Using the GNU Compiler Collection

For ccc version 4.9.1

(crosstool-NG linaro-1.13.1-4.9-2014.06-02 - Linaro GCC 4.9-2014.06)

Richard M. Stallman and the GCC Developer Community

Published by:

GNU Press Website: http://www.gnupress.org
a division of the General: press@gnu.org

Free Software Foundation Orders: sales@gnu.org

51 Franklin Street, Fifth Floor Tel 617-542-5942

Boston, MA 02110-1301 USA Fax 617-542-2652

Last printed October 2003 for GCC 3.3.1.
Printed copies are available for $45 each.

Copyright (©) 1988-2014 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.3 or any later version published by the
Free Software Foundation; with the Invariant Sections being “Funding Free Software”, the
Front-Cover Texts being (a) (see below), and with the Back-Cover Texts being (b) (see
below). A copy of the license is included in the section entitled “GNU Free Documentation
License”.

(a) The FSF’s Front-Cover Text is:
A GNU Manual
(b) The FSF’s Back-Cover Text is:

You have freedom to copy and modify this GNU Manual, like GNU software. Copies
published by the Free Software Foundation raise funds for GNU development.

http://www.gnupress.org
mailto:press@gnu.org
mailto:sales@gnu.org

Short Contents

Introduction 1
1 Programming Languages Supported by GCC............... 3
2 Language Standards Supported by GCC D
3 GCC Command Optionsvvteniie e 9
4 C Implementation-defined behavior..................... 339
5 C++ Implementation-defined behavior.................. 347
6 Extensions to the C Language Family 349
7 Extensions to the C++ Language 703
8 GNU Objective-C features, 717
9 Binary Compatibility 733
10 gcov—a Test Coverage Program 737
11 Known Causes of Trouble with GCC.................... 747
12 Reporting Bugs......... .o, 763
13 How To Get Help with GCC 765
14 Contributing to GCC Development 767
Funding Free Software i 769
The GNU Project and GNU/Linux. 771
GNU General Public License. 773
GNU Free Documentation License 785
Contributors to GCC 793
Option Indexo 809

Keyword Index oo 829

Table of Contents

Introduction 1

1 Programming Languages Supported by GCC

... 3

2 Language Standards Supported by GCC 5
2.1 O AN gUAZE .« o ettt e e 5
2.2 CH4H languageot 6
2.3 Objective-C and Objective-C++ languages 7
24 GOlanguAZEeot 8
2.5 References for other languages.............. L. 8
3 GCC Command Options....................... 9
3.1 Option SUMMATYttt e e 9
3.2 Options Controlling the Kind of Output....................... 25
3.3 Compiling C+4 Programscooiuiiiiiiiinnieennn.. 31
3.4 Options Controlling C Dialect............. ..., .. 31
3.5 Options Controlling C++ Dialect, 37
3.6 Options Controlling Objective-C and Objective-C++ Dialects.. 48
3.7 Options to Control Diagnostic Messages Formatting 52
3.8 Options to Request or Suppress Warnings 53
3.9 Options for Debugging Your Program or GCC................. 78
3.10 Options That Control Optimization......................... 101
3.11 Options Controlling the Preprocessor........................ 155
3.12 Passing Options to the Assembler........................... 166
3.13 Options for Linking........ ... i i 166
3.14 Options for Directory Search.............. 170
3.15 Specifying subprocesses and the switches to pass to them.... 173
3.16 Specifying Target Machine and Compiler Version............ 180
3.17 Hardware Models and Configurations 180
3.17.1 AArch64 Optionsc.vvviiie e e 180
3.17.1.1 ‘-march’ and ‘-mcpu’ feature modifiers............. 182
3.17.2 Adapteva Epiphany Options 182
3.17.3 ARC Optionsouetit i 184
3174 ARM Options.oiiniiii i 190
3.17.5 AVR Optionsovvt e 196
3.17.5.1 EIND and Devices with more than 128 Ki Bytes of Flash
.. 200

3.17.5.2 Handling of the RAMPD, RAMPX, RAMPY and RAMPZ Special
Function Registers..............co i i it 201

3.17.5.3 AVR Built-in Macros................cooiiiii.. 202

3.17.6 Blackfin Options.............c i 204

iii

v

Using the GNU Compiler Collection (GCC)

3177 COX OptionS. c vttt 207
3.17.8 CRIS Options. .. o.vuitiii e 207
3.17.9 CRI16 Options .. o.vveee e 209
3.17.10 Darwin Options.o, 209
3.17.11 DEC Alpha Optionsoeiiiiiiiiiiinnn.. 213
3.17.12 FR30 Optionsooiiiiiii e 217
3.17.13 FRV Optionsooueiiii e 218
3.17.14 GNU/Linux Options.........c.cvviiiiiiiiiiiiiienan.. 221
3.17.15 H8/300 Options.ouvneiriniiiiii e, 222
3.17.16 HPPA Options........ouiiiiiiiii i, 222
3.17.17 Intel 386 and AMD x86-64 Options 225
3.17.18 1386 and x86-64 Windows Options 242
31719 TA-64 Optionsovee it e 243
3.17.20 LM32 Options ..o vveeiei i 247
3.17.21 M32C Options . . .oouveeit et e 247
3.17.22 M32R/D Options.......c.vuiuiuiiiiiniiiinnenenn. 248
3.17.23 M680X0 OPtionsouueteiiie i 249
3.17.24 MCore Optionsvueiiini e 254
3.17.25 MeP Options ... 255
3.17.26 MicroBlaze Options...........cooviiiiiiiiiiiina.... 257
3.17.27 MIPS Optionsottt 258
3.17.28 MMIX Optionsueiii e 271
3.17.29 MNI10300 Optionsovuereieeit i, 272
3.17.30 Moxie Optionscovviiiiiii e 273
3.17.31 MSP430 Options.o.oiiriiiii i 273
3.17.32 NDS32 OptionS . ..ouveeeteit it i i 274
3.17.33 Nios IT Optionsooueiiiii e 275
3.17.34 PDP-11 Optionsoovuiiiii e 279
3.17.35 picoChip Options ..o ... 280
3.17.36 PowerPC Options..........ccoviiiiiiiiiiiiian... 281
3.17.37 RL78 Options. ...ttt 281
3.17.38 IBM RS/6000 and PowerPC Options.................. 281
3.17.39 RX Optionsovvi e 296
3.17.40 S/390 and zSeries Optionsc.cooviiiinn.. 299
3.17.41 Score OpPtionS.voiiieiie it 302
3.17.42 SH Optionsooout i 302
3.17.43 Solaris 2 Optionsccouiiiiiiiii i 309
3.17.44 SPARC Optionscouuiiniiii i 310
3.17.45 SPU Optionsot 315
3.17.46 Options for System V... 317
3.17.47 TILE-Gx Options.ooviuiiiiiii i 317
3.17.48 TILEPro Optionsoouiiiiiiiii i, 318
3.17.49 V850 Options. .. vvtnit it 318
31750 VAX OptionsS .. .voeii it e 321
3.17.51 VMS OptionsS. . ..ot 321
3.17.52 VxWorks Options. ...t 321
3.17.53 x86-64 Optionsoviuriiiii 322
3.17.54 Xstormyl6 Optionsccoviiiiiiiiiiiie... 322

3.17.55 Xtensa Options..........coiiiiiiiiainn, 322

3.17.56 zSeries Optionscovviiiiiieii e 323
3.18 Options for Code Generation Conventions................... 323
3.19 Environment Variables Affecting GCC 334
3.20 Using Precompiled Headers 337

C Implementation-defined behavior 339
4.1 Translationo i 339
4.2 Environment.............. i 339
4.3 Identifiers. 339
4.4 CharaCterS. ..ottt 340
4.5 Integers. ... 341
4.6 Floating point ... 341
4.7 Arrays and pOINters. 342
4.8 Hints ... 343
4.9 Structures, unions, enumerations, and bit-fields............... 343
410 Qualifiers. ..o 344
4.11 Declaratorscooiiii i 345
412 Statements 345
4.13 Preprocessing directives........ ..o 345
4.14 Library functionso 346
4.15 Architecture........ ... 346
4.16 Locale-specific behavior............. L. 346

C++4 Implementation-defined behavior 347

5.1 Conditionally-supported behavior 347
5.2 Exception handling o i i 347
Extensions to the C Language Family...... 349
6.1 Statements and Declarations in Expressions 349
6.2 Locally Declared Labels............. ... i, 350
6.3 Labelsas Values.........cooiiiiiiiiiiiiii i 351
6.4 Nested Functionsot 352
6.5 Constructing Function Calls.............., 354
6.6 Referring to a Type with typeof 356
6.7 Conditionals with Omitted Operands......................... 358
6.8 128-bit integersoovuiiii 358
6.9 Double-Word Integers. ... 358
6.10 Complex Numberst 358
6.11 Additional Floating Typesccoiuiiiiiiiiii .. 359
6.12 Half-Precision Floating Point 359
6.13 Decimal Floating Types........ccooiiiiiiiiii .. 360
6.14 Hex Floats.o e 361
6.15 Fixed-Point Types.......cooiiiiiiiiii i 361
6.16 Named Address Spacesc.oviriiiiiiiieiiiinin... 362
6.16.1 AVR Named Address Spacesccoviiieennnnn... 362

6.16.2 M32C Named Address Spaces..........c.oveeiueenne.... 364

vi

Using the GNU Compiler Collection (GCC)

6.16.3 RL78 Named Address Spaces............ccoviiiieannn.. 364
6.16.4 SPU Named Address Spacescoviiveiinn... 364
6.17 Arrays of Length Zeroo i 364
6.18 Structures With No Members........... L. 366
6.19 Arrays of Variable Length........ 366
6.20 Macros with a Variable Number of Arguments............... 367
6.21 Slightly Looser Rules for Escaped Newlines.................. 368
6.22 Non-Lvalue Arrays May Have Subscripts.................... 368
6.23 Arithmetic on void- and Function-Pointers.................. 368
6.24 Non-Constant Initializersot 368
6.25 Compound Literals ... 369
6.26 Designated Initializers o it 370
6.27 Case Ranges. 371
6.28 Cast toa Union Type... ..o 371
6.29 Mixed Declarations and Code............., 372
6.30 Declaring Attributes of Functions........................... 372
6.31 Attribute Syntax i 405
6.32 Prototypes and Old-Style Function Definitions 408
6.33 CH+ Style Commentsceiiiiiiiiii .. 409
6.34 Dollar Signs in Identifier Names.................... 409
6.35 The Character ESC in Constantsc.coveinn... 409
6.36 Specifying Attributes of Variables........................... 409
6.36.1 AVR Variable Attributes................ 414
6.36.2 Blackfin Variable Attributes............................ 414
6.36.3 M32R/D Variable Attributes........................... 415
6.36.4 MeP Variable Attributes.................., 415
6.36.5 1386 Variable Attributes............ L. 416
6.36.6 PowerPC Variable Attributes........................... 417
6.36.7 SPU Variable Attributes................. 418
6.36.8 Xstormyl6 Variable Attributes......................... 418
6.37 Specifying Attributes of Types...........cooiiiiiii ... 418
6.37.1 ARM Type Attributeso, 422
6.37.2 MeP Type Attributes ...t ... 423
6.37.3 1386 Type Attributes. ...t 423
6.37.4 PowerPC Type Attributes.............. 423
6.37.5 SPU Type Attributeso 423
6.38 Inquiring on Alignment of Types or Variables 424
6.39 An Inline Function is As Fast As a Macro................... 424
6.40 When is a Volatile Object Accessed? 426
6.41 Assembler Instructions with C Expression Operands. 427
6.41.1 Sizeof an asm.............oiiiiiiiiiii 433
6.41.2 1386 floating-point asm operands 433
6.42 Constraints for asm Operands............. ..., 434
6.42.1 Simple Constraints. ..., 434
6.42.2 Multiple Alternative Constraints 437
6.42.3 Constraint Modifier Characters......................... 437
6.42.4 Constraints for Particular Machines.................... 438

6.43 Controlling Names Used in Assembler Code 465

6.44 Variables in Specified Registers............. 466
6.44.1 Defining Global Register Variables 466
6.44.2 Specifying Registers for Local Variables 468

6.45 Alternate Keywords. ... 468

6.46 Incomplete enum Types, 469

6.47 Function Names as Strings............cooviiiiieiiineannn.. 469

6.48 Getting the Return or Frame Address of a Function......... 470

6.49 Using Vector Instructions through Built-in Functions........ 471

6.50 Offsetof.o 473

6.51 Legacy -_sync Built-in Functions for Atomic Memory Access

.. 474

6.52 Built-in functions for memory model aware atomic operations

.. 475
6.53 x86 specific memory model extensions for transactional memory
.. 480

6.54 Object Size Checking Built-in Functions..................... 480

6.55 Cilk Plus C/C++ language extension Built-in Functions. 482

6.56 Other Built-in Functions Provided by GCC 482

6.57 Built-in Functions Specific to Particular Target Machines. ... 492
6.57.1 Alpha Built-in Functions............................... 492
6.57.2 Altera Nios II Built-in Functions....................... 493
6.57.3 ARC Built-in Functions................ ... oo, 495
6.57.4 ARC SIMD Built-in Functions 497
6.57.5 ARM iWMMX¢t Built-in Functions..................... 500
6.57.6 ARM NEON Intrinsics.........ccooviiiiiiiiniene... 503

6.57.6.1 Addition............ 503
6.57.6.2 Multiplication..............o i 507
6.57.6.3 Multiply-accumulate 509
6.57.6.4 Multiply-subtract il 510
6.57.6.5 Fused-multiply-accumulate 511
6.57.6.6 Fused-multiply-subtract 511
6.57.6.7 Round to integral (to nearest, ties to even) 511
6.57.6.8 Round to integral (to nearest, ties away from zero)
.. o511
6.57.6.9 Round to integral (towards +Inf).................. 511
6.57.6.10 Round to integral (towards -Inf) 512
6.57.6.11 Round to integral (towards 0).................... 512
6.57.6.12 Subtraction........... i 512
6.57.6.13 Comparison (equal-to)oooia.. 515
6.57.6.14 Comparison (greater-than-or-equal-to)............ 516
6.57.6.15 Comparison (less-than-or-equal-to) 517
6.57.6.16 Comparison (greater-than)....................... 517
6.57.6.17 Comparison (less-than)........................... 518
6.57.6.18 Comparison (absolute greater-than-or-equal-to)... 519
6.57.6.19 Comparison (absolute less-than-or-equal-to) 519
6.57.6.20 Comparison (absolute greater-than) 519
6.57.6.21 Comparison (absolute less-than).................. 519

6.57.6.22 Test bits......cooiiiiii 519

vii

viii Using the GNU Compiler Collection (GCC)

6.57.6.23 Absolute difference............... ...l 520
6.57.6.24 Absolute difference and accumulate............... 521
6.57.6.25 Maximum.ooiieereerii i 522
6.57.6.26 Minimumccoviiiiiiiiiiiiiiiiinnaea... 523
6.57.6.27 Pairwise add......... ..o i 523
6.57.6.28 Pairwise add, single_opcode widen and accumulate
.. 524
6.57.6.29 Folding maximum...............cooiiiiii... 525
6.57.6.30 Folding minimum ... 525
6.57.6.31 Reciprocal step ... 526
6.57.6.32 Vector shift left 526
6.57.6.33 Vector shift left by constant...................... 529
6.57.6.34 Vector shift right by constant 531
6.57.6.35 Vector shift right by constant and accumulate 534
6.57.6.36 Vector shift right and insert...................... 536
6.57.6.37 Vector shift left and insert 537
6.57.6.38 Absolute value.......... i 538
6.57.6.39 Negation............cooiiiiiiiiiiiiiiii i, 539
6.57.6.40 Bitwisenot i i 539
6.57.6.41 Count leading sign bits.................. 540
6.57.6.42 Count leading zeros ..., 540
6.57.6.43 Count number of set bits......................... 541
6.57.6.44 Reciprocal estimate 541
6.57.6.45 Reciprocal square-root estimate 542
6.57.6.46 Get lanes from a vector 542
6.57.6.47 Set lanesin a vector, 543
6.57.6.48 Create vector from literal bit pattern............. 544
6.57.6.49 Set all lanes to the same value.................... 544
6.57.6.50 Combining vectors.............coiiiiiiiiii.. 547
6.57.6.51 Splitting vectors ..., 548
6.57.6.52 CONVErSIONS.ottt ettt 549
6.57.6.53 Move, single_opcode narrowing................... 549
6.57.6.54 Move, single_opcode long......................... 550
6.57.6.55 Table lookup.......... ...l 550
6.57.6.56 Extended table lookup 551
6.57.6.57 Multiply, lane.......... ... 552
6.57.6.58 Long multiply, lane 552
6.57.6.59 Saturating doubling long multiply, lane........... 552
6.57.6.60 Saturating doubling multiply high, lane 553
6.57.6.61 Multiply-accumulate, lane........................ 553
6.57.6.62 Multiply-subtract, lane................, 554
6.57.6.63 Vector multiply by scalar......................... 555
6.57.6.64 Vector long multiply by scalar.................... 555
6.57.6.65 Vector saturating doubling long multiply by scalar
.. 555
6.57.6.66 Vector saturating doubling multiply high by scalar
.. 555

6.57.6.67 Vector multiply-accumulate by scalar............. 556

6.57.6.68 Vector multiply-subtract by scalar................
6.57.6.69 Vector extractooiiiiiiiii .
6.57.6.70 Reverse elements...................coiiiiiiiL
6.57.6.71 Bit selectiono
6.57.6.72 Transpose elements
6.57.6.73 Zipelements.............. i
6.57.6.74 Unzip elements oo,
6.57.6.75 Element/structure loads, VLD1 variants..........
6.57.6.76 Element/structure stores, VST1 variants
6.57.6.77 Element/structure loads, VLD2 variants..........
6.57.6.78 Element /structure stores, VST2 variants
6.57.6.79 Element/structure loads, VLD3 variants..........
6.57.6.80 Element/structure stores, VST3 variants
6.57.6.81 Element/structure loads, VLD4 variants..........
6.57.6.82 Element/structure stores, VST4 variants
6.57.6.83 Logical operations (AND)........................
6.57.6.84 Logical operations (OR)..........................
6.57.6.85 Logical operations (exclusive OR)................
6.57.6.86 Logical operations (AND-NOT)
6.57.6.87 Logical operations (OR-NOT)....................
6.57.6.88 Reinterpret casts. ...,
6.57.7 ARM ACLE Intrinsics ..o,
6.57.7.1 CRC32 intrinsics. ..o,
6.57.8 AVR Built-in Functions.................
6.57.9 Blackfin Built-in Functions.............................
6.57.10 FR-V Built-in Functions
6.57.10.1 Argument Types.........ooiiiiiiiiiii ..
6.57.10.2 Directly-mapped Integer Functions...............
6.57.10.3 Directly-mapped Media Functions................
6.57.10.4 Raw read/write Functions........................
6.57.10.5 Other Built-in Functions.........................
6.57.11 X86 Built-in Functions................
6.57.12 X86 transaction memory intrinsics
6.57.13 MIPS DSP Built-in Functions.........................
6.57.14 MIPS Paired-Single Support
6.57.15 MIPS Loongson Built-in Functions....................
6.57.15.1 Paired-Single Arithmetic................
6.57.15.2 Paired-Single Built-in Functions..................
6.57.15.3 MIPS-3D Built-in Functions......................
6.57.16 Other MIPS Built-in Functions........................
6.57.17 MSP430 Built-in Functions
6.57.18 NDS32 Built-in Functions....................,
6.57.19 picoChip Built-in Functions.................
6.57.20 PowerPC Built-in Functions....................
6.57.21 PowerPC AltiVec Built-in Functions...................
6.57.22 PowerPC Hardware Transactional Memory Built-in
Functions
6.57.22.1 PowerPC HTM Low Level Built-in Functions.....

ix

Using the GNU Compiler Collection (GCC)

6.57.22.2 PowerPC HTM High Level Inline Functions 681
6.57.23 RX Built-in Functions L 682
6.57.24 S/390 System z Built-in Functions 683
6.57.25 SH Built-in Functions................. oL 685
6.57.26 SPARC VIS Built-in Functions........................ 686
6.57.27 SPU Built-in Functions 688
6.57.28 TI C6X Built-in Functions............................ 689
6.57.29 TILE-Gx Built-in Functions........................... 689
6.57.30 TILEPro Built-in Functions..................., 690

6.58 Format Checks Specific to Particular Target Machines. 690
6.58.1 Solaris Format Checks, 690
6.58.2 Darwin Format Checks............., 690

6.59 Pragmas Accepted by GCC ..., 691
6.59.1 ARM Pragmas..........cooiiiiiiiiiiiii i 691
6.59.2 M32C Pragmas ..ottt 691
6.59.3 MeP Pragmas.........ccooiiiiiiiiiiiiiiii i 691
6.59.4 RS/6000 and PowerPC Pragmas 692
6.59.5 Darwin Pragmas.............ooiiiiiiiiiiiiiiiiii.. 692
6.59.6 Solaris Pragmas. ... 693
6.59.7 Symbol-Renaming Pragmas............................ 693
6.59.8 Structure-Packing Pragmas 694
6.59.9 Weak Pragmas............cooiiiiiiiiiiiiiiii .. 694
6.59.10 Diagnostic Pragmas...............ccooiiiiiiii.. 694
6.59.11 Visibility Pragmas............. ... oot 696
6.59.12 Push/Pop Macro Pragmas 696
6.59.13 Function Specific Option Pragmas..................... 696
6.59.14 Loop-Specific Pragmas............... 697

6.60 Unnamed struct/union fields within structs/unions.......... 698

6.61 Thread-Local Storage...........cooiiiiiiiiiiiiiiii .. 698
6.61.1 ISO/IEC 9899:1999 Edits for Thread-Local Storage. 699
6.61.2 ISO/IEC 14882:1998 Edits for Thread-Local Storage. ... 700

6.62 Binary constants using the ‘Ob’ prefix.............. 701

Extensions to the C++ Language 703

7.1 When is a Volatile C++ Object Accessed? 703

7.2 Restricting Pointer Aliasing...........o i 703

7.3 Vague Linkageo 704

7.4 #pragma interface and implementation....................... 705

7.5 Where’s the Template?........ ... i, 706

7.6 Extracting the function pointer from a bound pointer to member

functiono 708

7.7 C++-Specific Variable, Function, and Type Attributes 709

7.8 Function Multiversioning............. i 710

7.9 Namespace ASSOCIAtIONt 711

710 Type Traits. ... e e 712

7.11 Java Exceptions ... 714

7.12 Deprecated Features............coooiiiii i 714

7.13 Backwards Compatibility i 715

8 GNU Objective-C features.................. 717

8.1 GNU Objective-C runtime API 717
8.1.1 Modern GNU Objective-C runtime API................. 717
8.1.2 Traditional GNU Objective-C runtime APT.............. 718

8.2 +load: Executing code before main 718
8.2.1 What you can and what you cannot do in +load......... 719

8.3 Typeencoding........oouuuiiiiiiii i 720
8.3.1 Legacy type encodingccoouiiiiiiiiiiiiieannn. 722
8.3.2 @eNCOdeot 722
8.3.3 Method signaturescco i i 723

8.4 Garbage Collection......... ..., 723

8.5 Constant string objects ... 724

8.6 compatibility_alias......... ... i 725

8.7 EXCEPtionS. . ..ot 725

8.8 Synchronization........... 727

8.9 Fast enumeration 727
8.9.1 Using fast enumeration.....................oiiiii.., 727
8.9.2 ¢99-like fast enumeration syntax................ ..., 727
8.9.3 Fast enumeration details oL 728
8.9.4 Fast enumeration protocol............... 729

8.10 Messaging with the GNU Objective-C runtime 730
8.10.1 Dynamically registering methods....................... 730
8.10.2 Forwarding hook........ i i 730

9 Binary Compatibility 733
10 gcov—a Test Coverage Program........... 737

10.1 Introduction to gCov.........viiiiiiii i 737

10.2 Invoking GCovviurt i e 737

10.3 Using gcov with GCC Optimization......................... 743

10.4 Brief description of gcov data files.............. 744

10.5 Data file relocation to support cross-profiling................ 745

11 Known Causes of Trouble with GCC. 747

11.1 Actual Bugs We Haven’t Fixed Yet 47

11.2 Interoperationc.ooeeiiiiiiiiiiiie e 747

11.3 Incompatibilities of GCC....... i ... 749

11.4 Fixed Header Files........ ... i, 752

11.5 Standard Libraries............ .o i 752

11.6 Disappointments and Misunderstandings 753

11.7 Common Misunderstandings with GNU C++ 754
11.7.1 Declare and Define Static Members 754
11.7.2 Name lookup, templates, and accessing members of base

ClASSES . ¢ ot 755

11.7.3 Temporaries May Vanish Before You Expect............ 756
11.7.4 TImplicit Copy-Assignment for Virtual Bases............ 757
11.8 Certain Changes We Don’t Want to Make................... 758

11.9 Warning Messages and Error Messages...................... 761

xii Using the GNU Compiler Collection (GCC)

12 Reporting Bugs............................. 763
12.1 Have You Found a Bug? i i 763
12.2 How and where to Report Bugs.................. 763

13 How To Get Help with GCC 765

14 Contributing to GCC Development 767

Funding Free Software........................... 769

The GNU Project and GNU/Linux 771

GNU General Public License 773

GNU Free Documentation License 785
ADDENDUM: How to use this License for your documents........ 792

Contributors to GCC 793

Option Index, 809

Keyword Index............. 829

Introduction 1

Introduction

This manual documents how to use the GNU compilers, as well as their features and in-
compatibilities, and how to report bugs. It corresponds to the compilers (crosstool-NG
linaro-1.13.1-4.9-2014.06-02 - Linaro GCC 4.9-2014.06) version 4.9.1. The internals of the
GNU compilers, including how to port them to new targets and some information about
how to write front ends for new languages, are documented in a separate manual. See
Section “Introduction” in GNU Compiler Collection (GCC) Internals.

Chapter 1: Programming Languages Supported by GCC 3

1 Programming Languages Supported by GCC

GCC stands for “GNU Compiler Collection”. GCC is an integrated distribution of compil-
ers for several major programming languages. These languages currently include C, C++,
Objective-C, Objective-C++, Java, Fortran, Ada, and Go.

The abbreviation GCC has multiple meanings in common use. The current official mean-
ing is “GNU Compiler Collection”, which refers generically to the complete suite of tools.
The name historically stood for “GNU C Compiler”, and this usage is still common when
the emphasis is on compiling C programs. Finally, the name is also used when speaking
of the language-independent component of GCC: code shared among the compilers for all
supported languages.

The language-independent component of GCC includes the majority of the optimizers,
as well as the “back ends” that generate machine code for various processors.

The part of a compiler that is specific to a particular language is called the “front end”.
In addition to the front ends that are integrated components of GCC, there are several
other front ends that are maintained separately. These support languages such as Pascal,
Mercury, and COBOL. To use these, they must be built together with GCC proper.

Most of the compilers for languages other than C have their own names. The C++ compiler
is G++, the Ada compiler is GNAT, and so on. When we talk about compiling one of those
languages, we might refer to that compiler by its own name, or as GCC. Either is correct.

Historically, compilers for many languages, including C++ and Fortran, have been im-
plemented as “preprocessors” which emit another high level language such as C. None of
the compilers included in GCC are implemented this way; they all generate machine code
directly. This sort of preprocessor should not be confused with the C preprocessor, which
is an integral feature of the C, C++, Objective-C and Objective-C++ languages.

Chapter 2: Language Standards Supported by GCC 5

2 Language Standards Supported by GCC

For each language compiled by GCC for which there is a standard, GCC attempts to follow
one or more versions of that standard, possibly with some exceptions, and possibly with
some extensions.

2.1 C language

GCC supports three versions of the C standard, although support for the most recent version
is not yet complete.

The original ANSI C standard (X3.159-1989) was ratified in 1989 and published in 1990.
This standard was ratified as an ISO standard (ISO/IEC 9899:1990) later in 1990. There
were no technical differences between these publications, although the sections of the ANSI
standard were renumbered and became clauses in the ISO standard. This standard, in
both its forms, is commonly known as C89, or occasionally as C90, from the dates of
ratification. The ANSI standard, but not the ISO standard, also came with a Rationale
document. To select this standard in GCC, use one of the options ‘-ansi’, ‘-std=c90’ or
‘-std=1509899:1990’; to obtain all the diagnostics required by the standard, you should
also specify ‘-pedantic’ (or ‘-pedantic-errors’ if you want them to be errors rather than
warnings). See Section 3.4 [Options Controlling C Dialect], page 31.

Errors in the 1990 ISO C standard were corrected in two Technical Corrigenda published
in 1994 and 1996. GCC does not support the uncorrected version.

An amendment to the 1990 standard was published in 1995. This amendment added
digraphs and __STDC_VERSION__ to the language, but otherwise concerned the library. This
amendment is commonly known as AMDI; the amended standard is sometimes known as
C94 or C95. To select this standard in GCC, use the option ‘-~std=1s09899:199409’ (with,
as for other standard versions, ‘-pedantic’ to receive all required diagnostics).

A new edition of the ISO C standard was published in 1999 as ISO/IEC 9899:1999, and
is commonly known as C99. GCC has substantially complete support for this standard
version; see http://gcc.gnu.org/c99status.html for details. To select this standard,
use ‘-std=c99’ or ‘-std=1509899:1999’. (While in development, drafts of this standard
version were referred to as C9X.)

Errors in the 1999 ISO C standard were corrected in three Technical Corrigenda published
in 2001, 2004 and 2007. GCC does not support the uncorrected version.

A fourth version of the C standard, known as C11, was published in 2011 as ISO/IEC
9899:2011. GCC has substantially complete support for this standard, enabled with
‘~std=cl11l’ or ‘-std=is09899:2011’. (While in development, drafts of this standard
version were referred to as C1X.)

By default, GCC provides some extensions to the C language that on rare occasions con-
flict with the C standard. See Chapter 6 [Extensions to the C Language Family], page 349.
Use of the ‘-std’ options listed above will disable these extensions where they conflict with
the C standard version selected. You may also select an extended version of the C language
explicitly with ‘-std=gnu90’ (for C90 with GNU extensions), ‘-std=gnu99’ (for C99 with
GNU extensions) or ‘-std=gnuil’ (for C11 with GNU extensions). The default, if no C lan-
guage dialect options are given, is ‘-std=gnu90’; this is intended to change to ‘-std=gnull’
in some future release. Some features that are part of the C99 standard are accepted as

http://gcc.gnu.org/c99status.html

6 Using the GNU Compiler Collection (GCC)

extensions in C90 mode, and some features that are part of the C11 standard are accepted
as extensions in C90 and C99 modes.

The ISO C standard defines (in clause 4) two classes of conforming implementation. A
conforming hosted implementation supports the whole standard including all the library fa-
cilities; a conforming freestanding implementation is only required to provide certain library
facilities: those in <float.h>, <limits.h>, <stdarg.h>, and <stddef.h>; since AMDI,
also those in <iso0646.h>; since C99, also those in <stdbool.h> and <stdint.h>; and since
C11, also those in <stdalign.h> and <stdnoreturn.h>. In addition, complex types, added
in C99, are not required for freestanding implementations. The standard also defines two
environments for programs, a freestanding environment, required of all implementations and
which may not have library facilities beyond those required of freestanding implementations,
where the handling of program startup and termination are implementation-defined, and a
hosted environment, which is not required, in which all the library facilities are provided
and startup is through a function int main (void) or int main (int, char *[]). An OS
kernel would be a freestanding environment; a program using the facilities of an operating
system would normally be in a hosted implementation.

GCC aims towards being usable as a conforming freestanding implementation, or as the
compiler for a conforming hosted implementation. By default, it will act as the compiler for a
hosted implementation, defining __STDC_HOSTED__ as 1 and presuming that when the names
of ISO C functions are used, they have the semantics defined in the standard. To make it act
as a conforming freestanding implementation for a freestanding environment, use the option
‘~ffreestanding’; it will then define __STDC_HOSTED__ to 0 and not make assumptions
about the meanings of function names from the standard library, with exceptions noted
below. To build an OS kernel, you may well still need to make your own arrangements for
linking and startup. See Section 3.4 [Options Controlling C Dialect], page 31.

GCC does not provide the library facilities required only of hosted implementations, nor
yet all the facilities required by C99 of freestanding implementations on all platforms; to use
the facilities of a hosted environment, you will need to find them elsewhere (for example,
in the GNU C library). See Section 11.5 [Standard Libraries|, page 752.

