NameLast modifiedSizeLicense

Parent Directory Parent Directory
other MANIFEST 07-May-2018 05:59 414 open
other MD5SUMS 15-May-2018 06:59 364 open
other boot.img 08-May-2018 00:03 18.8M open
application/x-tar boot.tar.bz2 08-May-2018 00:03 11.1M open
application/json build_config.json 07-May-2018 05:59 605 open
other cache.img 08-May-2018 00:03 66.0M open
text changelog.txt 07-May-2018 05:59 962 open
application/x-sh 07-May-2018 05:59 252 open
application/json installed-files-vendor.json 07-May-2018 05:59 40.3K open
text installed-files-vendor.txt 07-May-2018 05:59 11.3K open
application/json installed-files.json 07-May-2018 05:59 764.8K open
text installed-files.txt 07-May-2018 05:59 235.9K open
other juno.img.bz2 08-May-2018 00:03 537.6M open
other kernel_config 07-May-2018 05:59 112.8K open
application/x-sh 07-May-2018 05:59 7.6K open
application/json module-info.json 07-May-2018 05:59 3.1M open
application/x-sh 07-May-2018 05:59 97 open
text pinned-manifest.xml 07-May-2018 05:59 109.0K open
other ramdisk.img 07-May-2018 05:59 1.1M open
text source-manifest.xml 07-May-2018 05:59 57.1K open
other system.img 08-May-2018 00:03 1.2G open
other uInitrd.img 07-May-2018 05:59 1.1M open
other userdata.img 08-May-2018 00:04 550.0M open
other vendor.img 08-May-2018 00:04 248.0M open

Get artifacts

Click on each link to download:

  • boot.tar.bz2
  • system.tar.bz2
  • userdata.tar.bz2

Get linaro image tools

Run following commands to install the linaro-image-tools package and dependencies:

  $ wget -O -|sudo apt-key add -
  $ sudo echo "deb trusty main" >>/etc/apt/sources.list
  $ sudo echo "deb-src trusty main" >>/etc/apt/sources.list
  $ sudo apt-get update
  $ sudo apt-get install linaro-image-tools

Change ‘trusty’ in the instructions to whichever distro release you want packages for.
For details you can reference the “Linaro Repositories” page here

If you’re using a “tip” build then we suggest you use the tip of linaro-image-tools:

  $ git clone

Flash Linaro tarball images on USB drive

Please make sure you specified the right USB drive path you see from the dmesg log for following steps,
or you could erase your hard drive with the wrong parameter.

Insert USB drive into your PC, and flash the image files with the linaro-android-media-create command:

$ linaro-android-media-create --mmc /dev/sdX --image_size 2000M --dev vexpress --systemimage system.img --userdataimage userdata.img --boot boot.tar.bz2

If you’re using tip of linaro image tools

$ ./linaro-image-tools/linaro-android-media-create --mmc /dev/sdX --image_size 2000M --dev vexpress --systemimage system.img --userdataimage userdata.img --boot boot.tar.bz2

Firmware update

This section describes how to update the firmware on the Juno board.

The configuration of the Juno Development Platform board is determined by a set of files stored on a flash memory device on the board. The flash memory can be accessed via a USB-B socket on the rear panel of the board. When connected to a host computer, the flash memory will appear as a USB mass storage device with a FAT16 filesystem. The files in this filesystem are edited to control the configuration of the board.

The configuration of the Juno Development Platform board can be returned to factory default by extracting the Juno board recovery image onto the flash memory device, replacing any files already in the flash memory.

To install firmware images that you have built yourself, the procedure is the same except that you will overwrite the contents of the /SOFTWARE/ directory with your own images.

To update the MCC firmware only, the procedure is the same except that the MCC firmware update bundle will contain only a subset of the files contained in the full recovery image.

To carry out a system recovery, update the MCC firmware, or install your own custom firmware images, follow these steps:

1. Connect a serial terminal to the top 9-pin UART0 connector on the rear panel (115200 baud, 8, n, 1).

2. Connect a USB cable between the USB-B connector on the rear panel and a USB port of your host computer.

3. Connect the 12 volt power supply to the board.

The serial terminal will show the command prompt Cmd>

4. At the Cmd> prompt on the serial terminal, issue the command usb_on

Cmd> usb_on

The configuration flash memory should now be visible on the host computer as a mass storage device.

5. Save to the host PC any of the existing files in the configuration flash memory that you wish to retain for future use.

6. If you wish to update one or more of the firmware components then skip to step 7. Otherwise, for a full system recovery, format the configuration flash memory (FAT16).

7. Extract the board_recovery_image.tar.bz2 included in the boot.tar.bz2 list above to the root directory of the configuration flash memory, preserving the directory structure.

8. If you are performing a system recovery or installing an update from ARM then skip to step 9. Otherwise if you wish to install firmware images that you have built yourself then delete the bl1.bin and fip.bin from the /SOFTWARE/ directory in the configuration flash memory, and copy your own bl1.bin and fip.bin images into that directory to replace them.

9. Safely eject the mass storage device, giving it time to write the files to the internal storage.

10. Press the red ON/OFF button on the rear panel of the board and wait for reprogramming to complete.

The board will load the default configuration and boot up.

Configure Juno boot time UEFI configuration

Stop at UEFI prompt and select the Shell item, it will boot up directly for you.

Accessing Source Code

Linaro Android Source Code

Download the Android building script for this build
from the list of artifacts listed above, and run it.
This script will help to download the entire source code for both Android and
the kernel and attempt to build it.

Most commonly used options for

$ ./ -h #To print the script usage
$ ./ -t #To build from the tip of the branch without overlay
$ ./ -t -o <overlay> #To build from the tip of the branch with provided overlay
$ ./ -m <pinned_manifest> -o <overlay> #To reproduce an exact build from pinned manifest
$ ./ -t -u <url-aosp-mirror-manifest> #Provide the url to your AOSP mirror manifest

The pinned manifest(pinned-manifest.xml(?) and source manifest(source-manifest.xml) can be found from the list of artifacts

Compiling Linaro Android RootFS+Kernel

The following simple steps download, install and compile a complete Linaro Android distribution

  • Download and install Ubuntu 14.04 64 bit or newer (download)
  • Download the Android building script for this build from the list of artifacts listed above
  • Run the script

Build from the tip of the source:

chmod a+x
./ -t  or  ./ -t -u <url-aosp-mirror-manifest>

Or reproduce the exactly the same as this buid:

chmod a+x
./ -m pinned-manifest.xml or ./ -m pinned-manifest.xml -u <url-aosp-mirror-manifest>

Installing Android on your board

cd android/out/target/product/juno
sudo linaro-android-media-create --mmc /dev/sdX --dev vexpress --boot boot.tar.bz2 --systemimage system.img --userdataimage userdata.img

Insert the USB drive into your board and reboot it. You must configure UEFI each time you create a new disk image.