytes in the multibyte
character. If the return value is -1, no changes are made to the pwc output string. If the
input is the empty string, a wchar_t nul is placed in the output string and 0 is returned. If
the input has a length of 0, no changes are made to the pwc output string.

Portability
mbtowc is required in the 