Most of the compiler support routines used by GCC are present in ‘libgcc’, but there
are a few exceptions. GCC requires the freestanding environment provide memcpy, memmove,
memset and memcmp. Finally, if __builtin_trap is used, and the target does not implement
the trap pattern, then GCC will emit a call to abort.

For references to Technical Corrigenda, Rationale documents and information concerning
the history of C that is available online, see http://gcc.gnu.org/readings.html

2.2 C++ language

GCC supports the original ISO C++ standard (1998) and contains experimental support for
the second ISO C++ standard (2011).

The original ISO C++ standard was published as the ISO standard (ISO/IEC 14882:1998)
and amended by a Technical Corrigenda published in 2003 (ISO/IEC 14882:2003). These
standards are referred to as C++98 and C++03, respectively. GCC implements the majority
of C++98 (export is a notable exception) and most of the changes in C++03. To select
this standard in GCC, use one of the options ‘-ansi’, ‘-std=c++98’, or ‘-std=c++03’; to

http://gcc.gnu.org/readings.html

Chapter 2: Language Standards Supported by GCC 7

obtain all the diagnostics required by the standard, you should also specify ‘-pedantic’ (or
‘-pedantic-errors’ if you want them to be errors rather than warnings).

A revised ISO C++ standard was published in 2011 as ISO/IEC 14882:2011, and is re-
ferred to as C++11; before its publication it was commonly referred to as C++0x. C++11
contains several changes to the C++ language, most of which have been implemented in an
experimental C++11 mode in GCC. For information regarding the C++11 features available
in the experimental C++11 mode, see http://gcc.gnu.org/projects/cxx0x.html. To
select this standard in GCC, use the option ‘-std=c++11’; to obtain all the diagnostics
required by the standard, you should also specify ‘-pedantic’ (or ‘-pedantic-errors’ if
you want them to be errors rather than warnings).

More information about the C++ standards is available on the ISO C++ committee’s web
site at http://www.open-std.org/jtcl/sc22/wg21/.

By default, GCC provides some extensions to the C++ language; See Section 3.5 [C++
Dialect Options]|, page 37. Use of the ‘-std’ option listed above will disable these extensions.
You may also select an extended version of the C++ language explicitly with ‘-std=gnu++98’
(for C++98 with GNU extensions) or ‘-std=gnu++11’ (for C++11 with GNU extensions). The
default, if no C++ language dialect options are given, is ‘~std=gnu++98’.

2.3 Objective-C and Objective-C++ languages

GCC supports “traditional” Objective-C (also known as “Objective-C 1.0”) and contains
support for the Objective-C exception and synchronization syntax. It has also support for
a number of “Objective-C 2.0” language extensions, including properties, fast enumeration
(only for Objective-C), method attributes and the @Qoptional and @required keywords in
protocols. GCC supports Objective-C++ and features available in Objective-C are also
available in Objective-C++.

GCC by default uses the GNU Objective-C runtime library, which is part of GCC and
is not the same as the Apple/NeXT Objective-C runtime library used on Apple systems.
There are a number of differences documented in this manual. The options ‘-fgnu-runtime’
and ‘-fnext-runtime’ allow you to switch between producing output that works with the
GNU Objective-C runtime library and output that works with the Apple/NeXT Objective-
C runtime library.

There is no formal written standard for Objective-C or Objective-C++. The authori-
tative manual on traditional Objective-C (1.0) is “Object-Oriented Programming and the
Objective-C Language”, available at a number of web sites:

e http://www.gnustep.org/resources/documentation/0bjectivCBook . pdf is the
original NeXTstep document;

e http://objc.toodarkpark.net is the same document in another format;

e http://developer.apple.com/mac/library/documentation/Cocoa/Conceptual/
ObjectiveC/ has an updated version but make sure you search for “Object Oriented
Programming and the Objective-C Programming Language 1.0”, not documentation
on the newer “Objective-C 2.0” language

The Objective-C exception and synchronization syntax (that is, the keywords Qtry,
@throw, @catch, @finally and @synchronized) is supported by GCC and is enabled with

http://gcc.gnu.org/projects/cxx0x.html
http://www.open-std.org/jtc1/sc22/wg21/
http://www.gnustep.org/resources/documentation/ObjectivCBook.pdf
http://objc.toodarkpark.net
http://developer.apple.com/mac/library/documentation/Cocoa/Conceptual/ObjectiveC/
http://developer.apple.com/mac/library/documentation/Cocoa/Conceptual/ObjectiveC/

8 Using the GNU Compiler Collection (GCC)

the option ‘~fobjc-exceptions’. The syntax is briefly documented in this manual and in
the Objective-C 2.0 manuals from Apple.

The Objective-C 2.0 language extensions and features are automatically enabled; they
include properties (via the @property, @synthesize and @dynamic keywords), fast enumera-
tion (not available in Objective-C++), attributes for methods (such as deprecated, noreturn,
sentinel, format), the unused attribute for method arguments, the @package keyword for
instance variables and the @Qoptional and @required keywords in protocols. You can disable
all these Objective-C 2.0 language extensions with the option ‘-fobjc-std=objcl’, which
causes the compiler to recognize the same Objective-C language syntax recognized by GCC
4.0, and to produce an error if one of the new features is used.

GCC has currently no support for non-fragile instance variables.

The authoritative manual on Objective-C 2.0 is available from Apple:

e http://developer.apple.com/mac/library/documentation/Cocoa/Conceptual/
ObjectiveC/

For more information concerning the history of Objective-C that is available online, see
http://gcc.gnu.org/readings.html

2.4 Go language

As of the GCC 4.7.1 release, GCC supports the Go 1 language standard, described at
http://golang.org/doc/gol.html.

2.5 References for other languages
See Section “About This Guide” in GNAT Reference Manual, for information on standard
conformance and compatibility of the Ada compiler.

See Section “Standards” in The GNU Fortran Compiler, for details of standards sup-
ported by GNU Fortran.

See Section “Compatibility with the Java Platform” in GNU gc¢j, for details of compati-
bility between gcj and the Java Platform.

http://developer.apple.com/mac/library/documentation/Cocoa/Conceptual/ObjectiveC/
http://developer.apple.com/mac/library/documentation/Cocoa/Conceptual/ObjectiveC/
http://gcc.gnu.org/readings.html
http://golang.org/doc/go1.html

Chapter 3: GCC Command Options 9

3 GCC Command Options

When you invoke GCC, it normally does preprocessing, compilation, assembly and linking.
The “overall options” allow you to stop this process at an intermediate stage. For example,
the ‘=c’ option says not to run the linker. Then the output consists of object files output
by the assembler.

Other options are passed on to one stage of processing. Some options control the prepro-
cessor and others the compiler itself. Yet other options control the assembler and linker;
most of these are not documented here, since you rarely need to use any of them.

Most of the command-line options that you can use with GCC are useful for C programs;
when an option is only useful with another language (usually C++), the explanation says
so explicitly. If the description for a particular option does not mention a source language,
you can use that option with all supported languages.

See Section 3.3 [Compiling C++ Programs|, page 31, for a summary of special options for
compiling C++ programs.

The gcc program accepts options and file names as operands. Many options have multi-
letter names; therefore multiple single-letter options may not be grouped: ‘-dv’ is very
different from ‘-4 -v’.

You can mix options and other arguments. For the most part, the order you use doesn’t
matter. Order does matter when you use several options of the same kind; for example, if
you specify ‘-L’ more than once, the directories are searched in the order specified. Also,
the placement of the ‘-1’ option is significant.

Many options have long names starting with ‘-f’ or with ‘-W—for example,
‘-fmove-loop-invariants’, ‘-Wformat’ and so on. Most of these have both positive and
negative forms; the negative form of ‘~ffoo’ is ‘-fno-foo’. This manual documents only
one of these two forms, whichever one is not the default.

See [Option Index]|, page 809, for an index to GCC’s options.

3.1 Option Summary

Here is a summary of all the options, grouped by type. Explanations are in the following
sections.

Overall Options
See Section 3.2 [Options Controlling the Kind of Output], page 25.
-c -S -E -o file -no-canonical-prefixes
-pipe -pass-exit-codes
-x language -v -### --help[=class[,...]] --target-help
--version -wrapper Q@file -fplugin=file -fplugin-arg-name=arg
-fdump-ada-spec[-slim| -fada-spec-parent=unit -fdump-go-spec=file

C Language Options
See Section 3.4 [Options Controlling C Dialect], page 31.

-ansi -std=standard -fgnu89-inline

-aux-info filename -fallow-parameterless-variadic-functions
-fno-asm -fno-builtin -fno-builtin-function

-fhosted -ffreestanding -fopenmp -fopenmp-simd -fms-extensions
-fplan9-extensions -trigraphs -traditional -traditional-cpp

10 Using the GNU Compiler Collection (GCC)

-fallow-single-precision -fcond-mismatch -flax-vector-conversions
-fsigned-bitfields -fsigned-char
-funsigned-bitfields -funsigned-char

C++ Language Options
See Section 3.5 [Options Controlling C++ Dialect|, page 37.

-fabi-version=n -fno-access-control -fcheck-new
-fconstexpr-depth=n -ffriend-injection
-fno-elide-constructors

-fno-enforce-eh-specs

-ffor-scope -fno-for-scope -fno-gnu-keywords
-fno-implicit-templates

-fno-implicit-inline-templates

-fno-implement-inlines -fms-extensions
-fno-nonansi-builtins -fnothrow-opt -fno-operator-names
-fno-optional-diags -fpermissive

-fno-pretty-templates

-frepo -fno-rtti -fstats -ftemplate-backtrace-limit=n
-ftemplate-depth=n

-fno-threadsafe-statics -fuse-cxa-atexit -fno-weak -nostdinc++
-fvisibility-inlines-hidden
-fvtable-verify=std|preinit|none

-fvtv-counts -fvtv-debug

-fvisibility-ms-compat

-fext-numeric-literals

-Wabi -Wconversion-null -Wctor-dtor-privacy
-Wdelete-non-virtual-dtor -Wliteral-suffix -Wnarrowing
-Wnoexcept -Wnon-virtual-dtor -Wreorder

-Weffc++ -Wstrict-null-sentinel
-Wno-non-template-friend -Wold-style-cast
-Woverloaded-virtual -Wno-pmf-conversions

-Wsign-promo

Objective-C and Objective-C++ Language Options
See Section 3.6 [Options Controlling Objective-C and Objective-C++ Dialects],
page 48.

-fconstant-string-class=class-name
-fgnu-runtime -fnext-runtime
-fno-nil-receivers
-fobjc-abi-version=n
-fobjc-call-cxx-cdtors
-fobjc-direct-dispatch
-fobjc-exceptions

-fobjc-gc

-fobjc-nilcheck
-fobjc-std=objcl
-freplace-objc-classes
-fzero-link

-gen-decls
-Wassign-intercept
-Wno-protocol -Wselector
-Wstrict-selector-match
-Wundeclared-selector

Language Independent Options
See Section 3.7 [Options to Control Diagnostic Messages Formatting|, page 52.
-fmessage-length=n
-fdiagnostics-show-location=[once|every-line]

Chapter 3: GCC Command Options 11

-fdiagnostics-color=[auto|never|always
-fno-diagnostics-show-option -fno-diagnostics-show-caret

Warning Options
See Section 3.8 [Options to Request or Suppress Warnings|, page 53.

-fsyntax-only -fmax-errors=n -Wpedantic

-pedantic-errors

-w -Wextra -Wall -Waddress -Waggregate-return
-Waggressive-loop-optimizations -Warray-bounds

-Wno-attributes -Wno-builtin-macro-redefined

-Wc++-compat -Wc++1ll-compat -Wcast-align -Wcast-qual
-Wchar-subscripts -Wclobbered -Wcomment -Wconditionally-supported
-Wconversion -Wcoverage-mismatch -Wdate-time -Wdelete-incomplete -Wno-cpp
-Wno-deprecated -Wno-deprecated-declarations -Wdisabled-optimization
-Wno-div-by-zero -Wdouble-promotion -Wempty-body -Wenum-compare
-Wno-endif-labels -Werror -Werror=*

-Wfatal-errors -Wfloat-equal -Wformat -Wformat=2
-Wno-format-contains-nul -Wno-format-extra-args -Wformat-nonliteral
-Wformat-security -Wformat-y2k

-Wframe-larger-than=len -Wno-free-nonheap-object -Wjump-misses-init
-Wignored-qualifiers

-Wimplicit -Wimplicit-function-declaration -Wimplicit-int
-Winit-self -Winline -Wmaybe-uninitialized

-Wno-int-to-pointer-cast -Wno-invalid-offsetof

-Winvalid-pch -Wlarger-than=len -Wunsafe-loop-optimizations
-Wlogical-op -Wlong-long

-Wmain -Wmaybe-uninitialized -Wmissing-braces -Wmissing-field-initializers [}
-Wmissing-include-dirs

-Wno-multichar -Wnonnull -Wno-overflow -Wopenmp-simd
-Woverlength-strings -Wpacked -Wpacked-bitfield-compat -Wpadded
-Wparentheses -Wpedantic-ms-format -Wno-pedantic-ms-format
-Wpointer-arith -Wno-pointer-to-int-cast

-Wredundant-decls -Wno-return-local-addr

-Wreturn-type -Wsequence-point -Wshadow

-Wsign-compare -Wsign-conversion -Wfloat-conversion
-Wsizeof-pointer-memaccess

-Wstack-protector -Wstack-usage=len -Wstrict-aliasing
-Wstrict-aliasing=n

-Wstrict-overflow -Wstrict-overflow=n
-Wsuggest-attribute=|pure|const|noreturn|format|
-Wmissing-format-attribute

-Wswitch -Wswitch-default -Wswitch-enum -Wsync-nand
-Wsystem-headers -Wtrampolines -Wtrigraphs -Wtype-limits -Wundef
-Wuninitialized -Wunknown-pragmas -Wno-pragmas
-Wunsuffixed-float-constants -Wunused -Wunused-function
-Wunused-label -Wunused-local-typedefs -Wunused-parameter
-Wno-unused-result -Wunused-value

-Wunused-variable

-Wunused-but-set-parameter -Wunused-but-set-variable

-Wuseless-cast -Wvariadic-macros -Wvector-operation-performance
-Wvla -Wvolatile-register-var -Wwrite-strings -Wzero-as-null-pointer-constantfi

C and Objective-C-only Warning Options
-Wbad-function-cast -Wmissing-declarations
-Wmissing-parameter-type -Wmissing-prototypes -Wnested-externs
-Wold-style-declaration -Wold-style-definition
-Wstrict-prototypes -Wtraditional -Wtraditional-conversion
-Wdeclaration-after-statement -Wpointer-sign

12 Using the GNU Compiler Collection (GCC)

Debugging Options
See Section 3.9 [Options for Debugging Your Program or GCC], page 78.

-dletters -dumpspecs -dumpmachine -dumpversion
-fsanitize=style

-fdbg-cnt-list -fdbg-cnt=counter-value-list
-fdisable-ipa-pass_name

-fdisable-rtl-pass_name
-fdisable-rtl-pass-name=range-list
-fdisable-tree-pass_name
-fdisable-tree-pass-name=range-list

-fdump-noaddr -fdump-unnumbered -fdump-unnumbered-links
-fdump-translation-unit[-n]

-fdump-class-hierarchy[-n]

-fdump-ipa-all -fdump-ipa-cgraph -fdump-ipa-inline
-fdump-passes

-fdump-statistics

-fdump-tree-all

-fdump-tree-original[-n]

-fdump-tree-optimized|-n]

-fdump-tree-cfg -fdump-tree-alias

-fdump-tree-ch

-fdump-tree-ssa[-n] -fdump-tree-pre[-n

-fdump-tree-ccp|[-n] -fdump-tree-dce[-n]
-fdump-tree-gimple[-raw]

-fdump-tree-dom[-n]

-fdump-tree-dse[-n]

-fdump-tree-phiprop|-n]

-fdump-tree-phiopt[-n]

-fdump-tree-forwprop|-n]

-fdump-tree-copyrename|-n]

-fdump-tree-nrv -fdump-tree-vect

-fdump-tree-sink

-fdump-tree-sra[-n]

-fdump-tree-forwprop|-n]

-fdump-tree-fre[-n]

-fdump-tree-vtable-verify

-fdump-tree-vrp|-n]

-fdump-tree-storeccp|-n]

-fdump-final-insns=file

-fcompare-debug[=opts| -fcompare-debug-second
-feliminate-dwarf2-dups -fno-eliminate-unused-debug-types
-feliminate-unused-debug-symbols -femit-class-debug-always
-fenable-kind-pass

-fenable-kind-pass=range-list

-fdebug-types-section -fmem-report-wpa

-fmem-report -fpre-ipa-mem-report -fpost-ipa-mem-report -fprofile-arcs
-fopt-info

-fopt-info-options[=file]

-frandom-seed=string -fsched-verbose=n
-fsel-sched-verbose -fsel-sched-dump-cfg -fsel-sched-pipelining-verbose
-fstack-usage -ftest-coverage -ftime-report -fvar-tracking
-fvar-tracking-assignments -fvar-tracking-assignments-toggle
-g —glevel -gtoggle -gcoff -gdwarf-version

-ggdb -grecord-gcc-switches -gno-record-gcc-switches
-gstabs -gstabs+ -gstrict-dwarf -gno-strict-dwarf

-gvms -gxcoff -gxcoff+

-fno-merge-debug-strings -fno-dwarf2-cfi-asm
-fdebug-prefix-map=old=new

Chapter 3: GCC Command Options 13

-femit-struct-debug-baseonly -femit-struct-debug-reduced
-femit-struct-debug-detailed|=spec-1ist]

-p -pg -print-file-name=library -print-libgcc-file-name
-print-multi-directory -print-multi-lib -print-multi-os-directory
-print-prog-name=program -print-search-dirs -Q

-print-sysroot -print-sysroot-headers-suffix

-save-temps -save-temps=cwd -save-temps=obj -time[=file]

Optimization Options
See Section 3.10 [Options that Control Optimization], page 101.

-faggressive-loop-optimizations -falign-functions[=n]

-falign-jumps [=n]

-falign-labels[=n] -falign-loops[=n]

-fassociative-math -fauto-inc-dec -fbranch-probabilities
-fbranch-target-load-optimize -fbranch-target-load-optimize2
-fbtr-bb-exclusive -fcaller-saves

-fcheck-data-deps -fcombine-stack-adjustments -fconserve-stack
-fcompare-elim -fcprop-registers -fcrossjumping

-fcse-follow-jumps -fcse-skip-blocks -fcx-fortran-rules
-fcx-limited-range

-fdata-sections -fdce -fdelayed-branch

-fdelete-null-pointer-checks -fdevirtualize -fdevirtualize-speculatively -
fdse

-fearly-inlining -fipa-sra -fexpensive-optimizations -ffat-lto-objects
-ffast-math -ffinite-math-only -ffloat-store -fexcess-precision=style
-fforward-propagate -ffp-contract=style -ffunction-sections

-fgcse -fgcse-after-reload -fgcse-las -fgcse-1lm -fgraphite-identity
-fgcse-sm -fhoist-adjacent-loads -fif-conversion

-fif-conversion2 -findirect-inlining

-finline-functions -finline-functions-called-once -finline-limit=n
-finline-small-functions -fipa-cp -fipa-cp-clone

-fipa-pta -fipa-profile -fipa-pure-const -fipa-reference
-fira-algorithm=algorithm

-fira-region=region -fira-hoist-pressure

-fira-loop-pressure -fno-ira-share-save-slots
-fno-ira-share-spill-slots -fira-verbose=n
-fisolate-erroneous-paths-dereference -fisolate-erroneous-paths-attribute -
fivopts -fkeep-inline-functions -fkeep-static-consts -flive-range-shrinkage i
-floop-block -floop-interchange -floop-strip-mine -floop-nest-optimize
-floop-parallelize-all -flto -flto-compression-level
-flto-partition=alg -flto-report -flto-report-wpa -fmerge-all-constants
-fmerge-constants -fmodulo-sched -fmodulo-sched-allow-regmoves
-fmove-loop-invariants -fno-branch-count-reg

-fno-defer-pop -fno-function-cse -fno-guess-branch-probability
-fno-inline -fno-math-errno -fno-peephole -fno-peephole2
-fno-sched-interblock -fno-sched-spec -fno-signed-zeros
-fno-toplevel-reorder -fno-trapping-math -fno-zero-initialized-in-bss
-fomit-frame-pointer -foptimize-sibling-calls

-fpartial-inlining -fpeel-loops -fpredictive-commoning
-fprefetch-loop-arrays -fprofile-report

-fprofile-correction -fprofile-dir=path -fprofile-generate
-fprofile-generate=path

-fprofile-use -fprofile-use=path -fprofile-values -fprofile-reorder-functions [}
-freciprocal-math -free -frename-registers -freorder-blocks
-freorder-blocks-and-partition -freorder-functions
-frerun-cse-after-loop -freschedule-modulo-scheduled-loops
-frounding-math -fsched2-use-superblocks -fsched-pressure
-fsched-spec-load -fsched-spec-load-dangerous

14 Using the GNU Compiler Collection (GCC)

-fsched-stalled-insns-dep[=n] -fsched-stalled-insns[=n]
-fsched-group-heuristic -fsched-critical-path-heuristic
-fsched-spec-insn-heuristic -fsched-rank-heuristic
-fsched-last-insn-heuristic -fsched-dep-count-heuristic
-fschedule-insns -fschedule-insns2 -fsection-anchors
-fselective-scheduling -fselective-scheduling2
-fsel-sched-pipelining -fsel-sched-pipelining-outer-loops
-fshrink-wrap -fsignaling-nans -fsingle-precision-constant
-fsplit-ivs-in-unroller -fsplit-wide-types -fstack-protector
-fstack-protector-all -fstack-protector-strong -fstrict-aliasing
-fstrict-overflow -fthread-jumps -ftracer -ftree-bit-ccp
-ftree-builtin-call-dce -ftree-ccp -ftree-ch
-ftree-coalesce-inline-vars -ftree-coalesce-vars -ftree-copy-prop
-ftree-copyrename -ftree-dce -ftree-dominator-opts -ftree-dse
-ftree-forwprop -ftree-fre -ftree-loop-if-convert
-ftree-loop-if-convert-stores -ftree-loop-im

-ftree-phiprop -ftree-loop-distribution -ftree-loop-distribute-patterns
-ftree-loop-ivcanon -ftree-loop-linear -ftree-loop-optimize
-ftree-loop-vectorize

-ftree-parallelize-loops=n -ftree-pre -ftree-partial-pre -ftree-pta
-ftree-reassoc -ftree-sink -ftree-slsr -ftree-sra
-ftree-switch-conversion -ftree-tail-merge -ftree-ter
-ftree-vectorize -ftree-vrp

-funit-at-a-time -funroll-all-loops -funroll-loops
-funsafe-loop-optimizations -funsafe-math-optimizations -funswitch-loops
-fvariable-expansion-in-unroller -fvect-cost-model -fvpt -fweb
-fwhole-program -fwpa -fuse-ld=linker -fuse-linker-plugin

--param name=value -0 -00 -01 -02 -03 -0s -Ofast -Og

Preprocessor Options
See Section 3.11 [Options Controlling the Preprocessor], page 155.

-Aquestion=answer

-A-question[=answer]

-C -dD -dI -dM -dN

-Dmacro[=defn| -E -H

-idirafter dir

-include file -imacros file

-iprefix file -iwithprefix dir

-iwithprefixbefore dir -isystem dir

-imultilib dir -isysroot dir

-M -MM -MF -MG -MP -MQ -MT -nostdinc

-P -fdebug-cpp -ftrack-macro-expansion -fworking-directory
-remap -trigraphs -undef -Umacro

-Wp,option —-Xpreprocessor option -no-integrated-cpp

Assembler Option
See Section 3.12 [Passing Options to the Assembler]|, page 166.

-Wa,option -Xassembler option

Linker Options

See Section 3.13 [Options for Linking], page 166.
object-file-name -llibrary
-nostartfiles -nodefaultlibs -nostdlib -pie -rdynamic
-s -static -static-libgcc -static-libstdc++
-static-libasan -static-libtsan -static-liblsan -static-libubsan
-shared -shared-libgcc -symbolic
-T script -Wl,option -Xlinker option
-u symbol

Chapter 3: GCC Command Options

Directory Options
See Section 3.14 [Options for Directory Search], page 170.
-Bprefix -Idir -iplugindir=dir
-iquotedir -Ldir -specs=file -I-
--sysroot=dir --no-sysroot-suffix

Machine Dependent Options
See Section 3.17 [Hardware Models and Configurations|, page 180.

AArch64 Options
-mabi=name -mbig-endian -mlittle-endian
-mgeneral-regs-only
-mcmodel=tiny -mcmodel=small -mcmodel=large
-mstrict-align
-momit-leaf-frame-pointer -mno-omit-leaf-frame-pointer
-mtls-dialect=desc -mtls-dialect=traditional
-march=name -mcpu=name -mtune=name

Adapteva Epiphany Options
-mhalf-reg-file -mprefer-short-insn-regs
-mbranch-cost=num -mcmove -mnops=num -msoft-cmpsf
-msplit-lohi -mpost-inc -mpost-modify -mstack-offset=num
-mround-nearest -mlong-calls -mshort-calls -msmallil6
-mfp-mode=mode -mvect-double -max-vect-align=num
-msplit-vecmove-early -mlreg-reg

ARC Options

-mbarrel-shifter

-mcpu=cpu -mA6 -mARC600 -mA7 -mARC700

-mdpfp -mdpfp-compact -mdpfp-fast -mno-dpfp-lrsr

-mea -mno-mpy -mmul32x16 -mmul64

-mnorm -mspfp -mspfp-compact -mspfp-fast -msimd -msoft-float -mswap
-mcrc -mdsp-packa -mdvbf -mlock -mmac-d16 -mmac-24 -mrtsc -mswape
-mtelephony -mxy -misize -mannotate-align -marclinux -marclinux_prof
-mepilogue-cfi -mlong-calls -mmedium-calls -msdata

-mucb-mcount -mvolatile-cache

-malign-call -mauto-modify-reg -mbbit-peephole -mno-brcc
-mcase-vector-pcrel -mcompact-casesi -mno-cond-exec -mearly-cbranchsi
-mexpand-adddi -mindexed-loads -mlra -mlra-priority-none
-mlra-priority-compact mlra-priority-noncompact -mno-millicode
-mmixed-code -mq-class -mRcq -mRcw -msize-level=level

-mtune=cpu -mmultcost=num -munalign-prob-threshold=probability

ARM Options
-mapcs-frame -mno-apcs-frame
-mabi=name
-mapcs-stack-check -mno-apcs-stack-check
-mapcs-float -mno-apcs-float
-mapcs-reentrant -mno-apcs-reentrant
-msched-prolog -mno-sched-prolog
-mlittle-endian -mbig-endian -mwords-little-endian
-mfloat-abi=name
-mfpl6-format=name -mthumb-interwork -mno-thumb-interwork
-mcpu=name -march=name -mfpu=name
-mstructure-size-boundary=n
-mabort-on-noreturn
-mlong-calls -mno-long-calls
-msingle-pic-base -mno-single-pic-base
-mpic-register=reg

16

Using the GNU Compiler Collection (GCC)

-mnop-fun-dllimport
-mpoke-function-name

-mthumb -marm

-mtpcs-frame -mtpcs-leaf-frame
-mcaller-super-interworking -mcallee-super-interworking
-mtp=name -mtls-dialect=dialect
-mword-relocations
-mfix-cortex-m3-ldrd
-munaligned-access
-mneon-for-64bits
-mslow-flash-data

-mrestrict-it

AVR Options

-mmcu=mcu -maccumulate-args -mbranch-cost=cost
-mcall-prologues -mint8 -mno-interrupts -mrelax
-mstrict-X -mtiny-stack -Waddr-space-convert

Blackfin Options
-mcpu=cpu[-sirevision]
-msim -momit-leaf-frame-pointer -mno-omit-leaf-frame-pointer
-mspecld-anomaly -mno-specld-anomaly -mcsync-anomaly -mno-csync-anomaly
-mlow-64k -mno-low64k -mstack-check-11 -mid-shared-library
-mno-id-shared-library -mshared-library-id=n
-mleaf-id-shared-library -mno-leaf-id-shared-library
-msep-data -mno-sep-data -mlong-calls -mno-long-calls
-mfast-fp -minline-plt -mmulticore -mcorea -mcoreb -msdram
-micplb

C6X Options

-mbig-endian -mlittle-endian -march=cpu
-msim -msdata=sdata-type

CRIS Options
-mcpu=cpu -march=cpu -mtune=cpu
-mmax-stack-frame=n -melinux-stacksize=n
-metrax4 -metraxl100 -mpdebug -mcc-init -mno-side-effects
-mstack-align -mdata-align -mconst-align
-m32-bit -m16-bit -m8-bit -mno-prologue-epilogue -mno-gotplt
-melf -maout -melinux -mlinux -sim -sim2
-mmul-bug-workaround -mno-mul-bug-workaround

CR16 Options

-mmac
-mcri6cplus -mcri6e
-msim -mint32 -mbit-ops -mdata-model=model

Darwin Options

-all_load -allowable_client -arch -arch_errors_fatal
-arch_only -bind_at_load -bundle -bundle_loader
-client_name -compatibility_version -current_version
-dead_strip

-dependency-file -dylib_file -dylinker_install_name
-dynamic -dynamiclib -exported_symbols_list

-filelist -flat_namespace -force_cpusubtype_ALL
-force_flat_namespace -headerpad_max_install_names
-iframework

-image_base -init -install_name -keep_private_externs
-multi_module -multiply_defined -multiply_defined_unused
-noall_load -no_dead_strip_inits_and_terms

Chapter 3: GCC Command Options

-nofixprebinding -nomultidefs -noprebind -noseglinkedit
-pagezero_size -prebind -prebind_all_twolevel_modules
-private_bundle -read_only_relocs -sectalign
-sectobjectsymbols -whyload -segladdr

-sectcreate -sectobjectsymbols -sectorder

-segaddr -segs_read_only_addr -segs_read_write_addr
-seg_addr_table -seg_addr_table_filename -seglinkedit
-segprot -segs_read_only_addr -segs_read_write_addr
-single_module -static -sub_library -sub_umbrella
-twolevel_namespace -umbrella -undefined
-unexported_symbols_list -weak_reference_mismatches
-whatsloaded -F -gused -gfull -mmacosx-version-min=version
-mkernel -mone-byte-bool

DEC Alpha Options
-mno-fp-regs -msoft-float
-mieee -mieee-with-inexact -mieee-conformant
-mfp-trap-mode=mode -mfp-rounding-mode=mode
-mtrap-precision=mode -mbuild-constants
-mcpu=cpu-type -mtune=cpu-type
-mbwx -mmax -mfix -mcix
-mfloat-vax -mfloat-ieee
-mexplicit-relocs -msmall-data -mlarge-data
-msmall-text -mlarge-text
-mmemory-latency=time

FR30 Options

-msmall-model -mno-lsim

FRV Options
-mgpr-32 -mgpr-64 -mfpr-32 -mfpr-64
-mhard-float -msoft-float
-malloc-cc -mfixed-cc -mdword -mno-dword
-mdouble -mno-double
-mmedia -mno-media -mmuladd -mno-muladd
-mfdpic -minline-plt -mgprel-ro -multilib-library-pic
-mlinked-fp -mlong-calls -malign-labels
-mlibrary-pic -macc-4 -macc-8
-mpack -mno-pack -mno-eflags -mcond-move -mno-cond-move
-moptimize-membar -mno-optimize-membar
-mscc -mno-scc -mcond-exec -mno-cond-exec
-mvliw-branch -mno-vliw-branch
-mmulti-cond-exec -mno-multi-cond-exec -mnested-cond-exec
-mno-nested-cond-exec -mtomcat-stats
-mTLS -mtls
-mcpu=cpu

GNU/Linux Options

-mglibc -muclibc -mbionic -mandroid
-tno-android-cc -tno-android-1d

H8/300 Options

-mrelax -mh -ms -mn -mexr -mno-exr -mint32 -malign-300

HPPA Options

-march=architecture-type

-mdisable-fpregs -mdisable-indexing
-mfast-indirect-calls -mgas -mgnu-1ld -mhp-1d
-mfixed-range=register-range

-mjump-in-delay -mlinker-opt -mlong-calls

18

Using the GNU Compiler Collection (GCC)

-mlong-load-store -mno-disable-fpregs
-mno-disable-indexing -mno-fast-indirect-calls -mno-gas
-mno-jump-in-delay -mno-long-load-store
-mno-portable-runtime -mno-soft-float

-mno-space-regs -msoft-float -mpa-risc-1-0
-mpa-risc-1-1 -mpa-risc-2-0 -mportable-runtime
-mschedule=cpu-type -mspace-regs -msio -mwsio
-munix=unix-std -nolibdld -static -threads

1386 and x86-64 Options

-mtune=cpu-type -march=cpu-type

-mtune-ctrl=feature-list -mdump-tune-features -mno-default
-mfpmath=unit

-masm=dialect -mno-fancy-math-387

-mno-fp-ret-in-387 -msoft-float

-mno-wide-multiply -mrtd -malign-double
-mpreferred-stack-boundary=num

-mincoming-stack-boundary=num

-mcld -mcx16 -msahf -mmovbe -mcrc32

-mrecip -mrecip=opt

-mvzeroupper -mprefer-avx128

-mmmx -msse -msse2 -msse3 -mssse3 -msse4.l -msse4.2 -mssed4 -mavx
-mavx2 -mavx512f -mavx512pf -mavxbl2er -mavx512cd -msha

-maes -mpclmul -mfsgsbase -mrdrnd -mfi6c -mfma -mprefetchwtl
-msse4a -m3dnow -mpopcnt -mabm -mbmi -mtbm -mfma4 -mxop -mlzcnt
-mbmi2 -mfxsr -mxsave -mxsaveopt -mrtm -mlwp -mthreads
-mno-align-stringops -minline-all-stringops
-minline-stringops-dynamically -mstringop-strategy=alg
-mmemcpy-strategy=strategy -mmemset-strategy=strategy -mpush-args -maccumulate-|ij
outgoing-args -m128bit-long-double

-m96bit-long-double -mlong-double-64 -mlong-double-80 -mlong-double-128
-mregparm=num -msseregparm

-mveclibabi=type -mvect8-ret-in-mem

-mpc32 -mpc64 -mpc80 -mstackrealign

-momit-leaf-frame-pointer -mno-red-zone -mno-tls-direct-seg-refs
-mcmodel=code-model -mabi=name -maddress-mode=mode

-m32 -m64 -mx32 -m16 -mlarge-data-threshold=num

-msse2avx -mfentry -m8bit-idiv

-mavx256-split-unaligned-load -mavx256-split-unaligned-store
-mstack-protector-guard=guard

1386 and x86-64 Windows Options

IA-64

-mconsole -mcygwin -mno-cygwin -mdll
-mnop-fun-dllimport -mthread
-municode -mwin32 -mwindows -fno-set-stack-executable

Options

-mbig-endian -mlittle-endian -mgnu-as -mgnu-ld -mno-pic
-mvolatile-asm-stop -mregister-names -msdata -mno-sdata
-mconstant-gp -mauto-pic -mfused-madd
-minline-float-divide-min-latency
-minline-float-divide-max-throughput
-mno-inline-float-divide
-minline-int-divide-min-latency
-minline-int-divide-max-throughput
-mno-inline-int-divide

-minline-sqrt-min-latency -minline-sqrt-max-throughput
-mno-inline-sqrt

-mdwarf2-asm -mearly-stop-bits

Chapter 3: GCC Command Options 19

-mfixed-range=register-range -mtls-size=tls-size

-mtune=cpu-type -milp32 -mlp64

-msched-br-data-spec -msched-ar-data-spec -msched-control-spec
-msched-br-in-data-spec -msched-ar-in-data-spec -msched-in-control-spec
-msched-spec-1ldc -msched-spec-control-ldc
-msched-prefer-non-data-spec-insns -msched-prefer-non-control-spec-insns
-msched-stop-bits-after-every-cycle -msched-count-spec-in-critical-path
-msel-sched-dont-check-control-spec -msched-fp-mem-deps-zero-cost
-msched-max-memory-insns-hard-limit -msched-max-memory-insns=max-insns

LM32 Options

-mbarrel-shift-enabled -mdivide-enabled -mmultiply-enabled
-msign-extend-enabled -muser-enabled

MS32R/D Options

-m32r2 -m32rx -m32r

-mdebug

-malign-loops -mno-align-loops
-missue-rate=number
-mbranch-cost=number
-mmodel=code-size-model-type
-msdata=sdata-type

-mno-flush-func -mflush-func=name
-mno-flush-trap -mflush-trap=number
-G num

M32C Options
-mcpu=cpu -msim -memregs=number
M680x0 Options

-march=arch -mcpu=cpu -mtune=tune -m68000 -m68020 -m68020-40 -m68020-60 -
m68030 -m68040

-m68060 -mcpu32 -m5200 -m5206e -m528x -m5307 -mb5407

-mcfvde -mbitfield -mno-bitfield -mc68000 -mc68020

-mnobitfield -mrtd -mno-rtd -mdiv -mno-div -mshort

-mno-short -mhard-float -m68881 -msoft-float -mpcrel

-malign-int -mstrict-align -msep-data -mno-sep-data

-mshared-library-id=n -mid-shared-library -mno-id-shared-library

-mxgot -mno-xgot

MCore Options

-mhardlit -mno-hardlit -mdiv -mno-div -mrelax-immediates
-mno-relax-immediates -mwide-bitfields -mno-wide-bitfields
-m4byte-functions -mno-4byte-functions -mcallgraph-data
-mno-callgraph-data -mslow-bytes -mno-slow-bytes -mno-lsim
-mlittle-endian -mbig-endian -m210 -m340 -mstack-increment

MeP Options

-mabsdiff -mall-opts -maverage -mbased=n -mbitops

-mc=n -mclip -mconfig=name -mcop -mcop32 -mcop64 -mivc2

-mdc -mdiv -meb -mel -mio-volatile -ml -mleadz -mm -mminmax

-mmult -mno-opts -mrepeat -ms -msatur -msdram -msim -msimnovec -mtf
-mtiny=n

MicroBlaze Options

-msoft-float -mhard-float -msmall-divides -mcpu=cpu

-mmemcpy -mxl-soft-mul -mxl-soft-div -mxl-barrel-shift
-mxl-pattern-compare -mxl-stack-check -mxl-gp-opt -mno-clearbss
-mxl-multiply-high -mxl-float-convert -mxl-float-sqrt
-mbig-endian -mlittle-endian -mxl-reorder -mxl-mode-app-model

Using the GNU Compiler Collection (GCC)

MIPS Options

-EL -EB -march=arch -mtune=arch

-mipsl -mips2 -mips3 -mips4 -mips32 -mips32r2

-mips64 -mips64r2

-mips16 -mno-mips16 -mflip-mipsi6
-minterlink-compressed -mno-interlink-compressed
-minterlink-mips16 -mno-interlink-mipsi16

-mabi=abi -mabicalls -mno-abicalls

-mshared -mno-shared -mplt -mno-plt -mxgot -mno-xgot
-mgp32 -mgp64 -mfp32 -mfp64 -mhard-float -msoft-float
-mno-float -msingle-float -mdouble-float

-mabs=mode -mnan=encoding

-mdsp -mno-dsp -mdspr2 -mno-dspr2

-mmcu -mmno-mcu

-meva -mno-eva

-mvirt -mno-virt

-mmicromips -mno-micromips

-mfpu=fpu-type

-msmartmips -mno-smartmips

-mpaired-single -mno-paired-single -mdmx -mno-mdmx
-mips3d -mno-mips3d -mmt -mno-mt -mllsc -mno-llsc
-mlong64 -mlong32 -msym32 -mno-sym32

-Gnum -mlocal-sdata -mno-local-sdata

-mextern-sdata -mno-extern-sdata -mgpopt -mno-gopt
-membedded-data -mno-embedded-data
-muninit-const-in-rodata -mno-uninit-const-in-rodata
-mcode-readable=setting

-msplit-addresses -mno-split-addresses
-mexplicit-relocs -mno-explicit-relocs
-mcheck-zero-division -mno-check-zero-division
-mdivide-traps -mdivide-breaks

-mmemcpy -mno-memcpy -mlong-calls -mno-long-calls
-mmad -mno-mad -mimadd -mno-imadd -mfused-madd -mno-fused-madd -nocpp
-mfix-24k -mno-fix-24k

-mfix-r4000 -mno-fix-r4000 -mfix-r4400 -mno-fix-r4400
-mfix-r10000 -mno-fix-r10000 -mfix-rm7000 -mno-fix-rm7000
-mfix-vr4120 -mno-fix-vr4120

-mfix-vr4130 -mno-fix-vr4130 -mfix-sbl -mno-fix-sbil
-mflush-func=func -mno-flush-func

-mbranch-cost=num -mbranch-likely -mno-branch-likely
-mfp-exceptions -mno-fp-exceptions

-mvr4130-align -mno-vr4130-align -msynci -mno-synci
-mrelax-pic-calls -mno-relax-pic-calls -mmcount-ra-address

MMIX Options
-mlibfuncs -mno-libfuncs -mepsilon -mno-epsilon -mabi=gnu
-mabi=mmixware -mzero-extend -mknuthdiv -mtoplevel-symbols
-melf -mbranch-predict -mno-branch-predict -mbase-addresses
-mno-base-addresses -msingle-exit -mno-single-exit
MN10300 Options
-mmult-bug -mno-mult-bug
-mno-am33 -mam33 -mam33-2 -mam34
-mtune=cpu-type
-mreturn-pointer-on-do
-mno-crt0 -mrelax -mliw -msetlb
Moxie Options

-meb -mel -mno-crtO

Chapter 3: GCC Command Options

MSP/30 Options

-msim -masm-hex -mmcu= -mcpu= -mlarge -msmall -mrelax
-mhwmult=

NDS32 Options
-mbig-endian -mlittle-endian
-mreduced-regs -mfull-regs
—MCmMOV -mMNo-Cmov
-mperf-ext -mno-perf-ext
-mv3push -mno-v3push
-m16bit -mno-16bit
-mgp-direct -mno-gp-direct
-misr-vector-size=num
-mcache-block-size=num
-march=arch
-mforce-fp-as-gp -mforbid-fp-as-gp
-mex9 -mctor-dtor -mrelax

Nios II Options
-G num -mgpopt -mno-gpopt -mel -meb
-mno-bypass-cache -mbypass-cache
-mno-cache-volatile -mcache-volatile
-mno-fast-sw-div -mfast-sw-div
-mhw-mul -mno-hw-mul -mhw-mulx -mno-hw-mulx -mno-hw-div -mhw-div
-mcustom-insn=N -mno-custom-insn
-mcustom-fpu-cfg=name
-mhal -msmallc -msys-crtO=name -msys-lib=name

PDP-11 Options

-mfpu -msoft-float -macO -mno-acO -m40 -m45 -mi0
-mbcopy -mbcopy-builtin -mint32 -mno-inti16
-mint16 -mno-int32 -mfloat32 -mno-float64
-mfloat64 -mno-float32 -mabshi -mno-abshi
-mbranch-expensive -mbranch-cheap

-munix-asm -mdec-asm

picoChip Options

-mae=ae_type -mvliw-lookahead=N
-msymbol-as-address -mno-inefficient-warnings

PowerPC Options See RS/6000 and PowerPC Options.
RL78 Options

-msim -mmul=none -mmul=gl3 -mmul=rl78

RS/6000 and PowerPC Options
-mcpu=cpu-type
-mtune=cpu-type
-mcmodel=code-model
-mpowerpc64
-maltivec -mno-altivec
-mpowerpc-gpopt -mno-powerpc-gpopt
-mpowerpc-gfxopt -mno-powerpc-gfxopt
-mmfcrf -mno-mfcrf -mpopcntb -mno-popcntb -mpopcntd -mno-popcntd
-mfprnd -mno-fprnd
-mcmpb -mno-cmpb -mmfpgpr -mno-mfpgpr -mhard-dfp -mno-hard-dfp
-mfull-toc -mminimal-toc -mno-fp-in-toc -mno-sum-in-toc
-m64 -m32 -mxl-compat -mno-xl-compat -mpe
-malign-power -malign-natural
-msoft-float -mhard-float -mmultiple -mno-multiple

21

Using the GNU Compiler Collection (GCC)

-msingle-float -mdouble-float -msimple-fpu

-mstring -mno-string -mupdate -mno-update
-mavoid-indexed-addresses -mno-avoid-indexed-addresses
-mfused-madd -mno-fused-madd -mbit-align -mno-bit-align
-mstrict-align -mno-strict-align -mrelocatable
-mno-relocatable -mrelocatable-lib -mno-relocatable-1lib
-mtoc -mno-toc -mlittle -mlittle-endian -mbig -mbig-endian
-mdynamic-no-pic -maltivec -mswdiv -msingle-pic-base
-mprioritize-restricted-insns=priority
-msched-costly-dep=dependence_type
-minsert-sched-nops=scheme

-mcall-sysv -mcall-netbsd

-maix-struct-return -msvré4-struct-return

-mabi=abi-type -msecure-plt -mbss-plt
-mblock-move-inline-limit=num

-misel -mno-isel

-misel=yes -misel=no

-mspe -mno-spe

-mspe=yes -mspe=no

-mpaired

-mgen-cell-microcode -mwarn-cell-microcode

-mvrsave -—mno-vrsave

-mmulhw -mno-mulhw

-mdlmzb -mno-dlmzb

-mfloat-gprs=yes -mfloat-gprs=no -mfloat-gprs=single -mfloat-gprs=double
-mprototype -mno-prototype

-msim -mmvme -mads -myellowknife -memb -msdata

-msdata=opt -mvxworks -G num -pthread

-mrecip -mrecip=opt -mno-recip -mrecip-precision
-mno-recip-precision

-mveclibabi=type -mfriz -mno-friz
-mpointers-to-nested-functions -mno-pointers-to-nested-functions
-msave-toc-indirect -mno-save-toc-indirect

-mpower8-fusion -mno-mpower8-fusion -mpower8-vector -mno-power8-vector
-mcrypto -mno-crypto -mdirect-move -mno-direct-move
-mquad-memory -mno-quad-memory

-mquad-memory-atomic -mno-quad-memory-atomic
-mcompat-align-parm -mno-compat-align-parm

RX Options

-m64bit-doubles -m32bit-doubles -fpu -nofpu
-mcpu=

-mbig-endian-data -mlittle-endian-data
-msmall-data

-msim -mno-sim

-mas100-syntax -mno-as100-syntax
-mrelax

-mmax-constant-size=

-mint-register=

-mpid
-mno-warn-multiple-fast-interrupts
-msave-acc-in-interrupts

S5/890 and zSeries Options

-mtune=cpu-type -march=cpu-type

-mhard-float -msoft-float -mhard-dfp -mno-hard-dfp
-mlong-double-64 -mlong-double-128

-mbackchain -mno-backchain -mpacked-stack -mno-packed-stack
-msmall-exec -mno-small-exec -mmvcle -mno-mvcle

Chapter 3: GCC Command Options 23

-m64 -m31 -mdebug -mno-debug -mesa -mzarch

-mtpf-trace -mno-tpf-trace -mfused-madd -mno-fused-madd
-mwarn-framesize -mwarn-dynamicstack -mstack-size -mstack-guard
-mhotpatch[=halfwords] -mno-hotpatch

Score Options

-meb -mel

-mnhwloop

-muls

-mmac

-mscoreb -mscorebu -mscore7 -mscore7d

SH Options
-ml -m2 -m2e
-m2a-nofpu -m2a-single-only -m2a-single -m2a
-m3 -m3e
-m4-nofpu -m4-single-only -mé4-single -m4
-m4a-nofpu -mé4a-single-only -m4a-single -mda -m4al
-mb-64media -mb5-64media-nofpu
-m5-32media -m5-32media-nofpu
-m5-compact -mb5-compact-nofpu
-mb -ml -mdalign -mrelax
-mbigtable -mfmovd -mhitachi -mrenesas -mno-renesas -mnomacsave
-mieee -mno-ieee -mbitops -misize -minline-ic_invalidate -mpadstruct
-mspace -mprefergot -musermode -multcost=number -mdiv=strategy
-mdivsi3_libfunc=name -mfixed-range=register-range
-mindexed-addressing -mgettrcost=number -mpt-fixed
-maccumulate-outgoing-args -minvalid-symbols
-matomic-model=atomic-model
-mbranch-cost=num -mzdcbranch -mno-zdcbranch
-mfused-madd -mno-fused-madd -mfsca -mno-fsca -mfsrra -mno-fsrra
-mpretend-cmove -mtas

Solaris 2 Options

-mclear-hwcap -mno-clear-hwcap -mimpure-text -mno-impure-text
-pthreads -pthread

SPARC Options
-mcpu=cpu-type
-mtune=cpu-type
-mcmodel=code-model
-mmemory-model=mem-model
-m32 -m64 -mapp-regs -mno-app-regs
-mfaster-structs -mno-faster-structs -mflat -mno-flat
-mfpu -mno-fpu -mhard-float -msoft-float
-mhard-quad-float -msoft-quad-float
-mstack-bias -mno-stack-bias
-munaligned-doubles -mno-unaligned-doubles
-muser-mode -mno-user-mode
-mv8plus -mno-v8plus -mvis -mno-vis
-mvis2 -mno-vis2 -mvis3 -mno-vis3
-mcbcond -mno-cbcond
-mfmaf -mno-fmaf -mpopc -mno-popc
-mfix-at697f -mfix-ut699

SPU Options

-mwarn-reloc -merror-reloc
-msafe-dma -munsafe-dma
-mbranch-hints

-msmall-mem -mlarge-mem -mstdmain

24

Using the GNU Compiler Collection (GCC)

-mfixed-range=register-range

-mea32 -meab4

-maddress-space-conversion -mno-address-space-conversion
-mcache-size=cache-size

-matomic-updates -mno-atomic-updates

System V Options
-Qy -Qn -YP,paths -Ym,dir

TILE-Gz Options
-mcpu=CPU -m32 -m64 -mbig-endian -mlittle-endian
-mcmodel=code-model

TILEPro Options
-mcpu=cpu -m32

V850 Options
-mlong-calls -mno-long-calls -mep -mno-ep
-mprolog-function -mno-prolog-function -mspace
-mtda=n -msda=n -mzda=n
-mapp-regs -mno-app-regs
-mdisable-callt -mno-disable-callt
-mv850e2v3 -mv850e2 -mv850el -mv850es
-mv850e -mv850 -mv850e3v5
-mloop
-mrelax
-mlong-jumps
-msoft-float
-mhard-float
-mgcc-abi
-mrh850-abi
-mbig-switch
VAX Options
-mg -mgnu -munix
VMS Options
-mvms-return-codes -mdebug-main=prefix -mmalloc64
-mpointer-size=size
VaWorks Options
-mrtp -non-static -Bstatic -Bdynamic
-Xbind-lazy -Xbind-now
286-64 Options See 1386 and x86-64 Options.
Xstormyl6 Options

-msim
Xtensa Options
-mconst1l6 -mno-constl16
-mfused-madd -mno-fused-madd
-mforce-no-pic
-mserialize-volatile -mno-serialize-volatile
-mtext-section-literals -mno-text-section-literals
-mtarget-align -mno-target-align
-mlongcalls -mno-longcalls

zSeries Options See S/390 and zSeries Options.

Code Generation Options

See Section 3.18 [Options for Code Generation Conventions|, page 323.

Chapter 3: GCC Command Options 25

-fcall-saved-reg -fcall-used-reg

-ffixed-reg -fexceptions

-fnon-call-exceptions -fdelete-dead-exceptions -funwind-tables
-fasynchronous-unwind-tables

-fno-gnu-unique

-finhibit-size-directive -finstrument-functions
-finstrument-functions-exclude-function-list=sym,sym,...
-finstrument-functions-exclude-file-list=file,file,...
-fno-common -fno-ident

-fpcc-struct-return -fpic -fPIC -fpie -fPIE
-fno-jump-tables

-frecord-gcc-switches

-freg-struct-return -fshort-enums

-fshort-double -fshort-wchar

-fverbose-asm -fpack-struct[=n] -fstack-check
-fstack-limit-register=reg -fstack-limit-symbol=sym
-fno-stack-limit -fsplit-stack

-fleading-underscore -ftls-model=model
-fstack-reuse=reuse_level

-ftrapv -fwrapv -fbounds-check

-fvisibility -fstrict-volatile-bitfields -fsync-libcalls

3.2 Options Controlling the Kind of Output

Compilation can involve up to four stages: preprocessing, compilation proper, assembly
and linking, always in that order. GCC is capable of preprocessing and compiling several
files either into several assembler input files, or into one assembler input file; then each
assembler input file produces an object file, and linking combines all the object files (those
newly compiled, and those specified as input) into an executable file.

For any given input file, the file name suffix determines what kind of compilation is done:

file.c

file.i

file.ii

file.m

file.mi

file.mm
file.M

file.mii

file.h

C source code that must be preprocessed.
C source code that should not be preprocessed.
C++ source code that should not be preprocessed.

Objective-C source code. Note that you must link with the ‘1ibobjc’ library
to make an Objective-C program work.

Objective-C source code that should not be preprocessed.

Objective-C++ source code. Note that you must link with the ‘1ibobjc’ library
to make an Objective-C++ program work. Note that ‘.M refers to a literal
capital M.

Objective-C++ source code that should not be preprocessed.

C, C++, Objective-C or Objective-C++ header file to be turned into a precom-
piled header (default), or C, C++ header file to be turned into an Ada spec (via
the ‘-fdump-ada-spec’ switch).

26

file.
file.
file.
file.
file.
file.
file.

file.
file.

file.

file.
file.
file.
file.
file.
file.
file.
file.

file.
file.
file.

file.
file.
-fpp
file.
file.

file

file.
file.
file.
file.

file.
file.
file.
file.

file.

file.

cc
cp

CXX
cpp
CPP
cH+

mii
hh

hp

hxx
hpp
HPP
h++
tcc

for
ftn

FOR

FPP
FTN

£90
£95
03
£08

F90
F95
FO3
FO8

go

ads

Using the GNU Compiler Collection (GCC)

C++ source code that must be preprocessed. Note that in ‘.cxx’, the last two
letters must both be literally ‘x’. Likewise, .C’ refers to a literal capital C.

Objective-C++ source code that must be preprocessed.

Objective-C++ source code that should not be preprocessed.

C++ header file to be turned into a precompiled header or Ada spec.

Fixed form Fortran source code that should not be preprocessed.

Fixed form Fortran source code that must be preprocessed (with the traditional
preprocessor).

Free form Fortran source code that should not be preprocessed.

Free form Fortran source code that must be preprocessed (with the traditional
preprocessor).

Go source code.

Ada source code file that contains a library unit declaration (a declaration of a
package, subprogram, or generic, or a generic instantiation), or a library unit
renaming declaration (a package, generic, or subprogram renaming declaration).
Such files are also called specs.

Chapter 3: GCC Command Options 27

file.adb Ada source code file containing a library unit body (a subprogram or package
body). Such files are also called bodies.

file.s Assembler code.

file.S
file.sx Assembler code that must be preprocessed.

other An object file to be fed straight into linking. Any file name with no recognized
suffix is treated this way.

You can specify the input language explicitly with the ‘-x’ option:

-x language
Specify explicitly the language for the following input files (rather than letting
the compiler choose a default based on the file name suffix). This option applies
to all following input files until the next ‘~x’ option. Possible values for language
are:

¢ c-header cpp-output
c++ c++-header c++-cpp-output
objective-c objective-c-header objective-c-cpp-output
objective-c++ objective-c++-header objective-c++-cpp-output
assembler assembler-with-cpp
ada
£77 £77-cpp-input f95 £95-cpp-input
go
java
-X none Turn off any specification of a language, so that subsequent files are handled
according to their file name suffixes (as they are if ‘-x’ has not been used at

all).

-pass-exit-codes
Normally the gce program exits with the code of 1 if any phase of the compiler
returns a non-success return code. If you specify ‘-pass-exit-codes’, the gcc
program instead returns with the numerically highest error produced by any
phase returning an error indication. The C, C++, and Fortran front ends return
4 if an internal compiler error is encountered.

If you only want some of the stages of compilation, you can use ‘-x’ (or filename suffixes)
to tell gcc where to start, and one of the options ‘-c’; ‘-S’, or ‘-E’ to say where gcc is to
stop. Note that some combinations (for example, ‘-x cpp-output -E’) instruct gcc to do
nothing at all.

-c Compile or assemble the source files, but do not link. The linking stage simply
is not done. The ultimate output is in the form of an object file for each source
file.

By default, the object file name for a source file is made by replacing the suffix

[A

.c’, .17, ‘.8, ete., with ‘.o’.

Unrecognized input files, not requiring compilation or assembly, are ignored.

-S Stop after the stage of compilation proper; do not assemble. The output is in
the form of an assembler code file for each non-assembler input file specified.

28

-o file

—###

~pipe

—--help

Using the GNU Compiler Collection (GCC)

By default, the assembler file name for a source file is made by replacing the

suffix <.¢’, ‘.17, etc., with ‘.s’.

Input files that don’t require compilation are ignored.

Stop after the preprocessing stage; do not run the compiler proper. The output
is in the form of preprocessed source code, which is sent to the standard output.

Input files that don’t require preprocessing are ignored.

Place output in file file. This applies to whatever sort of output is being pro-
duced, whether it be an executable file, an object file, an assembler file or
preprocessed C code.

If ‘-0’ is not specified, the default is to put an executable file in ‘a.out’, the
object file for ‘source.suffix’ in ‘source.o’, its assembler file in ‘source.s’, a
precompiled header file in ‘source.suffix.gch’, and all preprocessed C source
on standard output.

Print (on standard error output) the commands executed to run the stages of
compilation. Also print the version number of the compiler driver program and
of the preprocessor and the compiler proper.

Like ‘-v’ except the commands are not executed and arguments are quoted
unless they contain only alphanumeric characters or ./-_. This is useful for
shell scripts to capture the driver-generated command lines.

Use pipes rather than temporary files for communication between the various
stages of compilation. This fails to work on some systems where the assembler
is unable to read from a pipe; but the GNU assembler has no trouble.

Print (on the standard output) a description of the command-line options under-
stood by gcc. If the ‘~v’ option is also specified then ‘--help’ is also passed on
to the various processes invoked by gcc, so that they can display the command-
line options they accept. If the ‘-Wextra’ option has also been specified (prior to
the ‘--help’ option), then command-line options that have no documentation
associated with them are also displayed.

--target-help

Print (on the standard output) a description of target-specific command-line
options for each tool. For some targets extra target-specific information may
also be printed.

--help={class|["|qualifier}|,...]

Print (on the standard output) a description of the command-line options un-
derstood by the compiler that fit into all specified classes and qualifiers. These
are the supported classes:

‘optimizers’
Display all of the optimization options supported by the compiler.
‘warnings’
Display all of the options controlling warning messages produced
by the compiler.

Chapter 3: GCC Command Options 29

‘target’ Display target-specific options. Unlike the ‘~—target-help’ option
however, target-specific options of the linker and assembler are not
displayed. This is because those tools do not currently support the
extended ‘--help=’ syntax.

‘params’ Display the values recognized by the ‘~-param’ option.

language Display the options supported for language, where language is the
name of one of the languages supported in this version of GCC.

‘common’ Display the options that are common to all languages.
These are the supported qualifiers:

‘undocumented’
Display only those options that are undocumented.

‘joined’ Display options taking an argument that appears after an equal sign
in the same continuous piece of text, such as: ‘--help=target’.

‘separate’
Display options taking an argument that appears as a separate word
following the original option, such as: ‘-o output-file’.

Thus for example to display all the undocumented target-specific switches sup-
ported by the compiler, use:

--help=target,undocumented

9

The sense of a qualifier can be inverted by prefixing it with the ‘*’ character,
so for example to display all binary warning options (i.e., ones that are either
on or off and that do not take an argument) that have a description, use:

--help=warnings, ~joined, “undocumented
The argument to ‘--help="should not consist solely of inverted qualifiers.

Combining several classes is possible, although this usually restricts the output
so much that there is nothing to display. One case where it does work, however,
is when one of the classes is target. For example, to display all the target-specific
optimization options, use:

--help=target,optimizers
The ‘--help=’ option can be repeated on the command line. Each successive
use displays its requested class of options, skipping those that have already been
displayed.
If the ‘-Q’ option appears on the command line before the ‘--help=" option, then
the descriptive text displayed by ‘--help=’is changed. Instead of describing
the displayed options, an indication is given as to whether the option is enabled,
disabled or set to a specific value (assuming that the compiler knows this at the
point where the ‘~-help=’ option is used).

Here is a truncated example from the ARM port of gcc:
% gcc -Q -mabi=2 --help=target -c
The following options are target specific:
-mabi= 2
-mabort-on-noreturn [disabled]
-mapcs [disabled]

30 Using the GNU Compiler Collection (GCC)

The output is sensitive to the effects of previous command-line options, so for
example it is possible to find out which optimizations are enabled at ‘-02’ by
using:

-Q -02 --help=optimizers
Alternatively you can discover which binary optimizations are enabled by ‘-03’
by using;:

gcc -c¢ -Q -03 --help=optimizers > /tmp/03-opts

gcc —¢ -Q -02 --help=optimizers > /tmp/02-opts

diff /tmp/02-opts /tmp/03-opts | grep enabled

-no-canonical-prefixes
Do not expand any symbolic links, resolve references to ‘/../” or ‘/./’, or make
the path absolute when generating a relative prefix.

--version
Display the version number and copyrights of the invoked GCC.

-wrapper Invoke all subcommands under a wrapper program. The name of the wrapper
program and its parameters are passed as a comma separated list.
gcc —-c¢ t.c -wrapper gdb,--args
This invokes all subprograms of gcc under ‘gdb —-args’, thus the invocation of
cclis ‘gdb --args ccl ...".

-fplugin=name.so
Load the plugin code in file name.so, assumed to be a shared object to
be dlopen’d by the compiler. The base name of the shared object file
is used to identify the plugin for the purposes of argument parsing (See
‘~fplugin-arg-name-key=value’ below). Each plugin should define the
callback functions specified in the Plugins API.

-fplugin-arg-name-key=value
Define an argument called key with a value of value for the plugin called name.

-fdump-ada-spec[-slim]
For C and C++ source and include files, generate corresponding Ada specs. See
Section “Generating Ada Bindings for C and C++ headers” in GNAT User’s
Guide, which provides detailed documentation on this feature.

-fada-spec-parent=unit
In conjunction with ‘-~fdump-ada-spec[-slim|’ above, generate Ada specs as
child units of parent unit.

-fdump-go-spec=file
For input files in any language, generate corresponding Go declarations in file.
This generates Go const, type, var, and func declarations which may be
a useful way to start writing a Go interface to code written in some other
language.

@file Read command-line options from file. The options read are inserted in place
of the original @file option. If file does not exist, or cannot be read, then the
option will be treated literally, and not removed.

Chapter 3: GCC Command Options 31

Options in file are separated by whitespace. A whitespace character may be
included in an option by surrounding the entire option in either single or double
quotes. Any character (including a backslash) may be included by prefixing the
character to be included with a backslash. The file may itself contain additional
@file options; any such options will be processed recursively.

3.3 Compiling C++ Programs

C++ source files conventionally use one of the suffixes ‘.C’, ‘.cc’, ‘.cpp’, ‘.CPP’, ‘.c++’,
‘.cp’, or ‘.cxx’; C++ header files often use ‘.hh’, ‘.hpp’, ‘.H’, or (for shared template code)
‘.tcc’; and preprocessed C++ files use the suffix ‘.ii’. GCC recognizes files with these
names and compiles them as C++ programs even if you call the compiler the same way as
for compiling C programs (usually with the name gcc).

However, the use of gcc does not add the C++ library. g++ is a program that calls GCC
and automatically specifies linking against the C++ library. It treats ‘.c’, *.h’ and ‘.1’ files
as C++ source files instead of C source files unless ‘~x’ is used. This program is also useful
when precompiling a C header file with a ‘.h’ extension for use in C++ compilations. On
many systems, g++ is also installed with the name c++.

When you compile C++ programs, you may specify many of the same command-line
options that you use for compiling programs in any language; or command-line options
meaningful for C and related languages; or options that are meaningful only for C++ pro-
grams. See Section 3.4 [Options Controlling C Dialect], page 31, for explanations of options
for languages related to C. See Section 3.5 [Options Controlling C++ Dialect], page 37, for
explanations of options that are meaningful only for C++ programs.

3.4 Options Controlling C Dialect

The following options control the dialect of C (or languages derived from C, such as C++,
Objective-C and Objective-C++) that the compiler accepts:

-ansi In C mode, this is equivalent to ‘-std=c90’. In C++ mode, it is equivalent to
‘~-std=c++98’.

This turns off certain features of GCC that are incompatible with ISO C90
(when compiling C code), or of standard C++ (when compiling C++ code), such
as the asm and typeof keywords, and predefined macros such as unix and vax
that identify the type of system you are using. It also enables the undesirable
and rarely used ISO trigraph feature. For the C compiler, it disables recognition
of C++ style ¢//’ comments as well as the inline keyword.

The alternate keywords __asm__, __extension__, __inline__ and __typeof_
_ continue to work despite ‘-ansi’. You would not want to use them in an ISO
C program, of course, but it is useful to put them in header files that might be
included in compilations done with ‘-~ansi’. Alternate predefined macros such
as __unix__ and __vax__ are also available, with or without ‘-ansi’.

The ‘-ansi’ option does not cause non-ISO programs to be rejected
gratuitously. For that, ‘-Wpedantic’ is required in addition to ‘-ansi’. See
Section 3.8 [Warning Options|, page 53.

32

-std=

Using the GNU Compiler Collection (GCC)

4

The macro __STRICT_ANSI__ is predefined when the ‘-ansi’ option is used.
Some header files may notice this macro and refrain from declaring certain
functions or defining certain macros that the ISO standard doesn’t call for; this
is to avoid interfering with any programs that might use these names for other

things.

Functions that are normally built in but do not have semantics defined by ISO
C (such as alloca and ££fs) are not built-in functions when ‘-ansi’ is used. See
Section 6.56 [Other built-in functions provided by GCC], page 482, for details
of the functions affected.

Determine the language standard. See Chapter 2 [Language Standards Sup-
ported by GCC], page 5, for details of these standard versions. This option is
currently only supported when compiling C or C++.

The compiler can accept several base standards, such as ‘c90’ or ‘c++98’, and
GNU dialects of those standards, such as ‘gnu90’ or ‘gnu++98’. When a base
standard is specified, the compiler accepts all programs following that stan-
dard plus those using GNU extensions that do not contradict it. For example,
‘-std=c90’ turns off certain features of GCC that are incompatible with ISO
C90, such as the asm and typeof keywords, but not other GNU extensions that
do not have a meaning in ISO C90, such as omitting the middle term of a ?7:
expression. On the other hand, when a GNU dialect of a standard is specified,
all features supported by the compiler are enabled, even when those features
change the meaning of the base standard. As a result, some strict-conforming
programs may be rejected. The particular standard is used by ‘~Wpedantic’ to
identify which features are GNU extensions given that version of the standard.
For example ‘~std=gnu90 -Wpedantic’ warns about C++ style ‘//’ comments,
while ‘-std=gnu99 -Wpedantic’ does not.

A value for this option must be provided; possible values are

‘c90’

‘c89’

‘1509899:1990’
Support all ISO C90 programs (certain GNU extensions that con-
flict with ISO C90 are disabled). Same as ‘-ansi’ for C code.

‘1509899:199409’
ISO C90 as modified in amendment 1.

‘c99’

‘c9x’

‘1509899:1999’

‘1509899:199x’
ISO (C99. This standard is substantially completely sup-
ported, modulo bugs, extended identifiers (supported except
for corner cases when ‘-fextended-identifiers’ is wused)
and floating-point issues (mainly but not entirely relating
to optional C99 features from Annexes F and G). See
http://gcc.gnu.org/c99status.html for more information.
The names ‘c9x’ and ‘1s09899:199x’ are deprecated.

http://gcc.gnu.org/c99status.html

Chapter 3: GCC Command Options 33

‘cl1t’
‘clx’

‘1509899:2011°

‘gnu90’
‘gnu89’

‘gnu99’
‘gnu9x’

‘gnull’
‘gnulx’

‘c++98’
‘c++03’

‘gnu++98’
‘gnu++03’

‘c++11’
‘c++0x’
‘gnut++11’
‘gnu++0x’
4c++1y’

‘gnu++1y’

-fgnu89-inline

ISO C11, the 2011 revision of the ISO C standard. This
standard is substantially completely supported, modulo bugs,
extended identifiers (supported except for corner cases when
‘~fextended-identifiers’ is used), floating-point issues (mainly
but not entirely relating to optional C11 features from Annexes F
and G) and the optional Annexes K (Bounds-checking interfaces)
and L (Analyzability). The name ‘c1x’ is deprecated.

GNU dialect of ISO C90 (including some C99 features). This is the
default for C code.

GNU dialect of ISO C99. The name ‘gnu9x’ is deprecated.

GNU dialect of ISO C11. This is intended to become the default
in a future release of GCC. The name ‘gnulx’ is deprecated.

The 1998 ISO C++ standard plus the 2003 technical corrigendum
and some additional defect reports. Same as ‘-ansi’ for C++ code.

GNU dialect of ‘-std=c++98’. This is the default for C++ code.

The 2011 ISO C++ standard plus amendments. The name ‘c++0x’
is deprecated.

GNU dialect of ‘-std=c++11’. The name ‘gnu++0x’ is deprecated.

The next revision of the ISO C++ standard, tentatively planned
for 2014. Support is highly experimental, and will almost certainly
change in incompatible ways in future releases.

GNU dialect of ‘~std=c++1y’. Support is highly experimental, and
will almost certainly change in incompatible ways in future releases.

The option ‘-fgnu89-inline’ tells GCC to use the traditional GNU semantics
for inline functions when in C99 mode. See Section 6.39 [An Inline Function
is As Fast As a Macro|, page 424. This option is accepted and ignored by
GCC versions 4.1.3 up to but not including 4.3. In GCC versions 4.3 and later
it changes the behavior of GCC in C99 mode. Using this option is roughly
equivalent to adding the gnu_inline function attribute to all inline functions
(see Section 6.30 [Function Attributes], page 372).

The option ‘~fno-gnu89-inline’ explicitly tells GCC to use the C99 semantics
for inline when in C99 or gnu99 mode (i.e., it specifies the default behavior).

34

Using the GNU Compiler Collection (GCC)

This option was first supported in GCC 4.3. This option is not supported in
‘=std=c90’ or ‘-std=gnu90’ mode.

The preprocessor macros __GNUC_GNU_INLINE__ and __GNUC_STDC_INLINE__
may be used to check which semantics are in effect for inline functions. See
Section “Common Predefined Macros” in The C Preprocessor.

—aux-info filename

Output to the given filename prototyped declarations for all functions declared
and/or defined in a translation unit, including those in header files. This option
is silently ignored in any language other than C.

Besides declarations, the file indicates, in comments, the origin of each declara-
tion (source file and line), whether the declaration was implicit, prototyped or
unprototyped (‘I’, ‘N’ for new or ‘0’ for old, respectively, in the first character
after the line number and the colon), and whether it came from a declaration
or a definition (‘C’ or ‘F’, respectively, in the following character). In the case
of function definitions, a K&R-style list of arguments followed by their decla-
rations is also provided, inside comments, after the declaration.

-fallow-parameterless-variadic-functions

-fno-asm

Accept variadic functions without named parameters.

Although it is possible to define such a function, this is not very useful as it
is not possible to read the arguments. This is only supported for C as this
construct is allowed by C++.

Do not recognize asm, inline or typeof as a keyword, so that code can use
these words as identifiers. You can use the keywords __asm__, __inline__ and
typeof__ instead. ‘~ansi’ implies ‘~fno-asm’.

In C++, this switch only affects the typeof keyword, since asm and inline
are standard keywords. You may want to use the ‘~fno-gnu-keywords’ flag
instead, which has the same effect. In C99 mode (‘-std=c99’ or ‘-std=gnu99’),
this switch only affects the asm and typeof keywords, since inline is a standard
keyword in ISO C99.

—-fno-builtin
—-fno-builtin-function

Don’t recognize built-in functions that do not begin with ‘__builtin_’ as prefix.
See Section 6.56 [Other built-in functions provided by GCC], page 482, for
details of the functions affected, including those which are not built-in functions
when ‘-ansi’ or ‘-std’ options for strict ISO C conformance are used because
they do not have an ISO standard meaning.

GCC normally generates special code to handle certain built-in functions more
efficiently; for instance, calls to alloca may become single instructions which
adjust the stack directly, and calls to memcpy may become inline copy loops.
The resulting code is often both smaller and faster, but since the function
calls no longer appear as such, you cannot set a breakpoint on those calls,
nor can you change the behavior of the functions by linking with a different
library. In addition, when a function is recognized as a built-in function, GCC
may use information about that function to warn about problems with calls to

Chapter 3: GCC Command Options 35

—-fhosted

that function, or to generate more efficient code, even if the resulting code still
contains calls to that function. For example, warnings are given with ‘-Wformat’
for bad calls to printf when printf is built in and strlen is known not to
modify global memory.

With the ‘~fno-builtin-function’ option only the built-in function function
is disabled. function must not begin with ‘__builtin_’. If a function is named
that is not built-in in this version of GCC, this option is ignored. There is
no corresponding ‘-fbuiltin-function’ option; if you wish to enable built-in
functions selectively when using ‘~fno-builtin’ or ‘~-ffreestanding’, you may
define macros such as:

#define abs(n) __builtin_abs ((n))
#define strcpy(d, s) __builtin_strcpy ((d), (s))

Assert that compilation targets a hosted environment. This implies
‘~fbuiltin’. A hosted environment is one in which the entire standard library
is available, and in which main has a return type of int. Examples are nearly
everything except a kernel. This is equivalent to ‘-fno-freestanding’.

-ffreestanding

-fopenmp

Assert that compilation targets a freestanding environment. This implies
‘~fno-builtin’. A freestanding environment is one in which the standard
library may not exist, and program startup may not necessarily be at
main. The most obvious example is an OS kernel. This is equivalent to
‘~fno-hosted’.

See Chapter 2 [Language Standards Supported by GCC], page 5, for details of
freestanding and hosted environments.

Enable handling of OpenMP directives #pragma omp in C/C++ and !$omp
in Fortran. When ‘-fopenmp’ is specified, the compiler generates parallel
code according to the OpenMP Application Program Interface v4.0
http://www.openmp.org/. This option implies ‘-pthread’, and thus is only
supported on targets that have support for ‘-pthread’. ‘-fopenmp’ implies
‘~fopenmp-simd’.

-fopenmp-simd

-fcilkplus

-fgnu-tm

Enable handling of OpenMP’s SIMD directives with #pragma omp in C/C++
and !$omp in Fortran. Other OpenMP directives are ignored.

Enable the usage of Cilk Plus language extension features for C/C++. When the
option ‘-fcilkplus’ is specified, enable the usage of the Cilk Plus Language
extension features for C/C++. The present implementation follows ABI version
1.2. This is an experimental feature that is only partially complete, and whose
interface may change in future versions of GCC as the official specification
changes. Currently, all features but _Cilk_for have been implemented.

When the option ‘~fgnu-tm’ is specified, the compiler generates code for the
Linux variant of Intel’s current Transactional Memory ABI specification doc-
ument (Revision 1.1, May 6 2009). This is an experimental feature whose

http://www.openmp.org/

36

Using the GNU Compiler Collection (GCC)

interface may change in future versions of GCC, as the official specification
changes. Please note that not all architectures are supported for this feature.
For more information on GCC’s support for transactional memory, See Section
“The GNU Transactional Memory Library” in GNU Transactional Memory
Library.

Note that the transactional memory feature is not supported with non-call
exceptions (‘-fnon-call-exceptions’).

-fms-extensions

Accept some non-standard constructs used in Microsoft header files.

In C++ code, this allows member names in structures to be similar to previous
types declarations.

typedef int UOW;

struct ABC {

Uow UOW;

};
Some cases of unnamed fields in structures and unions are only accepted
with this option. See Section 6.60 [Unnamed struct/union fields within
structs/unions|, page 698, for details.

Note that this option is off for all targets but i?786 and x86_64 targets using
ms-abi.

-fplan9-extensions

-trigraphs

Accept some non-standard constructs used in Plan 9 code.

This enables ‘~fms-extensions’, permits passing pointers to structures with
anonymous fields to functions that expect pointers to elements of the type of
the field, and permits referring to anonymous fields declared using a typedef.
See Section 6.60 [Unnamed struct/union fields within structs/unions|, page 698,
for details. This is only supported for C, not C++.

Support ISO C trigraphs. The ‘-ansi’ option (and ‘-std’ options for strict ISO
C conformance) implies ‘~trigraphs’.

-traditional
-traditional-cpp

Formerly, these options caused GCC to attempt to emulate a pre-standard C
compiler. They are now only supported with the ‘~E’ switch. The preprocessor
continues to support a pre-standard mode. See the GNU CPP manual for
details.

—-fcond-mismatch

Allow conditional expressions with mismatched types in the second and third
arguments. The value of such an expression is void. This option is not supported
for C++.

—-flax-vector-conversions

Allow implicit conversions between vectors with differing numbers of elements
and/or incompatible element types. This option should not be used for new
code.

Chapter 3: GCC Command Options 37

-funsigned-char
Let the type char be unsigned, like unsigned char.

Each kind of machine has a default for what char should be. It is either like
unsigned char by default or like signed char by default.

Ideally, a portable program should always use signed char or unsigned char
when it depends on the signedness of an object. But many programs have been
written to use plain char and expect it to be signed, or expect it to be unsigned,
depending on the machines they were written for. This option, and its inverse,
let you make such a program work with the opposite default.

The type char is always a distinct type from each of signed char or unsigned
char, even though its behavior is always just like one of those two.

-fsigned-char
Let the type char be signed, like signed char.

Note that this is equivalent to ‘~fno-unsigned-char’, which is the negative
form of ‘~funsigned-char’. Likewise, the option ‘~fno-signed-char’ is equiv-
alent to ‘~funsigned-char’.

-fsigned-bitfields

-funsigned-bitfields

-fno-signed-bitfields

-fno-unsigned-bitfields
These options control whether a bit-field is signed or unsigned, when the dec-
laration does not use either signed or unsigned. By default, such a bit-field is
signed, because this is consistent: the basic integer types such as int are signed

types.

3.5 Options Controlling C++ Dialect

This section describes the command-line options that are only meaningful for C++ programs.
You can also use most of the GNU compiler options regardless of what language your
program is in. For example, you might compile a file firstClass.C like this:

g++ -g —frepo -0 -c firstClass.C
In this example, only ‘~frepo’ is an option meant only for C++ programs; you can use the
other options with any language supported by GCC.

Here is a list of options that are only for compiling C++ programs:
—-fabi-version=n
Use version n of the C++ ABI. The default is version 2.

Version 0 refers to the version conforming most closely to the C++ ABI spec-
ification. Therefore, the ABI obtained using version 0 will change in different
versions of G++ as ABI bugs are fixed.

Version 1 is the version of the C++ ABI that first appeared in G++ 3.2.
Version 2 is the version of the C++ ABI that first appeared in G++ 3.4.

Version 3 corrects an error in mangling a constant address as a template argu-
ment.

38

Using the GNU Compiler Collection (GCC)

Version 4, which first appeared in G++ 4.5, implements a standard mangling
for vector types.

Version 5, which first appeared in G++ 4.6, corrects the mangling of attribute
const/volatile on function pointer types, decltype of a plain decl, and use of a
function parameter in the declaration of another parameter.

Version 6, which first appeared in G++ 4.7, corrects the promotion behav-
ior of C++11 scoped enums and the mangling of template argument packs,
const /static_cast, prefix ++ and —, and a class scope function used as a tem-
plate argument.

See also ‘-Wabi’.

-fno-access-control

Turn off all access checking. This switch is mainly useful for working around
bugs in the access control code.

—fcheck-new

Check that the pointer returned by operator new is non-null before attempting
to modify the storage allocated. This check is normally unnecessary because
the C++ standard specifies that operator new only returns 0 if it is declared
‘throw()’, in which case the compiler always checks the return value even with-
out this option. In all other cases, when operator new has a non-empty ex-
ception specification, memory exhaustion is signalled by throwing std: :bad_
alloc. See also ‘new (nothrow)’.

-fconstexpr-depth=n

Set the maximum nested evaluation depth for C++11 constexpr functions to
n. A limit is needed to detect endless recursion during constant expression
evaluation. The minimum specified by the standard is 512.

—-fdeduce-init-1list

Enable deduction of a template type parameter as std::initializer_list
from a brace-enclosed initializer list, i.e.
template <class T> auto forward(T t) -> decltype (realfn (t))

{
return realfn (t);
}
void f()
{
forward({1,2}); // call forward<std::initializer_list<int>>
}

This deduction was implemented as a possible extension to the originally pro-
posed semantics for the C++11 standard, but was not part of the final standard,
so it is disabled by default. This option is deprecated, and may be removed in
a future version of G++.

-ffriend-injection

Inject friend functions into the enclosing namespace, so that they are visible
outside the scope of the class in which they are declared. Friend functions were
documented to work this way in the old Annotated C++ Reference Manual, and

Chapter 3: GCC Command Options 39

versions of G++ before 4.1 always worked that way. However, in ISO C++ a
friend function that is not declared in an enclosing scope can only be found
using argument dependent lookup. This option causes friends to be injected as
they were in earlier releases.

This option is for compatibility, and may be removed in a future release of G++.

-fno-elide-constructors
The C++ standard allows an implementation to omit creating a temporary that
is only used to initialize another object of the same type. Specifying this option
disables that optimization, and forces G++ to call the copy constructor in all
cases.

-fno-enforce-eh-specs
Don’t generate code to check for violation of exception specifications at run
time. This option violates the C++ standard, but may be useful for reducing
code size in production builds, much like defining ‘NDEBUG’. This does not give
user code permission to throw exceptions in violation of the exception specifi-
cations; the compiler still optimizes based on the specifications, so throwing an
unexpected exception results in undefined behavior at run time.

-fextern-tls-init

-fno-extern-tls-init
The C++11 and OpenMP standards allow ‘thread_local’ and ‘threadprivate’
variables to have dynamic (runtime) initialization. To support this, any use of
such a variable goes through a wrapper function that performs any necessary
initialization. When the use and definition of the variable are in the same
translation unit, this overhead can be optimized away, but when the use is in a
different translation unit there is significant overhead even if the variable doesn’t
actually need dynamic initialization. If the programmer can be sure that no
use of the variable in a non-defining TU needs to trigger dynamic initialization
(either because the variable is statically initialized, or a use of the variable in
the defining TU will be executed before any uses in another TU), they can avoid
this overhead with the ‘~fno-extern-tls-init’ option.

On targets that support symbol aliases, the default is ‘-fextern-tls-init’.
On targets that do mnot support symbol aliases, the default is
‘~fno-extern-tls-init’.

-ffor-scope

-fno-for-scope
If ‘~ffor-scope’ is specified, the scope of variables declared in a for-init-
statement is limited to the ‘for’ loop itself, as specified by the C++ standard.
If ‘“~fno-for-scope’ is specified, the scope of variables declared in a for-init-
statement extends to the end of the enclosing scope, as was the case in old
versions of G++, and other (traditional) implementations of C++.

If neither flag is given, the default is to follow the standard, but to allow and give
a warning for old-style code that would otherwise be invalid, or have different
behavior.

40 Using the GNU Compiler Collection (GCC)

-fno-gnu-keywords
Do not recognize typeof as a keyword, so that code can use this word as
an identifier. You can use the keyword __typeof__ instead. ‘-ansi’ implies
‘~fno-gnu-keywords’.

-fno-implicit-templates
Never emit code for non-inline templates that are instantiated implicitly (i.e.
by use); only emit code for explicit instantiations. See Section 7.5 [Template
Instantiation], page 706, for more information.

-fno-implicit-inline-templates
Don’t emit code for implicit instantiations of inline templates, either. The
default is to handle inlines differently so that compiles with and without opti-
mization need the same set of explicit instantiations.

-fno-implement-inlines
To save space, do not emit out-of-line copies of inline functions controlled by
‘#pragma implementation’. This causes linker errors if these functions are not
inlined everywhere they are called.

-fms-extensions
Disable Wpedantic warnings about constructs used in MFC, such as implicit
int and getting a pointer to member function via non-standard syntax.

-fno-nonansi-builtins
Disable built-in declarations of functions that are not mandated by ANSI/ISO
C. These include ffs, alloca, _exit, index, bzero, conjf, and other related
functions.

-fnothrow-opt

Treat a throw() exception specification as if it were a noexcept specification to
reduce or eliminate the text size overhead relative to a function with no excep-
tion specification. If the function has local variables of types with non-trivial
destructors, the exception specification actually makes the function smaller be-
cause the EH cleanups for those variables can be optimized away. The semantic
effect is that an exception thrown out of a function with such an exception spec-
ification results in a call to terminate rather than unexpected.

-fno-operator-names
Do not treat the operator name keywords and, bitand, bitor, compl, not, or
and xor as synonyms as keywords.

-fno-optional-diags
Disable diagnostics that the standard says a compiler does not need to issue.
Currently, the only such diagnostic issued by G++ is the one for a name having
multiple meanings within a class.

—fpermissive
Downgrade some diagnostics about nonconformant code from errors to warn-
ings. Thus, using ‘-fpermissive’ allows some nonconforming code to compile.

Chapter 3: GCC Command Options 41

-fno-pretty-templates

-frepo

—-fno-rtti

-fstats

When an error message refers to a specialization of a function template, the com-
piler normally prints the signature of the template followed by the template ar-
guments and any typedefs or typenames in the signature (e.g. void £(T) [with
T = int] rather than void f (int)) so that it’s clear which template is involved.
When an error message refers to a specialization of a class template, the com-
piler omits any template arguments that match the default template arguments
for that template. If either of these behaviors make it harder to understand
the error message rather than easier, you can use ‘-fno-pretty-templates’ to
disable them.

Enable automatic template instantiation at link time. This option also im-
plies ‘~fno-implicit-templates’. See Section 7.5 [Template Instantiation],
page 706, for more information.

Disable generation of information about every class with virtual functions
for use by the C++ run-time type identification features (‘dynamic_cast’
and ‘typeid’). If you don’t use those parts of the language, you can save
some space by using this flag. Note that exception handling uses the same
information, but G++ generates it as needed. The ‘dynamic_cast’ operator
can still be used for casts that do not require run-time type information, i.e.
casts to void * or to unambiguous base classes.

Emit statistics about front-end processing at the end of the compilation. This
information is generally only useful to the G++ development team.

-fstrict-enums

Allow the compiler to optimize using the assumption that a value of enumerated
type can only be one of the values of the enumeration (as defined in the C++
standard; basically, a value that can be represented in the minimum number
of bits needed to represent all the enumerators). This assumption may not be
valid if the program uses a cast to convert an arbitrary integer value to the
enumerated type.

-ftemplate-backtrace-limit=n

Set the maximum number of template instantiation notes for a single warning
or error to n. The default value is 10.

-ftemplate-depth=n

Set the maximum instantiation depth for template classes to n. A limit on
the template instantiation depth is needed to detect endless recursions during
template class instantiation. ANSI/ISO C++ conforming programs must not
rely on a maximum depth greater than 17 (changed to 1024 in C++11). The
default value is 900, as the compiler can run out of stack space before hitting
1024 in some situations.

—-fno-threadsafe-statics

Do not emit the extra code to use the routines specified in the C++ ABI for
thread-safe initialization of local statics. You can use this option to reduce code
size slightly in code that doesn’t need to be thread-safe.

42 Using the GNU Compiler Collection (GCC)

-fuse-cxa-atexit
Register destructors for objects with static storage duration with the __cxa_
atexit function rather than the atexit function. This option is required for
fully standards-compliant handling of static destructors, but only works if your
C library supports __cxa_atexit.

-fno-use-cxa-get-exception-ptr
Don’t use the __cxa_get_exception_ptr runtime routine. This causes

std: :uncaught_exception to be incorrect, but is necessary if the runtime
routine is not available.

—-fvisibility-inlines-hidden
This switch declares that the user does not attempt to compare pointers to
inline functions or methods where the addresses of the two functions are taken
in different shared objects.

The effect of this is that GCC may, effectively, mark inline methods with __
attribute__ ((visibility ("hidden"))) so that they do not appear in the
export table of a DSO and do not require a PLT indirection when used within
the DSO. Enabling this option can have a dramatic effect on load and link
times of a DSO as it massively reduces the size of the dynamic export table
when the library makes heavy use of templates.

The behavior of this switch is not quite the same as marking the methods as
hidden directly, because it does not affect static variables local to the function
or cause the compiler to deduce that the function is defined in only one shared
object.

You may mark a method as having a visibility explicitly to negate the effect of
the switch for that method. For example, if you do want to compare pointers
to a particular inline method, you might mark it as having default visibility.
Marking the enclosing class with explicit visibility has no effect.

Explicitly instantiated inline methods are unaffected by this option as their link-
age might otherwise cross a shared library boundary. See Section 7.5 [Template
Instantiation], page 706.
-fvisibility-ms-compat
This flag attempts to use visibility settings to make GCC’s C++ linkage model
compatible with that of Microsoft Visual Studio.
The flag makes these changes to GCC’s linkage model:
1. Tt sets the default visibility to hidden, like ‘~fvisibility=hidden’.
2. Types, but not their members, are not hidden by default.
3. The One Definition Rule is relaxed for types without explicit visibility
specifications that are defined in more than one shared object: those dec-
larations are permitted if they are permitted when this option is not used.

In new code it is better to use ‘~fvisibility=hidden’ and export those classes
that are intended to be externally visible. Unfortunately it is possible for code
to rely, perhaps accidentally, on the Visual Studio behavior.

Among the consequences of these changes are that static data members of
the same type with the same name but defined in different shared objects are

Chapter 3: GCC Command Options 43

different, so changing one does not change the other; and that pointers to
function members defined in different shared objects may not compare equal.
When this flag is given, it is a violation of the ODR to define types with the
same name differently.

-fvtable-verify=std|preinit|none

Turn on (or off, if using ‘~fvtable-verify=none’) the security feature that
verifies at runtime, for every virtual call that is made, that the vtable pointer
through which the call is made is valid for the type of the object, and has
not been corrupted or overwritten. If an invalid vtable pointer is detected (at
runtime), an error is reported and execution of the program is immediately

halted.

This option causes runtime data structures to be built, at program start up, for
verifying the vtable pointers. The options std and preinit control the timing
of when these data structures are built. In both cases the data structures
are built before execution reaches 'main’. The ‘~fvtable-verify=std’ causes
these data structure to be built after the shared libraries have been loaded and
initialized. ‘-fvtable-verify=preinit’ causes them to be built before the
shared libraries have been loaded and initialized.

If this option appears multiple times in the compiler line, with different values
specified, 'none’ will take highest priority over both ’std’ and ’preinit’; "preinit’
will take priority over ’std’.

-fvtv-debug

Causes debug versions of the runtime functions for the vtable verification
feature to be called. This assumes the ‘-fvtable-verify=std’ or
‘~fvtable-verify=preinit’ has been used. This flag will also cause the
compiler to keep track of which vtable pointers it found for each class, and
record that information in the file “vtv_set_ptr_data.log”, in the dump file
directory on the user’s machine.

Note: This feature APPENDS data to the log file. If you want a fresh log file,
be sure to delete any existing one.

—-fvtv-counts

-fno-weak

This is a debugging flag. When wused in conjunction with
‘~-fvtable-verify=std’ or ‘-fvtable-verify=preinit’, this causes
the compiler to keep track of the total number of virtual calls it encountered
and the number of verifications it inserted. It also counts the number of
calls to certain runtime library functions that it inserts. This information,
for each compilation unit, is written to a file named “vtv_count_data.log”,
in the dump_file directory on the user’s machine. It also counts the size
of the vtable pointer sets for each class, and writes this information to
“vtv_class_set_sizes.log” in the same directory.

Note: This feature APPENDS data to the log files. To get a fresh log files, be
sure to delete any existing ones.

Do not use weak symbol support, even if it is provided by the linker. By
default, G++ uses weak symbols if they are available. This option exists only

44 Using the GNU Compiler Collection (GCC)

for testing, and should not be used by end-users; it results in inferior code and
has no benefits. This option may be removed in a future release of G++.

-nostdinc++
Do not search for header files in the standard directories specific to C++, but do
still search the other standard directories. (This option is used when building
the C++ library.)

In addition, these optimization, warning, and code generation options have meanings only
for C++ programs:

-Wabi (C, Objective-C, C++ and Objective-C++ only)
Warn when G++ generates code that is probably not compatible with the
vendor-neutral C++ ABI. Although an effort has been made to warn about
all such cases, there are probably some cases that are not warned about, even
though G++ is generating incompatible code. There may also be cases where
warnings are emitted even though the code that is generated is compatible.

You should rewrite your code to avoid these warnings if you are concerned about
the fact that code generated by G++ may not be binary compatible with code
generated by other compilers.

The known incompatibilities in ‘~fabi-version=2’ (the default) include:

e A template with a non-type template parameter of reference type is man-
gled incorrectly:
extern int N;
template <int &> struct S {};
void n (S<N>) {2}
This is fixed in ‘-fabi-version=3’.
e SIMD vector types declared using __attribute ((vector_size)) are
mangled in a non-standard way that does not allow for overloading of
functions taking vectors of different sizes.

The mangling is changed in ‘~fabi-version=4’.
The known incompatibilities in ‘-fabi-version=1’ include:

e Incorrect handling of tail-padding for bit-fields. G++ may attempt to pack

data into the same byte as a base class. For example:

struct A { virtual void f(); int f1 : 1; };

struct B : public A { int £2 : 1; };
In this case, G++ places B: : £2 into the same byte as A: : £1; other compilers
do not. You can avoid this problem by explicitly padding A so that its size
is a multiple of the byte size on your platform; that causes G++ and other
compilers to lay out B identically.

e Incorrect handling of tail-padding for virtual bases. G++ does not use tail
padding when laying out virtual bases. For example:
struct A { virtual void f(); char ci; };
struct B { B(); char c2; };
struct C : public A, public virtual B {};
In this case, G++ does not place B into the tail-padding for A; other compil-
ers do. You can avoid this problem by explicitly padding A so that its size

Chapter 3: GCC Command Options 45

is a multiple of its alignment (ignoring virtual base classes); that causes
G++ and other compilers to lay out C identically.

e Incorrect handling of bit-fields with declared widths greater than that of
their underlying types, when the bit-fields appear in a union. For example:
union U { int i : 4096; };

Assuming that an int does not have 4096 bits, G++ makes the union too
small by the number of bits in an int.

e Empty classes can be placed at incorrect offsets. For example:
struct A {};

struct B {
A a;
virtual void £ ();

};

struct C : public B, public A {};

G++ places the A base class of C at a nonzero offset; it should be placed at
offset zero. G++ mistakenly believes that the A data member of B is already
at offset zero.

e Names of template functions whose types involve typename or template
template parameters can be mangled incorrectly.

template <typename Q>
void f(typename Q::X) {}

template <template <typename> class Q>
void f(typename Q<int>::X) {}

Instantiations of these templates may be mangled incorrectly.

It also warns about psABIl-related changes. The known psABI changes at this
point include:

e For SysV/x86-64, unions with long double members are passed in memory
as specified in psABI. For example:

union U {
long double 1d;
int i;

};

union U is always passed in memory.

-Wctor-dtor-privacy (C++ and Objective-C++ only)
Warn when a class seems unusable because all the constructors or destructors
in that class are private, and it has neither friends nor public static member
functions. Also warn if there are no non-private methods, and there’s at least
one private member function that isn’t a constructor or destructor.

-Wdelete-non-virtual-dtor (C++ and Objective-C++ only)
Warn when ‘delete’ is used to destroy an instance of a class that has virtual
functions and non-virtual destructor. It is unsafe to delete an instance of a
derived class through a pointer to a base class if the base class does not have a
virtual destructor. This warning is enabled by ‘-Wall’.

46 Using the GNU Compiler Collection (GCC)

-Wliteral-suffix (C++ and Objective-C++ only)
Warn when a string or character literal is followed by a ud-suffix which does not
begin with an underscore. As a conforming extension, GCC treats such suffixes
as separate preprocessing tokens in order to maintain backwards compatibility
with code that uses formatting macros from <inttypes.h>. For example:
#define __STDC_FORMAT_MACROS

#include <inttypes.h>
#include <stdio.h>

int main() {

int64_t i64 = 123;

printf("My int64: %"PRId64"\n", i64);
}

In this case, PRId64 is treated as a separate preprocessing token.

This warning is enabled by default.

-Wnarrowing (C++ and Objective-C++ only)
Warn when a narrowing conversion prohibited by C++11 occurs within ‘{ },
e.g.

int i = { 2.2 }; // error: narrowing from double to int
This flag is included in ‘-Wall’ and ‘-Wc++11-compat’.
With ‘-std=c++11’, ‘~Wno-narrowing’ suppresses the diagnostic required by

the standard. Note that this does not affect the meaning of well-formed code;
narrowing conversions are still considered ill-formed in SFINAE context.

-Wnoexcept (C++ and Objective-C++ only)
Warn when a noexcept-expression evaluates to false because of a call to a func-
tion that does not have a non-throwing exception specification (i.e. ‘throw()’
or ‘noexcept’) but is known by the compiler to never throw an exception.

-Wnon-virtual-dtor (C++ and Objective-C++ only)
Warn when a class has virtual functions and an accessible non-virtual destructor
itself or in an accessible polymorphic base class, in which case it is possible but
unsafe to delete an instance of a derived class through a pointer to the class itself
or base class. This warning is automatically enabled if ‘-Weffc++’ is specified.

-Wreorder (C++ and Objective-C++ only)
Warn when the order of member initializers given in the code does not match
the order in which they must be executed. For instance:

struct A {

int i;

int j;

AO: § (@, i (1) {3}
};
The compiler rearranges the member initializers for ‘i’ and ‘j’ to match the
declaration order of the members, emitting a warning to that effect. This

warning is enabled by ‘-Wall’.

-fext-numeric-literals (C++ and Objective-C++ only)
Accept imaginary, fixed-point, or machine-defined literal number suffixes as
GNU extensions. When this option is turned off these suffixes are treated

Chapter 3: GCC Command Options 47

as C++11 user-defined literal numeric suffixes. This is on by default for all
pre-C++11 dialects and all GNU dialects: ‘-std=c++98’, ‘-std=gnu++98’,
‘-std=gnu++11’, ‘-std=gnu++1y’. This option is off by default for ISO C++11
onwards (‘-std=c++11’, ...).

The following ‘-W. ..’ options are not affected by ‘-Wall’.

-Weffc++ (C++ and Objective-C++ only)
Warn about violations of the following style guidelines from Scott Meyers’ Ef-
fective C++ series of books:

e Define a copy constructor and an assignment operator for classes with
dynamically-allocated memory.

e Prefer initialization to assignment in constructors.
e Have operator= return a reference to *this.
e Don’t try to return a reference when you must return an object.

e Distinguish between prefix and postfix forms of increment and decrement
operators.

e Never overload &&, ||, or ,.

This option also enables ‘~Wnon-virtual-dtor’, which is also one of the effec-
tive C++ recommendations. However, the check is extended to warn about the
lack of virtual destructor in accessible non-polymorphic bases classes too.

When selecting this option, be aware that the standard library headers do not
obey all of these guidelines; use ‘grep -v’ to filter out those warnings.

-Wstrict-null-sentinel (C++ and Objective-C++ only)
Warn about the use of an uncasted NULL as sentinel. When compiling only with
GCC this is a valid sentinel, as NULL is defined to __null. Although it is a null
pointer constant rather than a null pointer, it is guaranteed to be of the same
size as a pointer. But this use is not portable across different compilers.

-Wno-non-template-friend (C++ and Objective-C++ only)

Disable warnings when non-templatized friend functions are declared within a
template. Since the advent of explicit template specification support in G++,
if the name of the friend is an unqualified-id (i.e., ‘friend foo(int)’), the
C++ language specification demands that the friend declare or define an ordi-
nary, nontemplate function. (Section 14.5.3). Before G++ implemented explicit
specification, unqualified-ids could be interpreted as a particular specialization
of a templatized function. Because this non-conforming behavior is no longer
the default behavior for G++, ‘~Wnon-template-friend’ allows the compiler to
check existing code for potential trouble spots and is on by default. This new
compiler behavior can be turned off with ‘~-Wno-non-template-friend’, which
keeps the conformant compiler code but disables the helpful warning.

-Wold-style-cast (C++ and Objective-C++ only)
Warn if an old-style (C-style) cast to a non-void type is used within
a C++ program. The new-style casts (‘dynamic_cast’, ‘static_cast’,
‘reinterpret_cast’, and ‘const_cast’) are less vulnerable to unintended
effects and much easier to search for.

48 Using the GNU Compiler Collection (GCC)

-Woverloaded-virtual (C++ and Objective-C++ only)
Warn when a function declaration hides virtual functions from a base class. For
example, in:
struct A {

virtual void f£(Q);

};

struct B: public A {
void f(int);
};
the A class version of f is hidden in B, and code like:
B*x b;
b->f(0);

fails to compile.

-Wno-pmf-conversions (C++ and Objective-C++ only)
Disable the diagnostic for converting a bound pointer to member function to a
plain pointer.

-Wsign-promo (C++ and Objective-C++ only)
Warn when overload resolution chooses a promotion from unsigned or enumer-
ated type to a signed type, over a conversion to an unsigned type of the same
size. Previous versions of G++ tried to preserve unsignedness, but the standard
mandates the current behavior.

3.6 Options Controlling Objective-C and Objective-C++
Dialects

(NOTE: This manual does not describe the Objective-C and Objective-C++ languages them-
selves. See Chapter 2 [Language Standards Supported by GCC], page 5, for references.)

This section describes the command-line options that are only meaningful for Objective-
C and Objective-C++ programs. You can also use most of the language-independent GNU
compiler options. For example, you might compile a file some_class.m like this:

gcc -g —fgnu-runtime -0 -c some_class.m

In this example, ‘~fgnu-runtime’ is an option meant only for Objective-C and Objective-
C++ programs; you can use the other options with any language supported by GCC.

Note that since Objective-C is an extension of the C language, Objective-C compila-
tions may also use options specific to the C front-end (e.g., ‘-Wtraditional’). Similarly,
Objective-C++ compilations may use C++-specific options (e.g., ‘-Wabi’).

Here is a list of options that are only for compiling Objective-C and Objective-C++
programs:

-fconstant-string-class=class-name
Use class-name as the name of the class to instantiate for each literal string
specified with the syntax @"...". The default class name is NXConstantString
if the GNU runtime is being used, and NSConstantString if the NeX'T runtime
is being used (see below). The ‘~fconstant-cfstrings’ option, if also present,
overrides the ‘-fconstant-string-class’ setting and cause @"..." literals to
be laid out as constant CoreFoundation strings.

Chapter 3: GCC Command Options 49

-fgnu-runtime
Generate object code compatible with the standard GNU Objective-C runtime.
This is the default for most types of systems.

—-fnext-runtime
Generate output compatible with the NeXT runtime. This is the default for
NeXT-based systems, including Darwin and Mac OS X. The macro __NEXT_
RUNTIME__ is predefined if (and only if) this option is used.

-fno-nil-receivers
Assume that all Objective-C message dispatches ([receiver message:arg]) in
this translation unit ensure that the receiver is not nil. This allows for more
efficient entry points in the runtime to be used. This option is only available in
conjunction with the NeXT runtime and ABI version 0 or 1.

-fobjc-abi-version=n

Use version n of the Objective-C ABI for the selected runtime. This option is
currently supported only for the NeXT runtime. In that case, Version 0 is the
traditional (32-bit) ABI without support for properties and other Objective-
C 2.0 additions. Version 1 is the traditional (32-bit) ABI with support for
properties and other Objective-C 2.0 additions. Version 2 is the modern (64-bit)
ABI. If nothing is specified, the default is Version 0 on 32-bit target machines,
and Version 2 on 64-bit target machines.

-fobjc-call-cxx-cdtors

For each Objective-C class, check if any of its instance variables is a C++ ob-
ject with a non-trivial default constructor. If so, synthesize a special - (id)
.cxx_construct instance method which runs non-trivial default constructors
on any such instance variables, in order, and then return self. Similarly, check
if any instance variable is a C++ object with a non-trivial destructor, and if
S0, synthesize a special - (void) .cxx_destruct method which runs all such
default destructors, in reverse order.

The - (id) .cxx_construct and - (void) .cxx_destruct methods thusly
generated only operate on instance variables declared in the current
Objective-C class, and not those inherited from superclasses. It is the
responsibility of the Objective-C runtime to invoke all such methods in an
object’s inheritance hierarchy. The - (id) .cxx_construct methods are
invoked by the runtime immediately after a new object instance is allocated;
the - (void) .cxx_destruct methods are invoked immediately before the
runtime deallocates an object instance.

As of this writing, only the NeXT runtime on Mac OS X 10.4 and later has sup-
port for invoking the - (id) .cxx_construct and - (void) .cxx_destruct
methods.

-fobjc-direct-dispatch
Allow fast jumps to the message dispatcher. On Darwin this is accomplished
via the comm page.

50

Using the GNU Compiler Collection (GCC)

-fobjc-exceptions

-fobjc-gc

Enable syntactic support for structured exception handling in Objective-C, sim-
ilar to what is offered by C++ and Java. This option is required to use the
Objective-C keywords @try, @throw, @catch, @finally and @synchronized.
This option is available with both the GNU runtime and the NeXT runtime
(but not available in conjunction with the NeXT runtime on Mac OS X 10.2
and earlier).

Enable garbage collection (GC) in Objective-C and Objective-C++ programs.
This option is only available with the NeXT runtime; the GNU runtime has a
different garbage collection implementation that does not require special com-
piler flags.

-fobjc-nilcheck

For the NeXT runtime with version 2 of the ABI, check for a nil receiver in
method invocations before doing the actual method call. This is the default
and can be disabled using ‘~fno-objc-nilcheck’. Class methods and super
calls are never checked for nil in this way no matter what this flag is set to.
Currently this flag does nothing when the GNU runtime, or an older version of
the NeXT runtime ABI, is used.

-fobjc-std=objcl

-freplace-

Conform to the language syntax of Objective-C 1.0, the language recognized by
GCC 4.0. This only affects the Objective-C additions to the C/C++ language;
it does not affect conformance to C/C++ standards, which is controlled by
the separate C/C++ dialect option flags. When this option is used with the
Objective-C or Objective-C++ compiler, any Objective-C syntax that is not
recognized by GCC 4.0 is rejected. This is useful if you need to make sure that
your Objective-C code can be compiled with older versions of GCC.

objc-classes

Emit a special marker instructing 1d(1) not to statically link in the resulting
object file, and allow dyld(1) to load it in at run time instead. This is used
in conjunction with the Fix-and-Continue debugging mode, where the object
file in question may be recompiled and dynamically reloaded in the course of
program execution, without the need to restart the program itself. Currently,
Fix-and-Continue functionality is only available in conjunction with the NeXT
runtime on Mac OS X 10.3 and later.

—-fzero-link

When compiling for the NeXT runtime, the compiler ordinarily replaces calls to
objc_getClass("...") (when the name of the class is known at compile time)
with static class references that get initialized at load time, which improves run-
time performance. Specifying the ‘~fzero-1link’ flag suppresses this behavior
and causes calls to objc_getClass("...") to be retained. This is useful in
Zero-Link debugging mode, since it allows for individual class implementations
to be modified during program execution. The GNU runtime currently always
retains calls to objc_get_class("...") regardless of command-line options.

Chapter 3: GCC Command Options 51

-gen-decls
Dump interface declarations for all classes seen in the source file to a file named
‘sourcename.decl’.

-Wassign-intercept (Objective-C and Objective-C++ only)
Warn whenever an Objective-C assignment is being intercepted by the garbage
collector.

-Wno-protocol (Objective-C and Objective-C++ only)
If a class is declared to implement a protocol, a warning is issued for every
method in the protocol that is not implemented by the class. The default
behavior is to issue a warning for every method not explicitly implemented in the
class, even if a method implementation is inherited from the superclass. If you
use the ‘~Wno-protocol’ option, then methods inherited from the superclass
are considered to be implemented, and no warning is issued for them.

-Wselector (Objective-C and Objective-C++ only)

Warn if multiple methods of different types for the same selector are found
during compilation. The check is performed on the list of methods in the
final stage of compilation. Additionally, a check is performed for each selector
appearing in a @selector(...) expression, and a corresponding method for
that selector has been found during compilation. Because these checks scan the
method table only at the end of compilation, these warnings are not produced
if the final stage of compilation is not reached, for example because an error
is found during compilation, or because the ‘~fsyntax-only’ option is being
used.

-Wstrict-selector-match (Objective-C and Objective-C++ only)
Warn if multiple methods with differing argument and/or return types are found
for a given selector when attempting to send a message using this selector to
a receiver of type id or Class. When this flag is off (which is the default
behavior), the compiler omits such warnings if any differences found are confined
to types that share the same size and alignment.

-Wundeclared-selector (Objective-C and Objective-C++ only)

Warn if a @selector(...) expression referring to an undeclared selector is
found. A selector is considered undeclared if no method with that name has
been declared before the @selector(...) expression, either explicitly in an
@interface or @protocol declaration, or implicitly in an @implementation
section. This option always performs its checks as soon as a @selector(...)
expression is found, while ‘-Wselector’ only performs its checks in the final
stage of compilation. This also enforces the coding style convention that meth-
ods and selectors must be declared before being used.

-print-objc-runtime-info
Generate C header describing the largest structure that is passed by value, if
any.

52 Using the GNU Compiler Collection (GCC)

3.7 Options to Control Diagnostic Messages Formatting

Traditionally, diagnostic messages have been formatted irrespective of the output device’s
aspect (e.g. its width, ...). You can use the options described below to control the for-
matting algorithm for diagnostic messages, e.g. how many characters per line, how often
source location information should be reported. Note that some language front ends may
not honor these options.

-fmessage-length=n
Try to format error messages so that they fit on lines of about n characters. The
default is 72 characters for g++ and 0 for the rest of the front ends supported by
GCC. If n is zero, then no line-wrapping is done; each error message appears
on a single line.

-fdiagnostics-show-location=once
Only meaningful in line-wrapping mode. Instructs the diagnostic messages re-
porter to emit source location information once; that is, in case the message
is too long to fit on a single physical line and has to be wrapped, the source
location won’t be emitted (as prefix) again, over and over, in subsequent con-
tinuation lines. This is the default behavior.

-fdiagnostics-show-location=every-line
Only meaningful in line-wrapping mode. Instructs the diagnostic messages
reporter to emit the same source location information (as prefix) for physical
lines that result from the process of breaking a message which is too long to fit
on a single line.

-fdiagnostics-color [=WHEN]

-fno-diagnostics-color
Use color in diagnostics. @~ WHEN is ‘never’, ‘always’, or ‘auto’. The
default is ‘never’ if GCC_COLORS environment variable isn’t present in the
environment, and ‘auto’ otherwise. ‘auto’ means to use color only when
the standard error is a terminal. The forms ‘-fdiagnostics-color’ and
‘~fno-diagnostics-color’ are aliases for ‘-fdiagnostics-color=always’
and ‘-fdiagnostics-color=never’, respectively.
The colors are defined by the environment variable GCC_COLORS. Its value is
a colon-separated list of capabilities and Select Graphic Rendition (SGR) sub-
strings. SGR commands are interpreted by the terminal or terminal emulator.
(See the section in the documentation of your text terminal for permitted values
and their meanings as character attributes.) These substring values are integers
in decimal representation and can be concatenated with semicolons. Common
values to concatenate include ‘1’ for bold, ‘4’ for underline, ‘5’ for blink, ‘7’ for
inverse, ‘39’ for default foreground color, ‘30’ to ‘37’ for foreground colors, ‘90’
to ‘97’ for 16-color mode foreground colors, ‘38;5;0’ to ‘38;5;255’ for 88-color
and 256-color modes foreground colors, ‘49’ for default background color, ‘40’
to ‘47’ for background colors, ‘100’ to ‘107’ for 16-color mode background col-
ors, and ‘48;5;0’ to ‘48;5;255" for 88-color and 256-color modes background
colors.
The default GCC_COLORS is ‘error=01;31:warning=01;35:note=01;36:caret=01;32:1ocus=01:¢
where ‘01;31’ is bold red, ‘01;35’ is bold magenta, ‘01;36’ is bold cyan,

Chapter 3: GCC Command Options 53

‘01;32’ is bold green and ‘01’ is bold. Setting GCC_COLORS to the empty string
disables colors. Supported capabilities are as follows.

error= SGR substring for error: markers.

warning= SGR substring for warning: markers.

note= SGR substring for note: markers.
caret= SGR substring for caret line.
locus= SGR substring for location information, ‘file:line’ or

‘file:line:column’ etc.
quote= SGR substring for information printed within quotes.

-fno-diagnostics-show-option
By default, each diagnostic emitted includes text indicating the command-line
option that directly controls the diagnostic (if such an option is known to the
diagnostic machinery). Specifying the ‘~fno-diagnostics-show-option’ flag
suppresses that behavior.

-fno-diagnostics—-show-caret
By default, each diagnostic emitted includes the original source line and a caret
’~? indicating the column. This option suppresses this information.

3.8 Options to Request or Suppress Warnings

Warnings are diagnostic messages that report constructions that are not inherently erro-
neous but that are risky or suggest there may have been an error.

The following language-independent options do not enable specific warnings but control
the kinds of diagnostics produced by GCC.

-fsyntax-only
Check the code for syntax errors, but don’t do anything beyond that.

-fmax-errors=n
Limits the maximum number of error messages to n, at which point GCC bails
out rather than attempting to continue processing the source code. If n is 0
(the default), there is no limit on the number of error messages produced. If
‘-Wfatal-errors’ is also specified, then ‘-Wfatal-errors’ takes precedence
over this option.

-w Inhibit all warning messages.
-Werror Make all warnings into errors.

-Werror= Make the specified warning into an error. The specifier for a warning is
appended; for example ‘-Werror=switch’ turns the warnings controlled by
‘-Wswitch’ into errors. This switch takes a negative form, to be used to negate
‘-Werror’ for specific warnings; for example ‘-Wno-error=switch’ makes
‘~Wswitch’ warnings not be errors, even when ‘~Werror’ is in effect.

The warning message for each controllable warning includes the option that
controls the warning. That option can then be used with ‘-Werror=" and

54 Using the GNU Compiler Collection (GCC)

‘~Wno-error=" as described above. (Printing of the option in the warning mes-
sage can be disabled using the ‘~fno-diagnostics-show-option’ flag.)

Note that specifying ‘-Werror="foo automatically implies ‘-Wfoo. However,
‘~Wno-error="foo does not imply anything.

-Wfatal-errors
This option causes the compiler to abort compilation on the first error occurred
rather than trying to keep going and printing further error messages.

You can request many specific warnings with options beginning with ‘-W’, for example
‘~Wimplicit’ to request warnings on implicit declarations. Each of these specific warn-
ing options also has a negative form beginning ‘~Wno-’ to turn off warnings; for example,
‘~Wno-implicit’. This manual lists only one of the two forms, whichever is not the default.
For further language-specific options also refer to Section 3.5 [C++ Dialect Options], page 37
and Section 3.6 [Objective-C and Objective-C++ Dialect Options], page 48.

When an unrecognized warning option is requested (e.g., ‘~Wunknown-warning’),
GCC emits a diagnostic stating that the option is not recognized. However, if the
‘-Wno-’ form is used, the behavior is slightly different: no diagnostic is produced for
‘~Wno-unknown-warning’ unless other diagnostics are being produced. This allows the
use of new ‘-Wno-’ options with old compilers, but if something goes wrong, the compiler
warns that an unrecognized option is present.

-Wpedantic

-pedantic
Issue all the warnings demanded by strict ISO C and ISO C++; reject all pro-
grams that use forbidden extensions, and some other programs that do not

follow ISO C and ISO C++. For ISO C, follows the version of the ISO C stan-
dard specified by any ‘-std’ option used.

Valid ISO C and ISO C++ programs should compile properly with or without
this option (though a rare few require ‘-ansi’ or a ‘-std’ option specifying
the required version of ISO C). However, without this option, certain GNU
extensions and traditional C and C++ features are supported as well. With this
option, they are rejected.

3

‘~Wpedantic’ does not cause warning messages for use of the alternate keywords
whose names begin and end with ‘__’". Pedantic warnings are also disabled in
the expression that follows __extension__. However, only system header files

should use these escape routes; application programs should avoid them. See
Section 6.45 [Alternate Keywords|, page 468.

Some users try to use ‘-Wpedantic’ to check programs for strict ISO C con-
formance. They soon find that it does not do quite what they want: it finds
some non-ISO practices, but not all—only those for which ISO C requires a
diagnostic, and some others for which diagnostics have been added.

A feature to report any failure to conform to ISO C might be useful in some
instances, but would require considerable additional work and would be quite
different from ‘-Wpedantic’. We don’t have plans to support such a feature in
the near future.

Where the standard specified with ‘-std’ represents a GNU extended dialect
of C, such as ‘gnu90’ or ‘gnu99’, there is a corresponding base standard, the

Chapter 3: GCC Command Options 55

version of ISO C on which the GNU extended dialect is based. Warnings from
‘~Wpedantic’ are given where they are required by the base standard. (It
does not make sense for such warnings to be given only for features not in the
specified GNU C dialect, since by definition the GNU dialects of C include
all features the compiler supports with the given option, and there would be
nothing to warn about.)

-pedantic-errors

-Wall

Like ‘-Wpedantic’, except that errors are produced rather than warnings.

This enables all the warnings about constructions that some users consider
questionable, and that are easy to avoid (or modify to prevent the warning),
even in conjunction with macros. This also enables some language-specific
warnings described in Section 3.5 [C++ Dialect Options|, page 37 and Section 3.6
[Objective-C and Objective-C++ Dialect Options], page 48.

‘~Wall’ turns on the following warning flags:

-Waddress

-Warray-bounds (only with ‘-02’)
-Wc++11-compat

-Wchar-subscripts

-Wenum-compare (in C/ObjC; this is on by default in C++)
-Wimplicit-int (C and Objective-C only)
-Wimplicit-function-declaration (C and Objective-C only)
-Wcomment

-Wformat

-Wmain (only for C/ObjC and unless ‘-ffreestanding’)
-Wmaybe-uninitialized
-Wmissing-braces (only for C/ObjC)
-Wnonnull

-Wopenmp-simd

-Wparentheses

-Wpointer-sign

-Wreorder

-Wreturn-type

-Wsequence-point

-Wsign-compare (only in C++)
-Wstrict-aliasing

-Wstrict-overflow=1

-Wswitch

-Wtrigraphs

-Wuninitialized

-Wunknown-pragmas

-Wunused-function

-Wunused-label

-Wunused-value

-Wunused-variable
-Wvolatile-register-var

Note that some warning flags are not implied by ‘-Wall’. Some of them warn
about constructions that users generally do not consider questionable, but which
occasionally you might wish to check for; others warn about constructions that
are necessary or hard to avoid in some cases, and there is no simple way to mod-
ify the code to suppress the warning. Some of them are enabled by ‘-Wextra’
but many of them must be enabled individually.

56

-Wextra

Using the GNU Compiler Collection (GCC)

This enables some extra warning flags that are not enabled by ‘-Wall’. (This
option used to be called ‘-W’. The older name is still supported, but the newer
name is more descriptive.)

-Wclobbered

-Wempty-body

-Wignored-qualifiers

-Wmissing-field-initializers

-Wmissing-parameter-type (C only)

-Wold-style-declaration (C only)

-Woverride-init

-Wsign-compare

-Wtype-limits

-Wuninitialized

-Wunused-parameter (only with ‘-Wunused’ or ‘-Wall’)

-Wunused-but-set-parameter (only with ‘-Wunused’ or ‘-Wall’)

The option ‘~Wextra’ also prints warning messages for the following cases:
e A pointer is compared against integer zero with ‘<’, ‘<=’, *>’, or ‘>=’,

e (C++ only) An enumerator and a non-enumerator both appear in a condi-
tional expression.

e (C++ only) Ambiguous virtual bases.
(
(

4

C++ only) Subscripting an array that has been declared ‘register’.

C++ only) Taking the address of a variable that has been declared
register’.

e (C++only) A base class is not initialized in a derived class’s copy construc-
tor.

-Wchar-subscripts

-Wcomment

Warn if an array subscript has type char. This is a common cause of error,
as programmers often forget that this type is signed on some machines. This
warning is enabled by ‘-Wall’.

Warn whenever a comment-start sequence ‘/*’ appears in a ‘/*’ comment, or
whenever a Backslash-Newline appears in a ‘//’ comment. This warning is
enabled by ‘-Wall’.

-Wno-coverage-mismatch

-Wno-cpp

Warn if feedback profiles do not match when using the ‘-fprofile-use’ option.
If a source file is changed between compiling with ‘~fprofile-gen’ and with
‘~fprofile-use’, the files with the profile feedback can fail to match the source
file and GCC cannot use the profile feedback information. By default, this
warning is enabled and is treated as an error. ‘-Wno-coverage-mismatch’ can
be used to disable the warning or ‘-Wno-error=coverage-mismatch’ can be
used to disable the error. Disabling the error for this warning can result in
poorly optimized code and is useful only in the case of very minor changes such
as bug fixes to an existing code-base. Completely disabling the warning is not
recommended.

(C, Objective-C, C++, Objective-C++ and Fortran only)

Chapter 3: GCC Command Options 57

Suppress warning messages emitted by #warning directives.

-Wdouble-promotion (C, C++, Objective-C and Objective-C++ only)
Give a warning when a value of type float is implicitly promoted to double.
CPUs with a 32-bit “single-precision” floating-point unit implement float in
hardware, but emulate double in software. On such a machine, doing compu-
tations using double values is much more expensive because of the overhead
required for software emulation.

It is easy to accidentally do computations with double because floating-point
literals are implicitly of type double. For example, in:
float area(float radius)
{
return 3.14159 * radius * radius;
}
the compiler performs the entire computation with double because the floating-

point literal is a double.

-Wformat

-Wformat=n
Check calls to printf and scanf, etc., to make sure that the arguments supplied
have types appropriate to the format string specified, and that the conversions
specified in the format string make sense. This includes standard functions, and
others specified by format attributes (see Section 6.30 [Function Attributes],
page 372), in the printf, scanf, strftime and strfmon (an X/Open exten-
sion, not in the C standard) families (or other target-specific families). Which
functions are checked without format attributes having been specified depends
on the standard version selected, and such checks of functions without the at-
tribute specified are disabled by ‘~ffreestanding’ or ‘-fno-builtin’.

The formats are checked against the format features supported by GNU libc
version 2.2. These include all ISO C90 and C99 features, as well as features
from the Single Unix Specification and some BSD and GNU extensions. Other
library implementations may not support all these features; GCC does not sup-
port warning about features that go beyond a particular library’s limitations.
However, if ‘-Wpedantic’ is used with ‘-Wformat’, warnings are given about
format features not in the selected standard version (but not for strfmon for-
mats, since those are not in any version of the C standard). See Section 3.4
[Options Controlling C Dialect], page 31.

-Wformat=1

-Wformat Option ‘-Wformat’ 1is equivalent to ‘-Wformat=1’, and
‘-Wno-format’ is equivalent to ‘-Wformat=0’. Since ‘-Wformat’
also checks for null format arguments for several functions,
‘~Wformat’ also implies ‘-Wnonnull’. Some aspects of this
level of format checking can be disabled by the options:
‘-Wno-format-contains-nul’, ‘-Wno-format-extra-args’, and
‘~Wno-format-zero-length’. ‘-Wformat’ is enabled by ‘-Wall’.

-Wno-format-contains—-nul
If ‘~Wformat’ is specified, do not warn about format strings that
contain NUL bytes.

58 Using the GNU Compiler Collection (GCC)

-Wno-format-extra-args
If ‘-Wformat’ is specified, do not warn about excess arguments to
a printf or scanf format function. The C standard specifies that
such arguments are ignored.

Where the unused arguments lie between used arguments that are
specified with ‘¢’ operand number specifications, normally warnings
are still given, since the implementation could not know what type
to pass to va_arg to skip the unused arguments. However, in the
case of scanf formats, this option suppresses the warning if the un-
used arguments are all pointers, since the Single Unix Specification
says that such unused arguments are allowed.

-Wno-format-zero-length
If ‘-Wformat’ is specified, do not warn about zero-length formats.
The C standard specifies that zero-length formats are allowed.

-Wformat=2
Enable ‘-Wformat’ plus additional format checks. Currently equiv-
alent to ‘-Wformat -Wformat-nonliteral -Wformat-security
-Wformat-y2k’.

-Wformat-nonliteral
If ‘-Wformat’ is specified, also warn if the format string is not a
string literal and so cannot be checked, unless the format function
takes its format arguments as a va_list.

-Wformat-security

If ‘~Wformat’ is specified, also warn about uses of format functions
that represent possible security problems. At present, this warns
about calls to printf and scanf functions where the format string
is not a string literal and there are no format arguments, as in
printf (foo);. This may be a security hole if the format string
came from untrusted input and contains ‘%n’. (This is currently
a subset of what ‘-Wformat-nonliteral’ warns about, but in fu-
ture warnings may be added to ‘-Wformat-security’ that are not
included in ‘-Wformat-nonliteral’.)

-Wformat-y2k
If ‘-Wformat’ is specified, also warn about strftime formats that
may yield only a two-digit year.

-Wnonnull
Warn about passing a null pointer for arguments marked as requiring a non-null
value by the nonnull function attribute.

‘~Wnonnull’ is included in ‘-Wall’ and ‘-Wformat’. It can be disabled with the
‘~Wno-nonnull’ option.

-Winit-self (C, C++, Objective-C and Objective-C++ only)
Warn about uninitialized variables that are initialized with themselves. Note
this option can only be used with the ‘-Wuninitialized’ option.

Chapter 3: GCC Command Options 59

For example, GCC warns about i being uninitialized in the following snippet
only when ‘-Winit-self’ has been specified:
int £Q)
{
int i = i;
return i;

}
This warning is enabled by ‘-Wall’ in C++.

-Wimplicit-int (C and Objective-C only)
Warn when a declaration does not specify a type. This warning is enabled by
‘~Wall’.

-Wimplicit-function-declaration (C and Objective-C only)
Give a warning whenever a function is used before being declared. In C99 mode
(‘-std=c99’ or ‘-std=gnu99’), this warning is enabled by default and it is made
into an error by ‘-pedantic-errors’. This warning is also enabled by ‘-Wall’.

-Wimplicit (C and Objective-C only)
Same as ‘-Wimplicit-int’ and ‘-Wimplicit-function-declaration’. This
warning is enabled by ‘-Wall’.

-Wignored-qualifiers (C and C++ only)
Warn if the return type of a function has a type qualifier such as const. For
ISO C such a type qualifier has no effect, since the value returned by a function
is not an lvalue. For C++, the warning is only emitted for scalar types or void.
ISO C prohibits qualified void return types on function definitions, so such
return types always receive a warning even without this option.

This warning is also enabled by ‘-Wextra’.

-Wmain Warn if the type of ‘main’ is suspicious. ‘main’ should be a function with
external linkage, returning int, taking either zero arguments, two, or three
arguments of appropriate types. This warning is enabled by default in C++ and
is enabled by either ‘-Wall’ or ‘-Wpedantic’.

-Wmissing-braces
Warn if an aggregate or union initializer is not fully bracketed. In the following
example, the initializer for ‘a’ is not fully bracketed, but that for ‘b’ is fully
bracketed. This warning is enabled by ‘-Wall’ in C.
int a[2][2] ={ 0, 1, 2, 3 };
int b[2][2] ={ {0, 13}, {2,311}

This warning is enabled by ‘-Wall’.

-Wmissing-include-dirs (C, C++, Objective-C and Objective-C++ only)
Warn if a user-supplied include directory does not exist.

-Wparentheses
Warn if parentheses are omitted in certain contexts, such as when there is an
assignment in a context where a truth value is expected, or when operators are
nested whose precedence people often get confused about.
Also warn if a comparison like ‘x<=y<=z’ appears; this is equivalent to ‘(x<=y
7 1 : 0) <= 2z’, which is a different interpretation from that of ordinary math-
ematical notation.

60

Using the GNU Compiler Collection (GCC)

Also warn about constructions where there may be confusion to which if state-
ment an else branch belongs. Here is an example of such a case:
{
if (a)
if (o)
foo O);
else
bar ();
}

In C/C++, every else branch belongs to the innermost possible if statement,
which in this example is if (b). This is often not what the programmer ex-
pected, as illustrated in the above example by indentation the programmer
chose. When there is the potential for this confusion, GCC issues a warn-
ing when this flag is specified. To eliminate the warning, add explicit braces
around the innermost if statement so there is no way the else can belong to
the enclosing if. The resulting code looks like this:

{
if (a)
{
if (b)
foo ();
else
bar O;
}
}

Also warn for dangerous uses of the GNU extension to 7: with omitted middle
operand. When the condition in the ?: operator is a boolean expression, the
omitted value is always 1. Often programmers expect it to be a value computed
inside the conditional expression instead.

This warning is enabled by ‘-Wall’.

-Wsequence-point

Warn about code that may have undefined semantics because of violations of
sequence point rules in the C and C++ standards.

The C and C++ standards define the order in which expressions in a C/C++
program are evaluated in terms of sequence points, which represent a partial
ordering between the execution of parts of the program: those executed before
the sequence point, and those executed after it. These occur after the evalua-
tion of a full expression (one which is not part of a larger expression), after the
evaluation of the first operand of a &&, ||, 7 : or , (comma) operator, before a
function is called (but after the evaluation of its arguments and the expression
denoting the called function), and in certain other places. Other than as ex-
pressed by the sequence point rules, the order of evaluation of subexpressions
of an expression is not specified. All these rules describe only a partial order
rather than a total order, since, for example, if two functions are called within
one expression with no sequence point between them, the order in which the
functions are called is not specified. However, the standards committee have
ruled that function calls do not overlap.

Chapter 3: GCC Command Options 61

It is not specified when between sequence points modifications to the values of
objects take effect. Programs whose behavior depends on this have undefined
behavior; the C and C++ standards specify that “Between the previous and
next sequence point an object shall have its stored value modified at most once
by the evaluation of an expression. Furthermore, the prior value shall be read
only to determine the value to be stored.”. If a program breaks these rules, the
results on any particular implementation are entirely unpredictable.

Examples of code with undefined behavior are a = a++;, a[n] = b[n++] and
ali++] =1i;. Some more complicated cases are not diagnosed by this option,
and it may give an occasional false positive result, but in general it has been
found fairly effective at detecting this sort of problem in programs.

The standard is worded confusingly, therefore there is some debate over the
precise meaning of the sequence point rules in subtle cases. Links to discussions
of the problem, including proposed formal definitions, may be found on the GCC
readings page, at http://gcc.gnu.org/readings.html.

This warning is enabled by ‘-Wall’ for C and C++.

-Wno-return-local-addr

Do not warn about returning a pointer (or in C++, a reference) to a variable
that goes out of scope after the function returns.

-Wreturn-type

-Wswitch

Warn whenever a function is defined with a return type that defaults to int.
Also warn about any return statement with no return value in a function whose
return type is not void (falling off the end of the function body is considered
returning without a value), and about a return statement with an expression
in a function whose return type is void.

For C++, a function without return type always produces a diagnostic message,
even when ‘-Wno-return-type’ is specified. The only exceptions are ‘main’ and
functions defined in system headers.

This warning is enabled by ‘-Wall’.

Warn whenever a switch statement has an index of enumerated type and lacks
a case for one or more of the named codes of that enumeration. (The presence
of a default label prevents this warning.) case labels outside the enumeration
range also provoke warnings when this option is used (even if there is a default
label). This warning is enabled by ‘-Wall’.

-Wswitch-default

Warn whenever a switch statement does not have a default case.

-Wswitch-enum

Warn whenever a switch statement has an index of enumerated type and lacks
a case for one or more of the named codes of that enumeration. case labels
outside the enumeration range also provoke warnings when this option is used.
The only difference between ‘-Wswitch’ and this option is that this option gives
a warning about an omitted enumeration code even if there is a default label.

http://gcc.gnu.org/readings.html

62 Using the GNU Compiler Collection (GCC)

-Wsync-nand (C and C++ only)
Warn when __sync_fetch_and_nand and __sync_nand_and_fetch built-in

functions are used. These functions changed semantics in GCC 4.4.

-Wtrigraphs
Warn if any trigraphs are encountered that might change the meaning of the
program (trigraphs within comments are not warned about). This warning is
enabled by ‘-Wall’.

-Wunused-but-set-parameter
Warn whenever a function parameter is assigned to, but otherwise unused (aside
from its declaration).

To suppress this warning use the ‘unused’ attribute (see Section 6.36 [Variable
Attributes|, page 409).

This warning is also enabled by ‘-Wunused’ together with ‘-Wextra’.

-Wunused-but-set-variable
Warn whenever a local variable is assigned to, but otherwise unused (aside from
its declaration). This warning is enabled by ‘-Wall’.

To suppress this warning use the ‘unused’ attribute (see Section 6.36 [Variable
Attributes|, page 409).

This warning is also enabled by ‘-Wunused’, which is enabled by ‘-Wall’.

-Wunused-function
Warn whenever a static function is declared but not defined or a non-inline
static function is unused. This warning is enabled by ‘-Wall’.

-Wunused-label
Warn whenever a label is declared but not used. This warning is enabled by
‘~Wall’.
To suppress this warning use the ‘unused’ attribute (see Section 6.36 [Variable
Attributes|, page 409).

-Wunused-local-typedefs (C, Objective-C, C++ and Objective-C++ only)
Warn when a typedef locally defined in a function is not used. This warning is
enabled by ‘-Wall’.

-Wunused-parameter
Warn whenever a function parameter is unused aside from its declaration.

To suppress this warning use the ‘unused’ attribute (see Section 6.36 [Variable
Attributes|, page 409).

-Wno-unused-result
Do not warn if a caller of a function marked with attribute warn_unused_
result (see Section 6.30 [Function Attributes|, page 372) does not use its return
value. The default is ‘-Wunused-result’.

-Wunused-variable
Warn whenever a local variable or non-constant static variable is unused aside
from its declaration. This warning is enabled by ‘-Wall’.

Chapter 3: GCC Command Options 63

To suppress this warning use the ‘unused’ attribute (see Section 6.36 [Variable
Attributes|, page 409).

-Wunused-value

Warn whenever a statement computes a result that is explicitly not used. To
suppress this warning cast the unused expression to ‘void’. This includes an
expression-statement or the left-hand side of a comma expression that contains
no side effects. For example, an expression such as ‘x[i,j]’ causes a warning,
while ‘x[(void)i, j]’ does not.

This warning is enabled by ‘-Wall’.

-Wunused All the above ‘~Wunused’ options combined.
In order to get a warning about an unused function parameter, you must either
specify ‘-Wextra -Wunused’ (note that ‘-Wall’ implies ‘-Wunused’), or sepa-
rately specify ‘~-Wunused-parameter’.

-Wuninitialized

Warn if an automatic variable is used without first being initialized or if a
variable may be clobbered by a setjmp call. In C++, warn if a non-static
reference or non-static ‘const’ member appears in a class without constructors.

If you want to warn about code that uses the uninitialized value of the variable
in its own initializer, use the ‘-Winit-self’ option.

These warnings occur for individual uninitialized or clobbered elements of struc-
ture, union or array variables as well as for variables that are uninitialized or
clobbered as a whole. They do not occur for variables or elements declared
volatile. Because these warnings depend on optimization, the exact variables
or elements for which there are warnings depends on the precise optimization
options and version of GCC used.

Note that there may be no warning about a variable that is used only to compute
a value that itself is never used, because such computations may be deleted by
data flow analysis before the warnings are printed.

-Wmaybe-uninitialized

For an automatic variable, if there exists a path from the function entry to a
use of the variable that is initialized, but there exist some other paths for which
the variable is not initialized, the compiler emits a warning if it cannot prove
the uninitialized paths are not executed at run time. These warnings are made
optional because GCC is not smart enough to see all the reasons why the code
might be correct in spite of appearing to have an error. Here is one example of
how this can happen:

Using the GNU Compiler Collection (GCC)

{
int x;
switch (y)
{
case 1: x
break;
case 2: x = 4;
break;
case 3: X
}
foo (x);
¥

If the value of y is always 1, 2 or 3, then x is always initialized, but GCC doesn’t
know this. To suppress the warning, you need to provide a default case with
assert(0) or similar code.

]
e

1]
(9]

This option also warns when a non-volatile automatic variable might be changed
by a call to longjmp. These warnings as well are possible only in optimizing
compilation.

The compiler sees only the calls to setjmp. It cannot know where longjmp will
be called; in fact, a signal handler could call it at any point in the code. As a
result, you may get a warning even when there is in fact no problem because
longjmp cannot in fact be called at the place that would cause a problem.

Some spurious warnings can be avoided if you declare all the functions you
use that never return as noreturn. See Section 6.30 [Function Attributes],
page 372.

This warning is enabled by ‘-Wall’ or ‘-Wextra’.

-Wunknown-pragmas

Warn when a #pragma directive is encountered that is not understood by GCC.
If this command-line option is used, warnings are even issued for unknown
pragmas in system header files. This is not the case if the warnings are only
enabled by the ‘-Wall’ command-line option.

-Wno-pragmas

Do not warn about misuses of pragmas, such as incorrect parameters, invalid
syntax, or conflicts between pragmas. See also ‘~Wunknown-pragmas’.

-Wstrict-aliasing

This option is only active when ‘~fstrict-aliasing’ is active. It warns about
code that might break the strict aliasing rules that the compiler is using for
optimization. The warning does not catch all cases, but does attempt to
catch the more common pitfalls. It is included in ‘-Wall’. It is equivalent
to ‘~Wstrict-aliasing=3’

-Wstrict-aliasing=n

This option is only active when ‘~fstrict-aliasing’ is active. It warns about
code that might break the strict aliasing rules that the compiler is using for op-
timization. Higher levels correspond to higher accuracy (fewer false positives).
Higher levels also correspond to more effort, similar to the way ‘-0’ works.
‘-Wstrict-aliasing’ is equivalent to ‘-Wstrict-aliasing=3’.

Chapter 3: GCC Command Options 65

Level 1: Most aggressive, quick, least accurate. Possibly useful when higher
levels do not warn but ‘-fstrict-aliasing’ still breaks the code, as it has very
few false negatives. However, it has many false positives. Warns for all pointer
conversions between possibly incompatible types, even if never dereferenced.
Runs in the front end only.

Level 2: Aggressive, quick, not too precise. May still have many false positives
(not as many as level 1 though), and few false negatives (but possibly more
than level 1). Unlike level 1, it only warns when an address is taken. Warns
about incomplete types. Runs in the front end only.

Level 3 (default for ‘-Wstrict-aliasing’): Should have very few false positives
and few false negatives. Slightly slower than levels 1 or 2 when optimization
is enabled. Takes care of the common pun+dereference pattern in the front
end: *(int*)&some_float. If optimization is enabled, it also runs in the back
end, where it deals with multiple statement cases using flow-sensitive points-to
information. Only warns when the converted pointer is dereferenced. Does not
warn about incomplete types.

-Wstrict-overflow

-Wstrict-overflow=n
This option is only active when ‘~fstrict-overflow’ is active. It warns about
cases where the compiler optimizes based on the assumption that signed over-
flow does not occur. Note that it does not warn about all cases where the code
might overflow: it only warns about cases where the compiler implements some
optimization. Thus this warning depends on the optimization level.

An optimization that assumes that signed overflow does not occur is perfectly
safe if the values of the variables involved are such that overflow never does, in
fact, occur. Therefore this warning can easily give a false positive: a warning
about code that is not actually a problem. To help focus on important issues,
several warning levels are defined. No warnings are issued for the use of unde-
fined signed overflow when estimating how many iterations a loop requires, in
particular when determining whether a loop will be executed at all.

-Wstrict-overflow=1
Warn about cases that are both questionable and easy to avoid. For
example, with ‘-fstrict-overflow’, the compiler simplifies x + 1
> x to 1. This level of ‘~Wstrict-overflow’ is enabled by ‘-Wall’;
higher levels are not, and must be explicitly requested.

-Wstrict-overflow=2
Also warn about other cases where a comparison is simplified to
a constant. For example: abs (x) >= 0. This can only be simpli-
fied when ‘-fstrict-overflow’ is in effect, because abs (INT_MIN)
overflows to INT_MIN, which is less than zero. ‘-Wstrict-overflow’
(with no level) is the same as ‘-Wstrict-overflow=2".

-Wstrict-overflow=3
Also warn about other cases where a comparison is simplified. For
example: x + 1 > 1 is simplified to x > 0.

66

Using the GNU Compiler Collection (GCC)

-Wstrict-overflow=4

Also warn about other simplifications not covered by the above
cases. For example: (x * 10) / 5 is simplified to x * 2.

-Wstrict-overflow=5

Also warn about cases where the compiler reduces the magnitude
of a constant involved in a comparison. For example: x + 2 > y is
simplified to x + 1 >= y. This is reported only at the highest warn-
ing level because this simplification applies to many comparisons,
so this warning level gives a very large number of false positives.

-Wsuggest-attribute=[pure|const |noreturn|format]
Warn for cases where adding an attribute may be beneficial. The attributes
currently supported are listed below.

-Wsuggest-attribute=pure
-Wsuggest-attribute=const
-Wsuggest-attribute=noreturn

Warn about functions that might be candidates for attributes pure,
const or noreturn. The compiler only warns for functions visible
in other compilation units or (in the case of pure and const) if it
cannot prove that the function returns normally. A function returns
normally if it doesn’t contain an infinite loop or return abnormally
by throwing, calling abort() or trapping. This analysis requires
option ‘-fipa-pure-const’, which is enabled by default at ‘-0’
and higher. Higher optimization levels improve the accuracy of the
analysis.

-Wsuggest-attribute=format
-Wmissing-format-attribute

-Warray-bounds

Warn about function pointers that might be candidates for format
attributes. Note these are only possible candidates, not absolute
ones. GCC guesses that function pointers with format attributes
that are used in assignment, initialization, parameter passing or
return statements should have a corresponding format attribute
in the resulting type. l.e. the left-hand side of the assignment or
initialization, the type of the parameter variable, or the return type
of the containing function respectively should also have a format
attribute to avoid the warning.

GCC also warns about function definitions that might be candi-
dates for format attributes. Again, these are only possible candi-
dates. GCC guesses that format attributes might be appropriate
for any function that calls a function like vprintf or vscanf, but
this might not always be the case, and some functions for which
format attributes are appropriate may not be detected.

This option is only active when ‘~-ftree-vrp’ is active (default for ‘-02’ and
above). It warns about subscripts to arrays that are always out of bounds. This
warning is enabled by ‘-Wall’.

Chapter 3: GCC Command Options 67

-Wno-div-by-zero
Do not warn about compile-time integer division by zero. Floating-point divi-
sion by zero is not warned about, as it can be a legitimate way of obtaining
infinities and NaNs.

-Wsystem-headers

Print warning messages for constructs found in system header files. Warnings
from system headers are normally suppressed, on the assumption that they
usually do not indicate real problems and would only make the compiler output
harder to read. Using this command-line option tells GCC to emit warnings
from system headers as if they occurred in user code. However, note that using
‘-Wall’ in conjunction with this option does not warn about unknown pragmas
in system headers—for that, ‘~Wunknown-pragmas’ must also be used.

-Wtrampolines
Warn about trampolines generated for pointers to nested functions.

A trampoline is a small piece of data or code that is created at run time on
the stack when the address of a nested function is taken, and is used to call
the nested function indirectly. For some targets, it is made up of data only and
thus requires no special treatment. But, for most targets, it is made up of code
and thus requires the stack to be made executable in order for the program to
work properly.

-Wfloat-equal
Warn if floating-point values are used in equality comparisons.

The idea behind this is that sometimes it is convenient (for the programmer)
to consider floating-point values as approximations to infinitely precise real
numbers. If you are doing this, then you need to compute (by analyzing the
code, or in some other way) the maximum or likely maximum error that the
computation introduces, and allow for it when performing comparisons (and
when producing output, but that’s a different problem). In particular, instead
of testing for equality, you should check to see whether the two values have
ranges that overlap; and this is done with the relational operators, so equality
comparisons are probably mistaken.

-Wtraditional (C and Objective-C only)
Warn about certain constructs that behave differently in traditional and ISO
C. Also warn about ISO C constructs that have no traditional C equivalent,
and/or problematic constructs that should be avoided.

e Macro parameters that appear within string literals in the macro body. In
traditional C macro replacement takes place within string literals, but in
ISO C it does not.

e In traditional C, some preprocessor directives did not exist. Traditional
preprocessors only considered a line to be a directive if the ‘#” appeared in
column 1 on the line. Therefore ‘-Wtraditional’ warns about directives
that traditional C understands but ignores because the ‘#” does not appear
as the first character on the line. It also suggests you hide directives like
‘#pragma’ not understood by traditional C by indenting them. Some tra-

68

Using the GNU Compiler Collection (GCC)

ditional implementations do not recognize ‘#elif’, so this option suggests
avoiding it altogether.

A function-like macro that appears without arguments.
The unary plus operator.

The ‘U’ integer constant suffix, or the ‘F’ or ‘L’ floating-point constant
suffixes. (Traditional C does support the ‘L’ suffix on integer constants.)
Note, these suffixes appear in macros defined in the system headers of most
modern systems, e.g. the ‘_MIN’/‘_MAX’ macros in <limits.h>. Use of these
macros in user code might normally lead to spurious warnings, however
GCC’s integrated preprocessor has enough context to avoid warning in
these cases.

A function declared external in one block and then used after the end of
the block.

A switch statement has an operand of type long.

A non-static function declaration follows a static one. This construct
is not accepted by some traditional C compilers.

The ISO type of an integer constant has a different width or signedness
from its traditional type. This warning is only issued if the base of the
constant is ten. I.e. hexadecimal or octal values, which typically represent
bit patterns, are not warned about.

Usage of ISO string concatenation is detected.
Initialization of automatic aggregates.

Identifier conflicts with labels. Traditional C lacks a separate namespace
for labels.

Initialization of unions. If the initializer is zero, the warning is omitted.
This is done under the assumption that the zero initializer in user code
appears conditioned on e.g. __STDC__ to avoid missing initializer warnings
and relies on default initialization to zero in the traditional C case.

Conversions by prototypes between fixed/floating-point values and vice
versa. The absence of these prototypes when compiling with traditional
C causes serious problems. This is a subset of the possible conversion
warnings; for the full set use ‘-Wtraditional-conversion’.

Use of ISO C style function definitions. This warning intentionally is not
issued for prototype declarations or variadic functions because these ISO
C features appear in your code when using libiberty’s traditional C com-
patibility macros, PARAMS and VPARAMS. This warning is also bypassed for
nested functions because that feature is already a GCC extension and thus
not relevant to traditional C compatibility.

-Wtraditional-conversion (C and Objective-C only)

Warn if a prototype causes a type conversion that is different from what would
happen to the same argument in the absence of a prototype. This includes
conversions of fixed point to floating and vice versa, and conversions changing
the width or signedness of a fixed-point argument except when the same as the
default promotion.

Chapter 3: GCC Command Options 69

-Wdeclaration-after-statement (C and Objective-C only)

-Wundef

Warn when a declaration is found after a statement in a block. This construct,
known from C++, was introduced with ISO C99 and is by default allowed in
GCC. It is not supported by ISO C90 and was not supported by GCC versions
before GCC 3.0. See Section 6.29 [Mixed Declarations|, page 372.

Warn if an undefined identifier is evaluated in an ‘#if’ directive.

-Wno-endif-labels

Do not warn whenever an ‘#else’ or an ‘#endif’ are followed by text.

-Wshadow Warn whenever a local variable or type declaration shadows another variable,

parameter, type, or class member (in C++), or whenever a built-in function is
shadowed. Note that in C++, the compiler warns if a local variable shadows an
explicit typedef, but not if it shadows a struct/class/enum.

-Wlarger-than=1en

Warn whenever an object of larger than len bytes is defined.

-Wframe-larger-than=len

Warn if the size of a function frame is larger than len bytes. The computation
done to determine the stack frame size is approximate and not conservative.
The actual requirements may be somewhat greater than len even if you do not
get a warning. In addition, any space allocated via alloca, variable-length
arrays, or related constructs is not included by the compiler when determining
whether or not to issue a warning.

-Wno-free-nonheap-object

Do not warn when attempting to free an object that was not allocated on the
heap.

-Wstack-usage=1len

Warn if the stack usage of a function might be larger than len bytes. The
computation done to determine the stack usage is conservative. Any space
allocated via alloca, variable-length arrays, or related constructs is included
by the compiler when determining whether or not to issue a warning.
The message is in keeping with the output of ‘~fstack-usage’.
e If the stack usage is fully static but exceeds the specified amount, it’s:
warning: stack usage is 1120 bytes
e If the stack usage is (partly) dynamic but bounded, it’s:
warning: stack usage might be 1648 bytes
e If the stack usage is (partly) dynamic and not bounded, it’s:

warning: stack usage might be unbounded

-Wunsafe-loop-optimizations

Warn if the loop cannot be optimized because the compiler cannot assume any-
thing on the bounds of the loop indices. With ‘~funsafe-loop-optimizations’
warn if the compiler makes such assumptions.

-Wno-pedantic-ms-format (MinGW targets only)

When used in combination with ‘-Wformat’ and ‘-pedantic’ without GNU
extensions, this option disables the warnings about non-ISO printf / scanf

70 Using the GNU Compiler Collection (GCC)

format width specifiers 132, 164, and I used on Windows targets, which depend
on the MS runtime.

-Wpointer-arith
Warn about anything that depends on the “size of” a function type or of void.
GNU C assigns these types a size of 1, for convenience in calculations with void
* pointers and pointers to functions. In C++, warn also when an arithmetic
operation involves NULL. This warning is also enabled by ‘~Wpedantic’.

-Wtype-limits
Warn if a comparison is always true or always false due to the limited range of
the data type, but do not warn for constant expressions. For example, warn if
an unsigned variable is compared against zero with ‘<’ or ‘>=". This warning is
also enabled by ‘-Wextra’.

-Wbad-function-cast (C and Objective-C only)
Warn whenever a function call is cast to a non-matching type. For example,
warn if int malloc() is cast to anything *.

-We++-compat (C and Objective-C only)
Warn about ISO C constructs that are outside of the common subset of ISO C
and ISO C++, e.g. request for implicit conversion from void * to a pointer to
non-void type.

-We++11-compat (C++ and Objective-C++ only)
Warn about C++ constructs whose meaning differs between ISO C++ 1998 and
ISO C++ 2011, e.g., identifiers in ISO C++ 1998 that are keywords in ISO C++
2011. This warning turns on ‘-Wnarrowing’ and is enabled by ‘-Wall’.

-Wcast-qual
Warn whenever a pointer is cast so as to remove a type qualifier from the target
type. For example, warn if a const char * is cast to an ordinary char *.

Also warn when making a cast that introduces a type qualifier in an unsafe way.
For example, casting char ** to const char ** is unsafe, as in this example:

/* p is char ** value. x*/
const char **q = (const char *x) p;
/* Assignment of readonly string to const char * is 0K. */

*q = "string";
/* Now charx* pointer points to read-only memory. */
**p = ’b’;

-Wcast-align
Warn whenever a pointer is cast such that the required alignment of the target
is increased. For example, warn if a char * is cast to an int * on machines
where integers can only be accessed at two- or four-byte boundaries.

-Wwrite-strings
When compiling C, give string constants the type const char[length] so that
copying the address of one into a non-const char * pointer produces a warning.
These warnings help you find at compile time code that can try to write into
a string constant, but only if you have been very careful about using const in
declarations and prototypes. Otherwise, it is just a nuisance. This is why we
did not make ‘-Wall’ request these warnings.

Chapter 3: GCC Command Options 71

When compiling C++, warn about the deprecated conversion from string literals
to char *. This warning is enabled by default for C++ programs.

-Wclobbered
Warn for variables that might be changed by ‘longjmp’ or ‘vfork’. This warning
is also enabled by ‘-Wextra’.

-Wconditionally-supported (C++ and Objective-C++ only)
Warn for conditionally-supported (C++11 [intro.defs]) constructs.

-Wconversion

Warn for implicit conversions that may alter a value. This includes conversions
between real and integer, like abs (x) when x is double; conversions between
signed and unsigned, like unsigned ui = -1; and conversions to smaller types,
like sqrtf (M_PI). Do not warn for explicit casts like abs ((int) x) and ui
= (unsigned) -1, or if the value is not changed by the conversion like in abs
(2.0). Warnings about conversions between signed and unsigned integers can
be disabled by using ‘~Wno-sign-conversion’.

For C++, also warn for confusing overload resolution for user-defined conver-
sions; and conversions that never use a type conversion operator: conversions
to void, the same type, a base class or a reference to them. Warnings about
conversions between signed and unsigned integers are disabled by default in
C++ unless ‘-Wsign-conversion’ is explicitly enabled.

-Wno-conversion-null (C++ and Objective-C++ only)
Do not warn for conversions between NULL and non-pointer types.
‘~Wconversion-null’ is enabled by default.

-Wzero-as-null-pointer-constant (C++ and Objective-C++ only)
Warn when a literal ’0’ is used as null pointer constant. This can be useful to
facilitate the conversion to nullptr in C++11.

-Wdate-time
Warn when macros __TIME__, __DATE__ or __TIMESTAMP__ are encountered as
they might prevent bit-wise-identical reproducible compilations.

-Wdelete-incomplete (C++ and Objective-C++ only)
Warn when deleting a pointer to incomplete type, which may cause undefined
behavior at runtime. This warning is enabled by default.

-Wuseless-cast (C++ and Objective-C++ only)
Warn when an expression is casted to its own type.

-Wempty-body
Warn if an empty body occurs in an ‘if’, ‘else’ or ‘do while’ statement. This
warning is also enabled by ‘-Wextra’.

-Wenum-compare
Warn about a comparison between values of different enumerated types. In
C++ enumeral mismatches in conditional expressions are also diagnosed and
the warning is enabled by default. In C this warning is enabled by ‘-Wall’.

72 Using the GNU Compiler Collection (GCC)

-Wjump-misses-init (C, Objective-C only)

Warn if a goto statement or a switch statement jumps forward across the
initialization of a variable, or jumps backward to a label after the variable has
been initialized. This only warns about variables that are initialized when they
are declared. This warning is only supported for C and Objective-C; in C++
this sort of branch is an error in any case.

‘~Wjump-misses-init’ is included in ‘-Wc++-compat’. It can be disabled with
the ‘-Wno-jump-misses-init’ option.

-Wsign-compare
Warn when a comparison between signed and unsigned values could produce an
incorrect result when the signed value is converted to unsigned. This warning
is also enabled by ‘-Wextra’; to get the other warnings of ‘~Wextra’ without
this warning, use ‘-Wextra -Wno-sign-compare’.

-Wsign-conversion
Warn for implicit conversions that may change the sign of an integer value, like
assigning a signed integer expression to an unsigned integer variable. An explicit
cast silences the warning. In C, this option is enabled also by ‘-Wconversion’.

-Wfloat-conversion
Warn for implicit conversions that reduce the precision of a real value. This
includes conversions from real to integer, and from higher precision real to lower
precision real values. This option is also enabled by ‘-Wconversion’.

-Wsizeof-pointer-memaccess
Warn for suspicious length parameters to certain string and memory built-in
functions if the argument uses sizeof. This warning warns e.g. about memset
(ptr, 0, sizeof (ptr)); if ptr is not an array, but a pointer, and suggests a
possible fix, or about memcpy (&foo, ptr, sizeof (&foo));. This warning is
enabled by ‘-Wall’.

-Waddress

Warn about suspicious uses of memory addresses. These include using the
address of a function in a conditional expression, such as void func(void);
if (func), and comparisons against the memory address of a string literal,
such as if (x == "abc"). Such uses typically indicate a programmer error: the
address of a function always evaluates to true, so their use in a conditional
usually indicate that the programmer forgot the parentheses in a function call;
and comparisons against string literals result in unspecified behavior and are
not portable in C, so they usually indicate that the programmer intended to
use strcmp. This warning is enabled by ‘-Wall’.

-Wlogical-op
Warn about suspicious uses of logical operators in expressions. This includes
using logical operators in contexts where a bit-wise operator is likely to be
expected.

-Waggregate-return
Warn if any functions that return structures or unions are defined or called. (In
languages where you can return an array, this also elicits a warning.)

Chapter 3: GCC Command Options 73

-Wno-aggressive-loop-optimizations
Warn if in a loop with constant number of iterations the compiler detects un-
defined behavior in some statement during one or more of the iterations.

-Wno-attributes
Do not warn if an unexpected __attribute__ is used, such as unrecognized
attributes, function attributes applied to variables, etc. This does not stop
errors for incorrect use of supported attributes.

-Wno-builtin-macro-redefined
Do not warn if certain built-in macros are redefined. This suppresses warn-
ings for redefinition of __TIMESTAMP TIME DATE FILE and
__BASE_FILE__.

-y —— —_) - —_) - -

-Wstrict-prototypes (C and Objective-C only)
Warn if a function is declared or defined without specifying the argument types.
(An old-style function definition is permitted without a warning if preceded by
a declaration that specifies the argument types.)

-Wold-style-declaration (C and Objective-C only)
Warn for obsolescent usages, according to the C Standard, in a declaration. For
example, warn if storage-class specifiers like static are not the first things in
a declaration. This warning is also enabled by ‘-Wextra’.

-Wold-style-definition (C and Objective-C only)
Warn if an old-style function definition is used. A warning is given even if there
is a previous prototype.

-Wmissing-parameter-type (C and Objective-C only)
A function parameter is declared without a type specifier in K&R-style func-
tions:

void foo(bar) { }

This warning is also enabled by ‘-Wextra’.

-Wmissing-prototypes (C and Objective-C only)

Warn if a global function is defined without a previous prototype declaration.
This warning is issued even if the definition itself provides a prototype. Use
this option to detect global functions that do not have a matching proto-
type declaration in a header file. This option is not valid for C++ because
all function declarations provide prototypes and a non-matching declaration
will declare an overload rather than conflict with an earlier declaration. Use
‘-Wmissing-declarations’ to detect missing declarations in C++.

-Wmissing-declarations
Warn if a global function is defined without a previous declaration. Do so even if
the definition itself provides a prototype. Use this option to detect global func-
tions that are not declared in header files. In C, no warnings are issued for func-
tions with previous non-prototype declarations; use ‘~-Wmissing-prototype’ to
detect missing prototypes. In C++, no warnings are issued for function tem-
plates, or for inline functions, or for functions in anonymous namespaces.

74 Using the GNU Compiler Collection (GCC)

-Wmissing-field-initializers

Warn if a structure’s initializer has some fields missing. For example, the fol-
lowing code causes such a warning, because x.h is implicitly zero:

struct s { int £, g, h; };

struct s x = { 3, 4 };
This option does not warn about designated initializers, so the following mod-
ification does not trigger a warning:

struct s { int £, g, h; };

struct s x = { .£f =3, .g=41};
This warning is included in ‘~Wextra’. To get other ‘-Wextra’ warnings without
this one, use ‘~Wextra -Wno-missing-field-initializers’.

-Wno-multichar
Do not warn if a multicharacter constant (‘’FO0F’’) is used. Usually they
indicate a typo in the user’s code, as they have implementation-defined values,
and should not be used in portable code.

-Wnormalized=<none|id|nfc|nfkc>

In ISO C and ISO C++, two identifiers are different if they are different sequences
of characters. However, sometimes when characters outside the basic ASCII
character set are used, you can have two different character sequences that
look the same. To avoid confusion, the ISO 10646 standard sets out some
normalization rules which when applied ensure that two sequences that look the
same are turned into the same sequence. GCC can warn you if you are using
identifiers that have not been normalized; this option controls that warning.

There are four levels of warning supported by GCC. The default is
‘~Wnormalized=nfc’, which warns about any identifier that is not in the ISO

10646 “C” normalized form, NFC. NFC is the recommended form for most
uses.

Unfortunately, there are some characters allowed in identifiers by ISO C and
ISO C++ that, when turned into NFC, are not allowed in identifiers. That is,
there’s no way to use these symbols in portable ISO C or C++ and have all
your identifiers in NFC. ‘-Wnormalized=id’ suppresses the warning for these
characters. It is hoped that future versions of the standards involved will correct
this, which is why this option is not the default.

You can switch the warning off for all characters by writing
‘~Wnormalized=none’. You should only do this if you are using some
other normalization scheme (like “D”), because otherwise you can easily create
bugs that are literally impossible to see.

Some characters in ISO 10646 have distinct meanings but look identical in some
fonts or display methodologies, especially once formatting has been applied. For
instance \u207F, “SUPERSCRIPT LATIN SMALL LETTER N”, displays just
like a regular n that has been placed in a superscript. ISO 10646 defines the
NFKC normalization scheme to convert all these into a standard form as well,
and GCC warns if your code is not in NFKC if you use ‘-Wnormalized=nfkc’.
This warning is comparable to warning about every identifier that contains the
letter O because it might be confused with the digit 0, and so is not the default,

Chapter 3: GCC Command Options 75

but may be useful as a local coding convention if the programming environment
cannot be fixed to display these characters distinctly.

-Wno-deprecated
Do not warn about usage of deprecated features. See Section 7.12 [Deprecated
Features], page 714.

-Wno-deprecated-declarations
Do not warn about uses of functions (see Section 6.30 [Function Attributes],
page 372), variables (see Section 6.36 [Variable Attributes|, page 409), and types
(see Section 6.37 [Type Attributes|, page 418) marked as deprecated by using
the deprecated attribute.

-Wno-overflow
Do not warn about compile-time overflow in constant expressions.

-Wopenmp-simd
Warn if the vectorizer cost model overrides the OpenMP or the Cilk Plus simd
directive set by user. The ‘-fsimd-cost-model=unlimited’ can be used to
relax the cost model.

-Woverride-init (C and Objective-C only)
Warn if an initialized field without side effects is overridden when using desig-
nated initializers (see Section 6.26 [Designated Initializers|, page 370).

This warning is included in ‘-Wextra’. To get other ‘~Wextra’ warnings without
this one, use ‘-Wextra -Wno-override-init’.

-Wpacked Warn if a structure is given the packed attribute, but the packed attribute has no
effect on the layout or size of the structure. Such structures may be mis-aligned
for little benefit. For instance, in this code, the variable f.x in struct bar is
misaligned even though struct bar does not itself have the packed attribute:

struct foo {
int x;
char a, b, c, d;
} __attribute__((packed));
struct bar {
char z;
struct foo f;
};
-Wpacked-bitfield-compat
The 4.1, 4.2 and 4.3 series of GCC ignore the packed attribute on bit-fields
of type char. This has been fixed in GCC 4.4 but the change can lead to
differences in the structure layout. GCC informs you when the offset of such a
field has changed in GCC 4.4. For example there is no longer a 4-bit padding
between field a and b in this structure:

struct foo

{

char a:4;
char b:8;
} __attribute__ ((packed));
This warning is enabled by default. Use ‘-Wno-packed-bitfield-compat’ to
disable this warning.

76

-Wpadded

Using the GNU Compiler Collection (GCC)

Warn if padding is included in a structure, either to align an element of the
structure or to align the whole structure. Sometimes when this happens it is
possible to rearrange the fields of the structure to reduce the padding and so
make the structure smaller.

-Wredundant-decls

Warn if anything is declared more than once in the same scope, even in cases
where multiple declaration is valid and changes nothing.

-Wnested-externs (C and Objective-C only)

Warn if an extern declaration is encountered within a function.

-Wno-inherited-variadic-ctor

-Winline

Suppress warnings about use of C++11 inheriting constructors when the base
class inherited from has a C variadic constructor; the warning is on by default
because the ellipsis is not inherited.

Warn if a function that is declared as inline cannot be inlined. Even with this
option, the compiler does not warn about failures to inline functions declared
in system headers.

The compiler uses a variety of heuristics to determine whether or not to inline a
function. For example, the compiler takes into account the size of the function
being inlined and the amount of inlining that has already been done in the cur-
rent function. Therefore, seemingly insignificant changes in the source program
can cause the warnings produced by ‘~Winline’ to appear or disappear.

-Wno-invalid-offsetof (C++ and Objective-C++ only)

Suppress warnings from applying the ‘offsetof’ macro to a non-POD type.
According to the 1998 ISO C++ standard, applying ‘offsetof’ to a non-POD
type is undefined. In existing C++ implementations, however, ‘offsetof’ typi-
cally gives meaningful results even when applied to certain kinds of non-POD
types (such as a simple ‘struct’ that fails to be a POD type only by virtue of
having a constructor). This flag is for users who are aware that they are writ-
ing nonportable code and who have deliberately chosen to ignore the warning
about it.

The restrictions on ‘offsetof’ may be relaxed in a future version of the C++
standard.

-Wno-int-to-pointer-cast

Suppress warnings from casts to pointer type of an integer of a different
size. In C++, casting to a pointer type of smaller size is an error.
‘Wint-to-pointer-cast’ is enabled by default.

-Wno-pointer-to-int-cast (C and Objective-C only)

Suppress warnings from casts from a pointer to an integer type of a different
size.

-Winvalid-pch

Warn if a precompiled header (see Section 3.20 [Precompiled Headers],
page 337) is found in the search path but can’t be used.

Chapter 3: GCC Command Options 77

-Wlong-long
Warn if ‘long long’ type is used. This is enabled by either ‘~Wpedantic’ or
‘-Wtraditional’ in ISO C90 and C++98 modes. To inhibit the warning mes-
sages, use ‘-Wno-long-long’.

-Wvariadic-macros
Warn if variadic macros are used in pedantic ISO C90 mode, or the GNU
alternate syntax when in pedantic ISO C99 mode. This is default. To inhibit
the warning messages, use ‘-Wno-variadic-macros’.

-Wvarargs
Warn upon questionable usage of the macros used to handle variable argu-
ments like ‘va_start’. This is default. To inhibit the warning messages, use
‘-Wno-varargs’.

-Wvector-operation-performance
Warn if vector operation is not implemented via SIMD capabilities of the ar-
chitecture. Mainly useful for the performance tuning. Vector operation can be
implemented piecewise, which means that the scalar operation is performed
on every vector element; in parallel, which means that the vector operation
is implemented using scalars of wider type, which normally is more performance
efficient; and as a single scalar, which means that vector fits into a scalar

type.

-Wno-virtual-move-assign
Suppress warnings about inheriting from a virtual base with a non-trivial C++11
move assignment operator. This is dangerous because if the virtual base is
reachable along more than one path, it will be moved multiple times, which can
mean both objects end up in the moved-from state. If the move assignment
operator is written to avoid moving from a moved-from object, this warning
can be disabled.

-Wvla Warn if variable length array is used in the code. ‘-Wno-vla’ prevents the
‘~Wpedantic’ warning of the variable length array.

-Wvolatile-register-var
Warn if a register variable is declared volatile. The volatile modifier does not
inhibit all optimizations that may eliminate reads and/or writes to register
variables. This warning is enabled by ‘-Wall’.

-Wdisabled-optimization
Warn if a requested optimization pass is disabled. This warning does not gen-
erally indicate that there is anything wrong with your code; it merely indicates
that GCC’s optimizers are unable to handle the code effectively. Often, the
problem is that your code is too big or too complex; GCC refuses to optimize
programs when the optimization itself is likely to take inordinate amounts of
time.

-Wpointer-sign (C and Objective-C only)
Warn for pointer argument passing or assignment with different signedness.
This option is only supported for C and Objective-C. It is implied by ‘-Wall’
and by ‘-Wpedantic’, which can be disabled with ‘~-Wno-pointer-sign’.

78

Using the GNU Compiler Collection (GCC)

-Wstack-protector

This option is only active when ‘~fstack-protector’ is active. It warns about
functions that are not protected against stack smashing.

-Woverlength-strings

Warn about string constants that are longer than the “minimum maximum”
length specified in the C standard. Modern compilers generally allow string
constants that are much longer than the standard’s minimum limit, but very
portable programs should avoid using longer strings.

The limit applies after string constant concatenation, and does not count the
trailing NUL. In C90, the limit was 509 characters; in C99, it was raised to
4095. C++98 does not specify a normative minimum maximum, so we do not
diagnose overlength strings in C++.

This option is implied by ‘-Wpedantic’, and can be disabled with
‘-Wno-overlength-strings’.

-Wunsuffixed-float-constants (C and Objective-C only)

Issue a warning for any floating constant that does not have a suffix. When
used together with ‘-Wsystem-headers’ it warns about such constants in system
header files. This can be useful when preparing code to use with the FLOAT_
CONST_DECIMAL64 pragma from the decimal floating-point extension to C99.

3.9 Options for Debugging Your Program or GCC

GCC has various special options that are used for debugging either your program or GCC:

)

Produce debugging information in the operating system’s native format (stabs,
COFF, XCOFF, or DWARF 2). GDB can work with this debugging informa-

tion.

On most systems that use stabs format, ‘~g’ enables use of extra debugging
information that only GDB can use; this extra information makes debugging
work better in GDB but probably makes other debuggers crash or refuse to read
the program. If you want to control for certain whether to generate the extra
information, use ‘-gstabs+’, ‘-gstabs’, ‘~gxcoff+’, ‘~gxcoff’, or ‘~gvms’ (see
below).

GCC allows you to use ‘-g’ with ‘-=0’. The shortcuts taken by optimized code
may occasionally produce surprising results: some variables you declared may
not exist at all; flow of control may briefly move where you did not expect it;
some statements may not be executed because they compute constant results
or their values are already at hand; some statements may execute in different
places because they have been moved out of loops.

Nevertheless it proves possible to debug optimized output. This makes it rea-
sonable to use the optimizer for programs that might have bugs.

The following options are useful when GCC is generated with the capability for
more than one debugging format.

-gsplit-dwarf

Separate as much dwarf debugging information as possible into a separate out-
put file with the extension .dwo. This option allows the build system to avoid

Chapter 3: GCC Command Options 79

-ggdb

—-gpubnames

linking files with debug information. To be useful, this option requires a de-
bugger capable of reading .dwo files.

Produce debugging information for use by GDB. This means to use the most
expressive format available (DWARF 2, stabs, or the native format if neither
of those are supported), including GDB extensions if at all possible.

Generate dwarf .debug_pubnames and .debug_pubtypes sections.

-ggnu-pubnames

-gstabs

Generate .debug_pubnames and .debug_pubtypes sections in a format suitable
for conversion into a GDB index. This option is only useful with a linker that
can produce GDB index version 7.

Produce debugging information in stabs format (if that is supported), without
GDB extensions. This is the format used by DBX on most BSD systems.
On MIPS, Alpha and System V Release 4 systems this option produces stabs
debugging output that is not understood by DBX or SDB. On System V Release
4 systems this option requires the GNU assembler.

-feliminate-unused-debug-symbols

Produce debugging information in stabs format (if that is supported), for only
symbols that are actually used.

-femit-class-debug-always

Instead of emitting debugging information for a C++ class in only one object file,
emit it in all object files using the class. This option should be used only with
debuggers that are unable to handle the way GCC normally emits debugging
information for classes because using this option increases the size of debugging
information by as much as a factor of two.

-fdebug-types-section

-gstabs+

—-gcoff

-gxcoff

-gxcoff+

When using DWARF Version 4 or higher, type DIEs can be put into their own
.debug_types section instead of making them part of the .debug_info section.
It is more efficient to put them in a separate comdat sections since the linker
can then remove duplicates. But not all DWARF consumers support .debug_
types sections yet and on some objects .debug_types produces larger instead
of smaller debugging information.

Produce debugging information in stabs format (if that is supported), using
GNU extensions understood only by the GNU debugger (GDB). The use of
these extensions is likely to make other debuggers crash or refuse to read the
program.

Produce debugging information in COFF format (if that is supported). This is
the format used by SDB on most System V systems prior to System V Release
4.

Produce debugging information in XCOFF format (if that is supported). This
is the format used by the DBX debugger on IBM RS/6000 systems.

Produce debugging information in XCOFF format (if that is supported), using
GNU extensions understood only by the GNU debugger (GDB). The use of

80 Using the GNU Compiler Collection (GCC)

these extensions is likely to make other debuggers crash or refuse to read the
program, and may cause assemblers other than the GNU assembler (GAS) to
fail with an error.

-gdwarf-version
Produce debugging information in DWARF format (if that is supported). The
value of version may be either 2, 3 or 4; the default version for most targets is
4.

Note that with DWARF Version 2, some ports require and always use some
non-conflicting DWARF 3 extensions in the unwind tables.

Version 4 may require GDB 7.0 and ‘-fvar-tracking-assignments’ for max-
imum benefit.

-grecord-gcc-switches
This switch causes the command-line options used to invoke the compiler that
may affect code generation to be appended to the DW_AT _producer attribute
in DWARF debugging information. The options are concatenated with spa-
ces separating them from each other and from the compiler version. See also
‘~frecord-gcc-switches’ for another way of storing compiler options into the
object file. This is the default.

-gno-record-gcc-switches
Disallow appending command-line options to the DW_AT_producer attribute
in DWARF debugging information.

-gstrict-dwarf
Disallow using extensions of later DWARF standard version than selected with
‘~gdwarf-version’. On most targets using non-conflicting DWARF extensions
from later standard versions is allowed.

-gno-strict-dwarf
Allow using extensions of later DWARF standard version than selected with
‘~gdwarf-version’.

-gvms Produce debugging information in Alpha/VMS debug format (if that is sup-
ported). This is the format used by DEBUG on Alpha/VMS systems.

-glevel

-ggdblevel

-gstabslevel

-gcofflevel

-gxcofflevel

-gvmslevel
Request debugging information and also use level to specify how much infor-
mation. The default level is 2.

Level 0 produces no debug information at all. Thus, ‘-g0’ negates ‘-g’.

Level 1 produces minimal information, enough for making backtraces in parts
of the program that you don’t plan to debug. This includes descriptions of
functions and external variables, and line number tables, but no information
about local variables.

Chapter 3: GCC Command Options 81

-gtoggle

Level 3 includes extra information, such as all the macro definitions present in
the program. Some debuggers support macro expansion when you use ‘-g3’.

‘—-gdwarf-2’ does not accept a concatenated debug level, because GCC used
to support an option ‘-gdwarf’ that meant to generate debug information in
version 1 of the DWARF format (which is very different from version 2), and
it would have been too confusing. That debug format is long obsolete, but the
option cannot be changed now. Instead use an additional ‘-~glevel’ option to
change the debug level for DWARF.

Turn off generation of debug info, if leaving out this option generates it, or turn
it on at level 2 otherwise. The position of this argument in the command line
does not matter; it takes effect after all other options are processed, and it does
so only once, no matter how many times it is given. This is mainly intended to
be used with ‘-fcompare-debug’ .

-fsanitize=address

Enable AddressSanitizer, a fast memory error detector. Memory access instruc-
tions will be instrumented to detect out-of-bounds and use-after-free bugs. See
http: //code.google . com/p/address-sanitizer/ for more details. The
run-time behavior can be influenced using the ASAN_OPTIONS environment vari-
able; see https://code.google.com/p/address-sanitizer/wiki/Flags#
Run-time_flags for a list of supported options.

—-fsanitize=thread

Enable ThreadSanitizer, a fast data race detector. Memory access instructions
will be instrumented to detect data race bugs. See http://code.google.
com/p/thread-sanitizer/ for more details. The run-time behavior can be
influenced using the TSAN_OPTIONS environment variable; see https://code.
google.com/p/thread-sanitizer/wiki/Flags for a list of supported options.

—-fsanitize=leak

Enable LeakSanitizer, a memory leak detector. This option only matters
for linking of executables and if neither ‘-fsanitize=address’ nor
‘~fsanitize=thread’ is used. In that case it will link the executable against
a library that overrides malloc and other allocator functions. See https://
code . google . com/p/address-sanitizer /wiki /LeakSanitizer for more
details. The run-time behavior can be influenced using the LSAN_OPTIONS
environment variable.

—-fsanitize=undefined

Enable UndefinedBehaviorSanitizer, a fast undefined behavior detector. Vari-
ous computations will be instrumented to detect undefined behavior at runtime.
Current suboptions are:

-fsanitize=shift
This option enables checking that the result of a shift operation
is not undefined. Note that what exactly is considered undefined
differs slightly between C and C++, as well as between ISO C90 and
C99, etc.

http://code.google.com/p/address-sanitizer/
https://code.google.com/p/address-sanitizer/wiki/Flags#Run-time_flags
https://code.google.com/p/address-sanitizer/wiki/Flags#Run-time_flags
http://code.google.com/p/thread-sanitizer/
http://code.google.com/p/thread-sanitizer/
https://code.google.com/p/thread-sanitizer/wiki/Flags
https://code.google.com/p/thread-sanitizer/wiki/Flags
https://code.google.com/p/address-sanitizer/wiki/LeakSanitizer
https://code.google.com/p/address-sanitizer/wiki/LeakSanitizer

82

Using the GNU Compiler Collection (GCC)

-fsanitize=integer-divide-by-zero
Detect integer division by zero as well as INT_MIN / -1 division.

-fsanitize=unreachable
With this option, the compiler will turn the __builtin_
unreachable call into a diagnostics message call instead. When
reaching the __builtin_unreachable call, the behavior is
undefined.

-fsanitize=vla-bound
This option instructs the compiler to check that the size of a vari-
able length array is positive. This option does not have any effect
in ‘-std=c++1y’ mode, as the standard requires the exception be
thrown instead.

-fsanitize=null
This option enables pointer checking. Particularly, the application
built with this option turned on will issue an error message when
it tries to dereference a NULL pointer, or if a reference (possibly
an rvalue reference) is bound to a NULL pointer.

-fsanitize=return
This option enables return statement checking. Programs built
with this option turned on will issue an error message when the
end of a non-void function is reached without actually returning a
value. This option works in C++ only.

-fsanitize=signed-integer-overflow
This option enables signed integer overflow checking. We check that
the result of +, *, and both unary and binary - does not overflow
in the signed arithmetics. Note, integer promotion rules must be
taken into account. That is, the following is not an overflow:
signed char a = SCHAR_MAX;
at+;
While ‘-ftrapv’ causes traps for signed overflows to be emitted,
‘~fsanitize=undefined’ gives a diagnostic message. This currently works
only for the C family of languages.

-fdump-final-insns[=file]

Dump the final internal representation (RTL) to file. If the optional argument
is omitted (or if file is .), the name of the dump file is determined by appending
.gkd to the compilation output file name.

-fcompare-debug[=opts]

If no error occurs during compilation, run the compiler a second time, adding
opts and ‘-fcompare-debug-second’ to the arguments passed to the second
compilation. Dump the final internal representation in both compilations, and
print an error if they differ.

If the equal sign is omitted, the default ‘-gtoggle’ is used.

The environment variable GCC_COMPARE_DEBUG, if defined, non-empty and
nonzero, implicitly enables ‘-fcompare-debug’. If GCC_COMPARE_DEBUG is

Chapter 3: GCC Command Options 83

defined to a string starting with a dash, then it is used for opts, otherwise the
default ‘-gtoggle’ is used.

‘~fcompare-debug=", with the equal sign but without opts, is equivalent to
‘~fno-compare-debug’, which disables the dumping of the final representation
and the second compilation, preventing even GCC_COMPARE_DEBUG from taking
effect.

To verify full coverage during ‘-fcompare-debug’ testing, set GCC_COMPARE_
DEBUG to say ‘-fcompare-debug-not-overridden’, which GCC rejects as
an invalid option in any actual compilation (rather than preprocessing,
assembly or linking). To get just a warning, setting GCC_COMPARE_DEBUG to
‘-w)n-fcompare-debug not overridden’ will do.

-fcompare-debug-second
This option is implicitly passed to the compiler for the second compilation
requested by ‘-fcompare-debug’, along with options to silence warnings, and
omitting other options that would cause side-effect compiler outputs to files or
to the standard output. Dump files and preserved temporary files are renamed
so as to contain the .gk additional extension during the second compilation, to
avoid overwriting those generated by the first.

When this option is passed to the compiler driver, it causes the first compilation
to be skipped, which makes it useful for little other than debugging the compiler
proper.

-feliminate-dwarf2-dups
Compress DWARF 2 debugging information by eliminating duplicated infor-
mation about each symbol. This option only makes sense when generating
DWARF 2 debugging information with ‘-gdwarf-2’.

-femit-struct-debug-baseonly
Emit debug information for struct-like types only when the base name of the
compilation source file matches the base name of file in which the struct is
defined.

This option substantially reduces the size of debugging information,
but at significant potential loss in type information to the debugger.
See ‘-femit-struct-debug-reduced’ for a less aggressive option. See
‘~femit-struct-debug-detailed’ for more detailed control.

This option works only with DWARF 2.

-femit-struct-debug-reduced
Emit debug information for struct-like types only when the base name of the
compilation source file matches the base name of file in which the type is defined,
unless the struct is a template or defined in a system header.

This option significantly reduces the size of debugging information,
with some potential loss in type information to the debugger. See
‘~femit-struct-debug-baseonly’ for a more aggressive option. See
‘~femit-struct-debug-detailed’ for more detailed control.

This option works only with DWARF 2.

84

Using the GNU Compiler Collection (GCC)

-femit-struct-debug-detailed[=spec-1ist]

Specify the struct-like types for which the compiler generates debug informa-
tion. The intent is to reduce duplicate struct debug information between dif-
ferent object files within the same program.

This option is a detailed version of ‘-femit-struct-debug-reduced’ and
‘~femit-struct-debug-baseonly’, which serves for most needs.

A specification has the syntax
[‘dir:’|‘ind:’][‘ord:’|‘gen:’](‘any’|‘sys’|‘base’| ‘none’)

The optional first word limits the specification to structs that are used directly
(‘dir:’) or used indirectly (‘ind:’). A struct type is used directly when it is
the type of a variable, member. Indirect uses arise through pointers to structs.
That is, when use of an incomplete struct is valid, the use is indirect. An
example is ‘struct one direct; struct two * indirect;’ .

The optional second word limits the specification to ordinary structs (‘ord:’) or
generic structs (‘gen:’). Generic structs are a bit complicated to explain. For
C++, these are non-explicit specializations of template classes, or non-template
classes within the above. Other programming languages have generics, but
‘~femit-struct-debug-detailed’ does not yet implement them.

The third word specifies the source files for those structs for which the compiler
should emit debug information. The values ‘none’ and ‘any’ have the normal
meaning. The value ‘base’ means that the base of name of the file in which
the type declaration appears must match the base of the name of the main
compilation file. In practice, this means that when compiling ‘foo.c’, debug
information is generated for types declared in that file and ‘foo.h’, but not other
header files. The value ‘sys’ means those types satisfying ‘base’ or declared in
system or compiler headers.

You may need to experiment to determine the best settings for your application.
The default is ‘~femit-struct-debug-detailed=all’.
This option works only with DWARF 2.

-fno-merge-debug-strings

Direct the linker to not merge together strings in the debugging information
that are identical in different object files. Merging is not supported by all
assemblers or linkers. Merging decreases the size of the debug information in
the output file at the cost of increasing link processing time. Merging is enabled
by default.

-fdebug-prefix-map=old=new

When compiling files in directory ‘o1d’, record debugging information describing
them as in ‘new’ instead.

—-fno-dwarf2-cfi-asm

P

Emit DWARF 2 unwind info as compiler generated .eh_frame section instead
of using GAS .cfi_x* directives.

Generate extra code to write profile information suitable for the analysis pro-
gram prof. You must use this option when compiling the source files you want
data about, and you must also use it when linking.

Chapter 3: GCC Command Options 85

-pg Generate extra code to write profile information suitable for the analysis pro-
gram gprof. You must use this option when compiling the source files you want
data about, and you must also use it when linking.

-Q Makes the compiler print out each function name as it is compiled, and print
some statistics about each pass when it finishes.

-ftime-report
Makes the compiler print some statistics about the time consumed by each pass
when it finishes.

-fmem-report
Makes the compiler print some statistics about permanent memory allocation
when it finishes.

-fmem-report-wpa
Makes the compiler print some statistics about permanent memory allocation
for the WPA phase only.

-fpre-ipa-mem-report

-fpost-ipa-mem-report
Makes the compiler print some statistics about permanent memory allocation
before or after interprocedural optimization.

-fprofile-report
Makes the compiler print some statistics about consistency of the (estimated)
profile and effect of individual passes.

-fstack-usage
Makes the compiler output stack usage information for the program, on a per-
function basis. The filename for the dump is made by appending ‘.su’ to the
auxname. auxname is generated from the name of the output file, if explicitly
specified and it is not an executable, otherwise it is the basename of the source
file. An entry is made up of three fields:

e The name of the function.
e A number of bytes.

e One or more qualifiers: static, dynamic, bounded.

The qualifier static means that the function manipulates the stack statically: a
fixed number of bytes are allocated for the frame on function entry and released
on function exit; no stack adjustments are otherwise made in the function. The
second field is this fixed number of bytes.

The qualifier dynamic means that the function manipulates the stack dynami-
cally: in addition to the static allocation described above, stack adjustments are
made in the body of the function, for example to push/pop arguments around
function calls. If the qualifier bounded is also present, the amount of these ad-
justments is bounded at compile time and the second field is an upper bound of
the total amount of stack used by the function. If it is not present, the amount
of these adjustments is not bounded at compile time and the second field only
represents the bounded part.

86

Using the GNU Compiler Collection (GCC)

-fprofile-arcs

——coverage

Add code so that program flow arcs are instrumented. During execution the
program records how many times each branch and call is executed and how
many times it is taken or returns. When the compiled program exits it saves
this data to a file called ‘auxname.gcda’ for each source file. The data may be
used for profile-directed optimizations (‘~fbranch-probabilities’), or for test
coverage analysis (‘~ftest-coverage’). Each object file’s auxname is generated
from the name of the output file, if explicitly specified and it is not the final
executable, otherwise it is the basename of the source file. In both cases any
suffix is removed (e.g. ‘foo.gcda’ for input file ‘dir/foo.c’, or ‘dir/foo.gcda’
for output file specified as ‘-0 dir/foo.0’). See Section 10.5 [Cross-profiling],
page 745.

This option is used to compile and link code instrumented for coverage analysis.
The option is a synonym for ‘~fprofile-arcs’ ‘~ftest-coverage’ (when com-
piling) and ‘-1gcov’ (when linking). See the documentation for those options
for more details.

e Compile the source files with ‘-fprofile-arcs’ plus optimization and
code generation options. For test coverage analysis, use the additional
‘~ftest-coverage’ option. You do not need to profile every source file in
a program.

e Link your object files with ‘~1gcov’ or ‘~fprofile-arcs’ (the latter implies
the former).

e Run the program on a representative workload to generate the arc profile
information. This may be repeated any number of times. You can run
concurrent instances of your program, and provided that the file system
supports locking, the data files will be correctly updated. Also fork calls
are detected and correctly handled (double counting will not happen).

e For profile-directed optimizations, compile the source files again
with the same optimization and code generation options plus
‘~fbranch-probabilities’ (see Section 3.10 [Options that Control
Optimization], page 101).

e For test coverage analysis, use gcov to produce human readable information
from the ‘.gcno’ and ‘.gcda’ files. Refer to the gcov documentation for
further information.

With ‘-fprofile-arcs’, for each function of your program GCC creates a
program flow graph, then finds a spanning tree for the graph. Only arcs that
are not on the spanning tree have to be instrumented: the compiler adds code
to count the number of times that these arcs are executed. When an arc is
the only exit or only entrance to a block, the instrumentation code can be
added to the block; otherwise, a new basic block must be created to hold the
instrumentation code.

Chapter 3: GCC Command Options 87

-ftest-coverage
Produce a notes file that the gcov code-coverage utility (see Chapter 10 [gcov—
a Test Coverage Program|, page 737) can use to show program coverage. Each
source file’s note file is called ‘auxname.gcno’. Refer to the ‘~-fprofile-arcs’
option above for a description of auxname and instructions on how to generate
test coverage data. Coverage data matches the source files more closely if you
do not optimize.

-fdbg-cnt-list
Print the name and the counter upper bound for all debug counters.

-fdbg-cnt=counter-value-list
Set the internal debug counter upper bound. counter-value-list is a comma-
separated list of name:value pairs which sets the upper bound of each debug
counter name to value. All debug counters have the initial upper bound of
UINT_MAX; thus dbg_cnt () returns true always unless the upper bound is set
by this option. For example, with ‘-fdbg-cnt=dce:10,tail_call:0’, dbg_
cnt (dce) returns true only for first 10 invocations.

-fenable-kind-pass

-fdisable-kind-pass=range-list
This is a set of options that are used to explicitly disable/enable optimization
passes. These options are intended for use for debugging GCC. Compiler users
should use regular options for enabling/disabling passes instead.

-fdisable-ipa-pass
Disable IPA pass pass. pass is the pass name. If the same pass
is statically invoked in the compiler multiple times, the pass name
should be appended with a sequential number starting from 1.

-fdisable-rtl-pass

-fdisable-rtl-pass=range-list
Disable RTL pass pass. pass is the pass name. If the same pass is
statically invoked in the compiler multiple times, the pass name
should be appended with a sequential number starting from 1.
range-list is a comma-separated list of function ranges or assem-
bler names. Each range is a number pair separated by a colon.
The range is inclusive in both ends. If the range is trivial, the
number pair can be simplified as a single number. If the function’s
call graph node’s uid falls within one of the specified ranges, the
pass is disabled for that function. The uid is shown in the function
header of a dump file, and the pass names can be dumped by using
option ‘~fdump-passes’.

-fdisable-tree-pass

-fdisable-tree-pass=range-list
Disable tree pass pass. See ‘~fdisable-rtl’ for the description of
option arguments.

88

-dletters

Using the GNU Compiler Collection (GCC)

-fenable-ipa-pass
Enable IPA pass pass. pass is the pass name. If the same pass
is statically invoked in the compiler multiple times, the pass name
should be appended with a sequential number starting from 1.

-fenable-rtl-pass

-fenable-rtl-pass=range-list
Enable RTL pass pass. See
description and examples.

¢

-fdisable-rtl’ for option argument

-fenable-tree-pass

-fenable-tree-pass=range-list
Enable tree pass pass. See ‘-fdisable-rtl’ for the description of
option arguments.

Here are some examples showing uses of these options.

disable ccpl for all functions
-fdisable-tree-ccpl
disable complete unroll for function whose cgraph node uid is 1
-fenable-tree-cunroll=1
disable gcse2 for functions at the following ranges [1,1],
[300,400], and [400,1000]
disable gcse2 for functions foo and foo2
-fdisable-rtl-gcse2=foo,foo02
disable early inlining
-fdisable-tree-einline
disable ipa inlining
-fdisable-ipa-inline
enable tree full unroll
-fenable-tree-unroll

H*

-fdump-rtl-pass
-fdump-rtl-pass=filename

Says to make debugging dumps during compilation at times specified by letters.
This is used for debugging the RTL-based passes of the compiler. The file names
for most of the dumps are made by appending a pass number and a word to
the dumpname, and the files are created in the directory of the output file. In
case of ‘=filename’ option, the dump is output on the given file instead of the
pass numbered dump files. Note that the pass number is computed statically as
passes get registered into the pass manager. Thus the numbering is not related
to the dynamic order of execution of passes. In particular, a pass installed by a
plugin could have a number over 200 even if it executed quite early. dumpname
is generated from the name of the output file, if explicitly specified and it is not
an executable, otherwise it is the basename of the source file. These switches
may have different effects when ‘-E’ is used for preprocessing.

Debug dumps can be enabled with a ‘~fdump-rtl’ switch or some ‘-d’ option
letters. Here are the possible letters for use in pass and letters, and their
meanings:

Chapter 3:

GCC Command Options 89

-fdump-rtl-alignments
Dump after branch alignments have been computed.

-fdump-rtl-asmcons
Dump after fixing rtl statements that have unsatisfied in/out con-
straints.

—fdump-rtl-auto_inc_dec
Dump after auto-inc-dec discovery. This pass is only run on archi-
tectures that have auto inc or auto dec instructions.

—-fdump-rtl-barriers
Dump after cleaning up the barrier instructions.

-fdump-rtl-bbpart
Dump after partitioning hot and cold basic blocks.

—-fdump-rtl-bbro
Dump after block reordering.

-fdump-rtl-btlil

-fdump-rtl-btl2
‘~fdump-rtl-btll’ and ‘-fdump-rtl-btl2’ enable dumping after
the two branch target load optimization passes.

-fdump-rtl-bypass
Dump after jump bypassing and control flow optimizations.

—-fdump-rtl-combine
Dump after the RTL instruction combination pass.

—-fdump-rtl-compgotos
Dump after duplicating the computed gotos.

-fdump-rtl-cel

—fdump-rtl-ce2

-fdump-rtl-ce3
‘~fdump-rtl-cel’, ‘~fdump-rtl-ce2’, and ‘-fdump-rtl-ce3’ en-
able dumping after the three if conversion passes.

-fdump-rtl-cprop_hardreg
Dump after hard register copy propagation.

-fdump-rtl-csa
Dump after combining stack adjustments.

—fdump-rtl-csel

—fdump-rtl-cse2
‘~fdump-rtl-csel’ and ‘~fdump-rtl-cse2’ enable dumping after
the two common subexpression elimination passes.

-fdump-rtl-dce
Dump after the standalone dead code elimination passes.

—fdump-rtl-dbr
Dump after delayed branch scheduling.

90 Using the GNU Compiler Collection (GCC)

—fdump-rtl-dcel

-fdump-rtl-dce2
‘~fdump-rtl-dcel’ and ‘~fdump-rtl-dce2’ enable dumping after
the two dead store elimination passes.

—fdump-rtl-eh
Dump after finalization of EH handling code.

—fdump-rtl-eh_ranges
Dump after conversion of EH handling range regions.

-fdump-rtl-expand
Dump after RTL generation.

-fdump-rtl-fwpropl

—fdump-rtl-fwprop2
‘~fdump-rtl-fwpropl’ and ‘-fdump-rtl-fwprop2’ enable dump-
ing after the two forward propagation passes.

—fdump-rtl-gcsel

—fdump-rtl-gcse?2
‘~fdump-rtl-gcsel’ and ‘-~fdump-rtl-gcse2’ enable dumping af-
ter global common subexpression elimination.

-fdump-rtl-init-regs
Dump after the initialization of the registers.

—fdump-rtl-initvals
Dump after the computation of the initial value sets.

—fdump-rtl-into_cfglayout
Dump after converting to cfglayout mode.

-fdump-rtl-ira
Dump after iterated register allocation.

-fdump-rtl-jump
Dump after the second jump optimization.

-fdump-rtl-loop2
‘~fdump-rtl-loop2’ enables dumping after the rtl loop optimiza-
tion passes.

—-fdump-rtl-mach
Dump after performing the machine dependent reorganization pass,
if that pass exists.

-fdump-rtl-mode_sw
Dump after removing redundant mode switches.

-fdump-rtl-rnreg
Dump after register renumbering.

—fdump-rtl-outof_cfglayout
Dump after converting from cfglayout mode.

Chapter 3:

GCC Command Options 91

—-fdump-rtl-peephole2
Dump after the peephole pass.

—-fdump-rtl-postreload
Dump after post-reload optimizations.

—fdump-rtl-pro_and_epilogue
Dump after generating the function prologues and epilogues.

—-fdump-rtl-schedl

—-fdump-rtl-sched2
‘~fdump-rtl-schedl’ and ‘-fdump-rtl-sched2’ enable dumping
after the basic block scheduling passes.

-fdump-rtl-ree
Dump after sign/zero extension elimination.

—-fdump-rtl-seqabstr
Dump after common sequence discovery.

—fdump-rtl-shorten
Dump after shortening branches.

-fdump-rtl-sibling
Dump after sibling call optimizations.

-fdump-rtl-splitl

-fdump-rtl-split2

—fdump-rtl-split3

-fdump-rtl-splité

-fdump-rtl-splitb
‘~fdump-rtl-splitl’, ‘~-fdump-rtl-split2’, ‘~fdump-rtl-split3’|]
‘~fdump-rtl-split4’ and ‘-fdump-rtl-splitb’ enable dumping
after five rounds of instruction splitting.

-fdump-rtl-sms
Dump after modulo scheduling. This pass is only run on some
architectures.

—-fdump-rtl-stack
Dump after conversion from GCC’s “flat register file” registers to
the x87’s stack-like registers. This pass is only run on x86 variants.

—-fdump-rtl-subregl

—fdump-rtl-subreg?2
‘~fdump-rtl-subregl’ and ‘-fdump-rtl-subreg2’ enable dump-
ing after the two subreg expansion passes.

-fdump-rtl-unshare
Dump after all rtl has been unshared.

—fdump-rtl-vartrack
Dump after variable tracking.

92

Using the GNU Compiler Collection (GCC)

—fdump-rtl-vregs

Dump after converting virtual registers to hard registers.

-fdump-rtl-web

Dump after live range splitting.

-fdump-rtl-regclass
-fdump-rtl-subregs_of_mode_init
-fdump-rtl-subregs_of_mode_finish
-fdump-rtl-dfinit
—fdump-rtl-dfinish

-da

These dumps are defined but always produce empty files.

-fdump-rtl-all

-dA

-dD

-dH

-dP

-dx

-fdump-noaddr

Produce all the dumps listed above.

Annotate the assembler output with miscellaneous debugging in-
formation.

Dump all macro definitions, at the end of preprocessing, in addition
to normal output.

Produce a core dump whenever an error occurs.

Annotate the assembler output with a comment indicating which
pattern and alternative is used. The length of each instruction is
also printed.

Dump the RTL in the assembler output as a comment before each
instruction. Also turns on ‘-dp’ annotation.

Just generate RTL for a function instead of compiling it. Usually
used with ‘~fdump-rtl-expand’.

When doing debugging dumps, suppress address output. This makes it more
feasible to use diff on debugging dumps for compiler invocations with different
compiler binaries and/or different text / bss / data / heap / stack / dso start

locations.

—fdump-unnumbered

When doing debugging dumps, suppress instruction numbers and address out-
put. This makes it more feasible to use diff on debugging dumps for compiler
invocations with different options, in particular with and without ‘-g’.

-fdump-unnumbered-1links
When doing debugging dumps (see ‘-d’ option above), suppress instruction
numbers for the links to the previous and next instructions in a sequence.

-fdump-translation-unit (C++ only)

-fdump-translation-unit-options (C++ only)
Dump a representation of the tree structure for the entire translation unit to
a file. The file name is made by appending ‘.tu’ to the source file name, and

Chapter 3: GCC Command Options 93

the file is created in the same directory as the output file. If the ‘~options’

form is used, options controls the details of the dump as described for the
‘~fdump-tree’ options.

-fdump-class-hierarchy (C++ only)

-fdump-class-hierarchy-options (C++ only)
Dump a representation of each class’s hierarchy and virtual function table layout
to a file. The file name is made by appending ‘.class’ to the source file name,
and the file is created in the same directory as the output file. If the ‘~options’
form is used, options controls the details of the dump as described for the
‘~fdump-tree’ options.

-fdump-ipa-switch
Control the dumping at various stages of inter-procedural analysis language tree
to a file. The file name is generated by appending a switch specific suffix to the
source file name, and the file is created in the same directory as the output file.
The following dumps are possible:

‘all’ Enables all inter-procedural analysis dumps.

‘cgraph’ Dumps information about call-graph optimization, unused function
removal, and inlining decisions.

‘inline’ Dump after function inlining.

-fdump-passes
Dump the list of optimization passes that are turned on and off by the current
command-line options.

—-fdump-statistics-option
Enable and control dumping of pass statistics in a separate file. The file name
is generated by appending a suffix ending in ‘.statistics’ to the source file
name, and the file is created in the same directory as the output file. If the
‘~option’ form is used, ‘-stats’ causes counters to be summed over the whole
compilation unit while ‘~details’ dumps every event as the passes generate
them. The default with no option is to sum counters for each function compiled.

-fdump-tree-switch

—-fdump-tree-switch-options

-fdump-tree-switch-options=filename
Control the dumping at various stages of processing the intermediate language
tree to a file. The file name is generated by appending a switch-specific suffix to
the source file name, and the file is created in the same directory as the output
file. In case of ‘=filename’ option, the dump is output on the given file instead
of the auto named dump files. If the ‘~options’ form is used, options is a list
of ‘=’ separated options which control the details of the dump. Not all options
are applicable to all dumps; those that are not meaningful are ignored. The
following options are available

‘address’ Print the address of each node. Usually this is not meaningful as it
changes according to the environment and source file. Its primary
use is for tying up a dump file with a debug environment.

94

‘asmname’

‘slim’

raw

‘details’

‘stats’

‘blocks’

‘graph’

‘vops’
‘lineno’
‘uid’
‘verbose’
(eh7
‘scev’

‘optimized’

‘missed’

‘notes’

Using the GNU Compiler Collection (GCC)

If DECL_ASSEMBLER_NAME has been set for a given decl, use that
in the dump instead of DECL_NAME. Its primary use is ease of use
working backward from mangled names in the assembly file.

When dumping front-end intermediate representations, inhibit
dumping of members of a scope or body of a function merely
because that scope has been reached. Only dump such items when
they are directly reachable by some other path.

When dumping pretty-printed trees, this option inhibits dumping
the bodies of control structures.

When dumping RTL, print the RTL in slim (condensed) form in-
stead of the default LISP-like representation.

Print a raw representation of the tree. By default, trees are pretty-
printed into a C-like representation.

Enable more detailed dumps (not honored by every dump option).
Also include information from the optimization passes.

Enable dumping various statistics about the pass (not honored by
every dump option).

Enable showing basic block boundaries (disabled in raw dumps).

For each of the other indicated dump files (‘~fdump-rtl-pass’),
dump a representation of the control flow graph suitable for viewing
with GraphViz to ‘file.passid.pass.dot’. Each function in the
file is pretty-printed as a subgraph, so that GraphViz can render
them all in a single plot.

This option currently only works for RTL dumps, and the RTL is
always dumped in slim form.

Enable showing virtual operands for every statement.

Enable showing line numbers for statements.

Enable showing the unique ID (DECL_UID) for each variable.
Enable showing the tree dump for each statement.

Enable showing the EH region number holding each statement.

Enable showing scalar evolution analysis details.

Enable showing optimization information (only available in certain
passes).

Enable showing missed optimization information (only available in
certain passes).

Enable other detailed optimization information (only available in
certain passes).

Chapter 3: GCC Command Options

‘=filename’

‘all’
‘optall’

95

Instead of an auto named dump file, output into the given file name.
The file names ‘stdout’ and ‘stderr’ are treated specially and are
considered already open standard streams. For example,
gcc -02 -ftree-vectorize -fdump-tree-vect-blocks=foo.dump
-fdump-tree-pre=stderr file.c

outputs vectorizer dump into ‘foo.dump’, while the PRE dump is
output on to ‘stderr’. If two conflicting dump filenames are given
for the same pass, then the latter option overrides the earlier one.

Turn on all options, except ‘raw’, ‘slim’, ‘verbose’ and ‘lineno’.

Turn on all optimization options, i.e., ‘optimized’, ‘missed’, and
‘note’

The following tree dumps are possible:

‘original’

‘optimized’

‘gimple’

‘storeccp’

Cpre7

‘fre’

‘copyprop’

Dump before any tree based optimization, to ‘file.original’.

Dump after all tree based optimization, to ‘file.optimized’.

Dump each function before and after the gimplification pass to a
file. The file name is made by appending .gimple’ to the source
file name.

Dump the control flow graph of each function to a file. The file
name is made by appending ‘.cfg’ to the source file name.

Dump each function after copying loop headers. The file name is
made by appending ‘.ch’ to the source file name.

Dump SSA related information to a file. The file name is made by
appending ‘.ssa’ to the source file name.

Dump aliasing information for each function. The file name is made
by appending ‘.alias’ to the source file name.

Dump each function after CCP. The file name is made by append-
ing ‘.ccp’ to the source file name.

Dump each function after STORE-CCP. The file name is made by
appending ‘.storeccp’ to the source file name.

Dump trees after partial redundancy elimination. The file name is
made by appending ‘.pre’ to the source file name.

Dump trees after full redundancy elimination. The file name is
made by appending ‘.fre’ to the source file name.

Dump trees after copy propagation. The file name is made by
appending ‘. copyprop’ to the source file name.

96

-fopt-info
-fopt-info

Using the GNU Compiler Collection (GCC)

‘store_copyprop’

Dump trees after store copy-propagation. The file name is made
by appending ‘.store_copyprop’ to the source file name.

‘dce’ Dump each function after dead code elimination. The file name is
made by appending ‘.dce’ to the source file name.

‘sra’ Dump each function after performing scalar replacement of aggre-
gates. The file name is made by appending ‘.sra’ to the source file
name.

‘sink’ Dump each function after performing code sinking. The file name
is made by appending ‘.sink’ to the source file name.

‘dom’ Dump each function after applying dominator tree optimizations.
The file name is made by appending ‘.dom’ to the source file name.

‘dse’ Dump each function after applying dead store elimination. The file
name is made by appending ‘.dse’ to the source file name.

‘phiopt’ Dump each function after optimizing PHI nodes into straightline
code. The file name is made by appending ‘.phiopt’ to the source
file name.

‘forwprop’

Dump each function after forward propagating single use variables.
The file name is made by appending ‘. forwprop’ to the source file
name.

‘copyrename’

Dump each function after applying the copy rename optimization.
The file name is made by appending .copyrename’ to the source
file name.

‘nrv’ Dump each function after applying the named return value opti-
mization on generic trees. The file name is made by appending
‘.nrv’ to the source file name.

‘vect’ Dump each function after applying vectorization of loops. The file
name is made by appending ‘.vect’ to the source file name.

‘slp’ Dump each function after applying vectorization of basic blocks.
The file name is made by appending ‘. slp’ to the source file name.

‘vrp’ Dump each function after Value Range Propagation (VRP). The
file name is made by appending ‘.vrp’ to the source file name.

‘all’ Enable all the available tree dumps with the flags provided in this
option.

-options

—fopt-info-options=filename
Controls optimization dumps from various optimization passes. If the

‘~-options’

form is used, options is a list of ‘=’ separated options to select

Chapter 3: GCC Command Options 97

the dump details and optimizations. If options is not specified, it defaults to
‘optimized’ for details and ‘optall’ for optimization groups. If the filename
is not specified, it defaults to ‘stderr’. Note that the output filename will be
overwritten in case of multiple translation units. If a combined output from
multiple translation units is desired, ‘stderr’ should be used instead.

The options can be divided into two groups, 1) options describing the ver-
bosity of the dump, and 2) options describing which optimizations should be
included. The options from both the groups can be freely mixed as they are
non-overlapping. However, in case of any conflicts, the latter options override
the earlier options on the command line. Though multiple -fopt-info options
are accepted, only one of them can have ‘=filename’. If other filenames are
provided then all but the first one are ignored.

The dump verbosity has the following options

‘optimized’
Print information when an optimization is successfully applied. It
is up to a pass to decide which information is relevant. For example,
the vectorizer passes print the source location of loops which got
successfully vectorized.

‘missed’ Print information about missed optimizations. Individual passes
control which information to include in the output. For example,
gcc -02 -ftree-vectorize -fopt-info-vec-missed
will print information about missed optimization opportunities
from vectorization passes on stderr.

‘note’ Print verbose information about optimizations, such as certain
transformations, more detailed messages about decisions etc.

‘all’ Print detailed optimization information. This includes optimized,
missed, and note.

The second set of options describes a group of optimizations and may include
one or more of the following.

‘ipa’ Enable dumps from all interprocedural optimizations.
‘loop’ Enable dumps from all loop optimizations.

‘inline’ Enable dumps from all inlining optimizations.

‘vec’ Enable dumps from all vectorization optimizations.

‘optall’ Enable dumps from all optimizations. This is a superset of the
optimization groups listed above.

For example,
gcc -03 -fopt-info-missed=missed.all
outputs missed optimization report from all the passes into ‘missed.all’.

As another example,

gcc -03 -fopt-info-inline-optimized-missed=inline.txt

98

Using the GNU Compiler Collection (GCC)

will output information about missed optimizations as well as optimized loca-
tions from all the inlining passes into ‘inline.txt’.

If the filename is provided, then the dumps from all the applicable optimizations
are concatenated into the ‘filename’. Otherwise the dump is output onto
‘stderr’. If options is omitted, it defaults to ‘all-optall’, which means dump
all available optimization info from all the passes. In the following example, all
optimization info is output on to ‘stderr’.

gcc -03 -fopt-info

Note that ‘-fopt-info-vec-missed’ behaves the same as ‘~fopt-info-missed-vec’.]]

As another example, consider

gcc -fopt-info-vec-missed=vec.miss -fopt-info-loop-optimized=loop.opt
Here the two output filenames ‘vec.miss’ and ‘loop.opt’ are in conflict since
only one output file is allowed. In this case, only the first option takes effect
and the subsequent options are ignored. Thus only the ‘vec.miss’ is produced
which contains dumps from the vectorizer about missed opportunities.

-frandom-seed=string

This option provides a seed that GCC uses in place of random numbers in
generating certain symbol names that have to be different in every compiled
file. It is also used to place unique stamps in coverage data files and the object
files that produce them. You can use the ‘~-frandom-seed’ option to produce
reproducibly identical object files.

The string should be different for every file you compile.

—-fsched-verbose=n

On targets that use instruction scheduling, this option controls the amount of
debugging output the scheduler prints. This information is written to stan-
dard error, unless ‘-fdump-rtl-schedl’ or ‘~fdump-rtl-sched?2’ is specified,
in which case it is output to the usual dump listing file, ‘. schedl’ or ‘.sched?2’
respectively. However for n greater than nine, the output is always printed to
standard error.

For n greater than zero, ‘-fsched-verbose’ outputs the same information as
‘~fdump-rtl-schedl’ and ‘-fdump-rtl-sched2’. For n greater than one, it also
output basic block probabilities, detailed ready list information and unit/insn
info. For n greater than two, it includes RTL at abort point, control-flow and
regions info. And for n over four, ‘-fsched-verbose’ also includes dependence
info.

-save-temps
-save-temps=cwd

Store the usual “temporary” intermediate files permanently; place them in the
current directory and name them based on the source file. Thus, compiling
‘foo.c” with ‘~c -save-temps’ produces files ‘foo.i’ and ‘foo.s’, as well as
‘foo.o’. This creates a preprocessed ‘foo.i’ output file even though the com-
piler now normally uses an integrated preprocessor.

When used in combination with the ‘-x’ command-line option, ‘-save-temps’
is sensible enough to avoid over writing an input source file with the same

Chapter 3: GCC Command Options 99

extension as an intermediate file. The corresponding intermediate file may be
obtained by renaming the source file before using ‘-save-temps’.

If you invoke GCC in parallel, compiling several different source files that share
a common base name in different subdirectories or the same source file compiled
for multiple output destinations, it is likely that the different parallel compilers
will interfere with each other, and overwrite the temporary files. For instance:
gcc -save-temps -o outdirl/foo.o indiril/foo.c&
gcc -save-temps -o outdir2/foo.o indir2/foo.c&
may result in ‘foo.i’ and ‘foo.o’ being written to simultaneously by both
compilers.

-save-temps=obj
Store the usual “temporary” intermediate files permanently. If the ‘-0’ option
is used, the temporary files are based on the object file. If the ‘-0’ option is
not used, the ‘-save-temps=obj’ switch behaves like ‘~save-temps’.

For example:

gcc -save-temps=obj -c foo.c

gcc —save-temps=obj -c bar.c -o dir/xbar.o

gcc -save-temps=obj foobar.c -o dir2/yfoobar
creates ‘foo.i’; ‘foo.s’, ‘dir/xbar.i’; ‘dir/xbar.s’, ‘dir2/yfoobar.i’,
‘dir2/yfoobar.s’, and ‘dir2/yfoobar.o’.

-time[=file]

Report the CPU time taken by each subprocess in the compilation sequence.
For C source files, this is the compiler proper and assembler (plus the linker if
linking is done).
Without the specification of an output file, the output looks like this:

ccl 0.12 0.01

as 0.00 0.01
The first number on each line is the “user time”, that is time spent executing
the program itself. The second number is “system time”, time spent executing
operating system routines on behalf of the program. Both numbers are in
seconds.

With the specification of an output file, the output is appended to the named
file, and it looks like this:

0.12 0.01 ccl options

0.00 0.01 as optiomns
The “user time” and the “system time” are moved before the program name,
and the options passed to the program are displayed, so that one can later tell
what file was being compiled, and with which options.

-fvar-tracking
Run variable tracking pass. It computes where variables are stored at each posi-
tion in code. Better debugging information is then generated (if the debugging
information format supports this information).

It is enabled by default when compiling with optimization (‘-0s’, ‘-0’, ‘-02’,
...), debugging information (‘-g’) and the debug info format supports it.

100 Using the GNU Compiler Collection (GCC)

-fvar-tracking-assignments
Annotate assignments to user variables early in the compilation and attempt to
carry the annotations over throughout the compilation all the way to the end, in
an attempt to improve debug information while optimizing. Use of ‘-gdwarf-4’
is recommended along with it.

It can be enabled even if var-tracking is disabled, in which case annotations are
created and maintained, but discarded at the end.

-fvar-tracking-assignments-toggle
Toggle ‘-fvar-tracking-assignments’, in the same way that ‘~gtoggle’ tog-
gles ‘-g’.

-print-file-name=library
Print the full absolute name of the library file library that would be used when
linking—and don’t do anything else. With this option, GCC does not compile
or link anything; it just prints the file name.

-print-multi-directory
Print the directory name corresponding to the multilib selected by any other
switches present in the command line. This directory is supposed to exist in
GCC_EXEC_PREFIX.

-print-multi-1ib
Print the mapping from multilib directory names to compiler switches that
enable them. The directory name is separated from the switches by ‘;’, and
each switch starts with an ‘@’ instead of the ‘-’, without spaces between multiple
switches. This is supposed to ease shell processing.

-print-multi-os—-directory
Print the path to OS libraries for the selected multilib, relative to some ‘1ib’
subdirectory. If OS libraries are present in the ‘1ib’ subdirectory and no mul-
tilibs are used, this is usually just ‘.’ if OS libraries are present in ‘libsuffix’
sibling directories this prints e.g. ‘../1ib64’, ‘../1ib’ or ‘../1ib32’, or if
OS libraries are present in ‘lib/subdir’ subdirectories it prints e.g. ‘amd64’,
‘sparcv9’ or ‘ev6’.

-print-multiarch
Print the path to OS libraries for the selected multiarch, relative to some ‘1ib’
subdirectory.

-print-prog-name=program
Like ‘-print-file-name’, but searches for a program such as ‘cpp’.

-print-libgcc-file-name
Same as ‘-print-file-name=libgcc.a’.
This is useful when you use ‘-nostdlib’ or ‘-nodefaultlibs’ but you do want
to link with ‘libgcc.a’. You can do:
gcc -nostdlib files... ‘gcc -print-libgcc-file-name
-print-search-dirs
Print the name of the configured installation directory and a list of program
and library directories gcc searches—and don’t do anything else.

Chapter 3: GCC Command Options 101

This is useful when gcc prints the error message ‘installation problem,
cannot exec cppO: No such file or directory’. To resolve this you either
need to put ‘cpp0’ and the other compiler components where gcc expects to
find them, or you can set the environment variable GCC_EXEC_PREFIX to the di-
rectory where you installed them. Don’t forget the trailing ‘/’. See Section 3.19
[Environment Variables], page 334.

-print-sysroot
Print the target sysroot directory that is used during compilation. This is the
target sysroot specified either at configure time or using the ‘~-sysroot’ option,
possibly with an extra suffix that depends on compilation options. If no target
sysroot is specified, the option prints nothing.

-print-sysroot-headers-suffix
Print the suffix added to the target sysroot when searching for headers, or
give an error if the compiler is not configured with such a suffix—and don’t do
anything else.

—dumpmachine
Print the compiler’s target machine (for example, ‘1686-pc-1linux-gnu’)—and
don’t do anything else.

—dumpversion
Print the compiler version (for example, ‘3.0’)—and don’t do anything else.

—dumpspecs
Print the compiler’s built-in specs—and don’t do anything else. (This is used
when GCC itself is being built.) See Section 3.15 [Spec Files|, page 173.

-fno-eliminate-unused-debug-types

Normally, when producing DWARF 2 output, GCC avoids producing debug
symbol output for types that are nowhere used in the source file being compiled.
Sometimes it is useful to have GCC emit debugging information for all types
declared in a compilation unit, regardless of whether or not they are actually
used in that compilation unit, for example if, in the debugger, you want to cast
a value to a type that is not actually used in your program (but is declared).
More often, however, this results in a significant amount of wasted space.

3.10 Options That Control Optimization

These options control various sorts of optimizations.

Without any optimization option, the compiler’s goal is to reduce the cost of compilation
and to make debugging produce the expected results. Statements are independent: if you
stop the program with a breakpoint between statements, you can then assign a new value
to any variable or change the program counter to any other statement in the function and
get exactly the results you expect from the source code.

Turning on optimization flags makes the compiler attempt to improve the performance
and/or code size at the expense of compilation time and possibly the ability to debug the
program.

102 Using the GNU Compiler Collection (GCC)

The compiler performs optimization based on the knowledge it has of the program. Com-
piling multiple files at once to a single output file mode allows the compiler to use informa-
tion gained from all of the files when compiling each of them.

Not all optimizations are controlled directly by a flag. Only optimizations that have a
flag are listed in this section.

Most optimizations are only enabled if an ‘-0’ level is set on the command line. Otherwise
they are disabled, even if individual optimization flags are specified.

Depending on the target and how GCC was configured, a slightly different set of opti-
mizations may be enabled at each ‘-0’ level than those listed here. You can invoke GCC
with ‘-Q —--help=optimizers’ to find out the exact set of optimizations that are enabled
at each level. See Section 3.2 [Overall Options|, page 25, for examples.

-0
-01 Optimize. Optimizing compilation takes somewhat more time, and a lot more
memory for a large function.

With ‘-0’°, the compiler tries to reduce code size and execution time, without
performing any optimizations that take a great deal of compilation time.

‘-0’ turns on the following optimization flags:

-fauto-inc-dec
-fcompare-elim
-fcprop-registers
-fdce
-fdefer-pop
-fdelayed-branch
-fdse
-fguess-branch-probability
-fif-conversion2
-fif-conversion
-fipa-pure-const
-fipa-profile
-fipa-reference
-fmerge-constants -fsplit-wide-types
-ftree-bit-ccp
-ftree-builtin-call-dce
-ftree-ccp
-ftree-ch
-ftree-copyrename
-ftree-dce
-ftree-dominator-opts
-ftree-dse
-ftree-forwprop
-ftree-fre
-ftree-phiprop
-ftree-slsr
-ftree-sra
-ftree-pta
-ftree-ter
-funit-at-a-time

‘-0’ also turns on ‘-fomit-frame-pointer’ on machines where doing so does
not interfere with debugging.

Chapter 3: GCC Command Options 103

-02

-03

-00

-0s

-0fast

Optimize even more. GCC performs nearly all supported optimizations that do
not involve a space-speed tradeoff. As compared to ‘-0’, this option increases
both compilation time and the performance of the generated code.

‘-02’ turns on all optimization flags specified by ‘-0’. It also turns on the
following optimization flags:

-fthread-jumps

-falign-functions -falign-jumps
-falign-loops -falign-labels
-fcaller-saves

-fcrossjumping

-fcse-follow-jumps -fcse-skip-blocks
-fdelete-null-pointer-checks
-fdevirtualize -fdevirtualize-speculatively
-fexpensive-optimizations

-fgcse -fgcse-1m
-fhoist-adjacent-loads
-finline-small-functions
-findirect-inlining

-fipa-sra
-fisolate-erroneous-paths-dereference
-foptimize-sibling-calls
-fpartial-inlining

-fpeephole2

-freorder-blocks -freorder-functions
-frerun-cse-after-loop
-fsched-interblock -fsched-spec
-fschedule-insns -fschedule-insns2
-fstrict-aliasing -fstrict-overflow
-ftree-switch-conversion -ftree-tail-merge
-ftree-pre

-ftree-vrp

Please note the warning under ‘~fgcse’ about invoking ‘-02’ on programs that
use computed gotos.

Optimize yet more. ‘-03” turns on all optimizations spec-
ified by ‘-02° and also turns on the ‘-finline-functions’,
‘~funswitch-loops’, ‘-fpredictive-commoning’, ‘-fgcse-after-reload’,
‘~ftree-loop-vectorize’, ‘-ftree-slp-vectorize’, ‘-fvect-cost-model’,

‘~ftree-partial-pre’ and ‘-fipa-cp-clone’ options.

Reduce compilation time and make debugging produce the expected results.
This is the default.

Optimize for size. ‘-0s’ enables all ‘-02’ optimizations that do not typically
increase code size. It also performs further optimizations designed to reduce
code size.

‘-0s’ disables the following optimization flags:

-falign-functions -falign-jumps -falign-loops
-falign-labels -freorder-blocks -freorder-blocks-and-partition
-fprefetch-loop-arrays

Disregard strict standards compliance. ‘-0fast’ enables all ‘-03’
optimizations. It also enables optimizations that are not valid for all standard-

104 Using the GNU Compiler Collection (GCC)

compliant programs. It turns on ‘-ffast-math’ and the Fortran-specific
‘~fno-protect-parens’ and ‘-fstack-arrays’.

-0g Optimize debugging experience. ‘-0g’ enables optimizations that do not in-
terfere with debugging. It should be the optimization level of choice for the
standard edit-compile-debug cycle, offering a reasonable level of optimization
while maintaining fast compilation and a good debugging experience.

If you use multiple ‘-0’ options, with or without level numbers, the last such
option is the one that is effective.

Options of the form ‘-fflag’ specify machine-independent flags. Most flags have both
positive and negative forms; the negative form of ‘~ffoo’ is ‘~fno-foo’. In the table below,
only one of the forms is listed—the one you typically use. You can figure out the other form
by either removing ‘no-’ or adding it.

The following options control specific optimizations. They are either activated by ‘-0’
options or are related to ones that are. You can use the following flags in the rare cases
when “fine-tuning” of optimizations to be performed is desired.

-fno-defer-pop
Always pop the arguments to each function call as soon as that function re-
turns. For machines that must pop arguments after a function call, the compiler
normally lets arguments accumulate on the stack for several function calls and
pops them all at once.

Disabled at levels ‘-0°, ‘-02’, ‘-03’, ‘-0s’.

-fforward-propagate
Perform a forward propagation pass on RTL. The pass tries to combine two
instructions and checks if the result can be simplified. If loop unrolling is active,
two passes are performed and the second is scheduled after loop unrolling.

This option is enabled by default at optimization levels ‘-0’°, ‘-02’, ‘~-03’, ‘-0s’.

-ffp-contract=style
‘~ffp-contract=off’ disables floating-point expression contraction.
‘~ffp-contract=fast’ enables floating-point expression contraction such as
forming of fused multiply-add operations if the target has native support for
them. ‘-ffp-contract=on’ enables floating-point expression contraction if
allowed by the language standard. This is currently not implemented and
treated equal to ‘~ffp-contract=off’.

The default is ‘~ffp-contract=fast’.

-fomit-frame-pointer
Don’t keep the frame pointer in a register for functions that don’t need one.
This avoids the instructions to save, set up and restore frame pointers; it also
makes an extra register available in many functions. It also makes debugging
impossible on some machines.

On some machines, such as the VAX, this flag has no effect, because the stan-
dard calling sequence automatically handles the frame pointer and nothing is
saved by pretending it doesn’t exist. The machine-description macro FRAME_
POINTER_REQUIRED controls whether a target machine supports this flag. See
Section “Register Usage” in GNU Compiler Collection (GCC) Internals.

Chapter 3: GCC Command Options 105

Starting with GCC version 4.6, the default setting (when not optimizing
for size) for 32-bit GNU/Linux x86 and 32-bit Darwin x86 targets
has been changed to ‘-fomit-frame-pointer’. The default can be
reverted to ‘-fno-omit-frame-pointer’ by configuring GCC with the
‘-—enable-frame-pointer’ configure option.

Enabled at levels ‘-0°, ‘~-02’, ‘-03’, ‘-0s’.

-foptimize-sibling-calls
Optimize sibling and tail recursive calls.
Enabled at levels ‘-02’, ‘~-03’, ‘-0s’.

-fno-inline
Do not expand any functions inline apart from those marked with the always_
inline attribute. This is the default when not optimizing.

Single functions can be exempted from inlining by marking them with the
noinline attribute.

-finline-small-functions
Integrate functions into their callers when their body is smaller than expected
function call code (so overall size of program gets smaller). The compiler heuris-
tically decides which functions are simple enough to be worth integrating in this
way. This inlining applies to all functions, even those not declared inline.

Enabled at level ‘-02’.

-findirect-inlining
Inline also indirect calls that are discovered to be known at compile time thanks
to previous inlining. This option has any effect only when inlining itself is turned
on by the ‘-finline-functions’ or ‘~finline-small-functions’ options.

Enabled at level ‘-02°.

-finline-functions
Consider all functions for inlining, even if they are not declared inline. The
compiler heuristically decides which functions are worth integrating in this way:.

If all calls to a given function are integrated, and the function is declared
static, then the function is normally not output as assembler code in its own
right.

Enabled at level ‘-03’.

-finline-functions-called-once
Consider all static functions called once for inlining into their caller even if
they are not marked inline. If a call to a given function is integrated, then
the function is not output as assembler code in its own right.

Enabled at levels ‘=017, ‘~-02’, ‘-03’ and ‘-0s’.

-fearly-inlin