Using the GNU Compiler Collection

For ccc version 4.7.3

(crosstool-NG linaro-1.13.1-4.7-2013.04-20130415 - Linaro GCC 2013.04)

Richard M. Stallman and the Gcc Developer Community

Published by:

GNU Press Website: www.gnupress.org
a division of the General: press@gnu.org
Free Software Foundation Orders: sales@gnu.org

51 Franklin Street, Fifth Floor Tel 617-542-5942

Boston, MA 02110-1301 USA Fax 617-542-2652

Last printed October 2003 for GCC 3.3.1.
Printed copies are available for $45 each.

Copyright (©) 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.3 or any later version published by the
Free Software Foundation; with the Invariant Sections being “Funding Free Software”, the
Front-Cover Texts being (a) (see below), and with the Back-Cover Texts being (b) (see
below). A copy of the license is included in the section entitled “GNU Free Documentation
License”.

(a) The FSF’s Front-Cover Text is:

A GNU Manual

(b) The FSF’s Back-Cover Text is:

You have freedom to copy and modify this GNU Manual, like GNU software. Copies
published by the Free Software Foundation raise funds for GNU development.

Short Contents

Introduction e 1
1 Programming Languages Supported by GCC............... 3
2 Language Standards Supported by GCC)
3 GCC Command Optionsvvtteni e 9
4 C Implementation-defined behavior..................... 303
5 C++ Implementation-defined behavior.................. 311
6 Extensions to the C Language Family................... 313
7 Extensions to the C++ Language 627
8 GNU Objective-C features 639
9 Binary Compatibility 655
10 gcov—a Test Coverage Program 659
11 Known Causes of Trouble with GCC.................... 667
12 Reporting Bugs......... .o, 683
13 How To Get Help with GCC 685
14 Contributing to GCC Development 687
Funding Free Software i 689
The GNU Project and GNU/Linux.t 691
GNU General Public License. 693
GNU Free Documentation License 705
Contributors to GCC 713
Option Index 729

Keyword Index AT

Table of Contents

Introduction 1

1 Programming Languages Supported by GCC

... 3

2 Language Standards Supported by GCC 5
2.1 O langUAZE . « o ettt e 5
2.2 CH4 languageo 6
2.3 Objective-C and Objective-C++ languages 7
24 GO langGuUAZEt 8
2.5 References for other languages.............., 8
3 GCC Command Options....................... 9
3.1 Option SUMMATYttt 9
3.2 Options Controlling the Kind of Output....................... 23
3.3 Compiling C+4 Programscooouiiiiiiiiiiieannn.. 29
3.4 Options Controlling C Dialect............. ..., 29
3.5 Options Controlling C+4 Dialect, 35
3.6 Options Controlling Objective-C and Objective-C++ Dialects.. 45
3.7 Options to Control Diagnostic Messages Formatting 48
3.8 Options to Request or Suppress Warnings 49
3.9 Options for Debugging Your Program or GCC................. 72
3.10 Options That Control Optimization 92
3.11 Options Controlling the Preprocessor........................ 143
3.12 Passing Options to the Assembler........................... 154
3.13 Options for Linking......... ... o i i i 154
3.14 Options for Directory Search..........., 158
3.15 Specifying subprocesses and the switches to pass to them.... 160
3.16 Specifying Target Machine and Compiler Version............ 167
3.17 Hardware Models and Configurations 167
3.17.1 Adapteva Epiphany Options 167
3.17.2 AArch64 Optionsoviiti e 169
3.17.2.1 ‘-march’ and ‘-mcpu’ feature modifiers............. 171
3173 ARM Options.o.oiinii e 171
3174 AVR Optionsot 177
3.17.4.1 EIND and Devices with more than 128 Ki Bytes of Flash
.. 180

3.17.4.2 Handling of the RAMPD, RAMPX, RAMPY and RAMPZ Special
Function Registers........ ... i i i 182

3.17.4.3 AVR Built-in Macros. ..., 182
3.17.5 Blackfin Options.............ooiiiiiiia. 184

3.17.6 COX Options. . ..ot 187

iii

iv

Using the GNU Compiler Collection (GCC)

3.17.7 CRIS Options.voiiii i 187
3.17.8 CRI6 OPtions .. ovvvreit e 189
3.17.9 Darwin Options.c.oiiiiiiiii ... 190
3.17.10 DEC Alpha Optionsoeiiiiiiiiiiiean.. 193
3.17.11 DEC Alpha/VMS Optionscoovevuiiiiiin.. 198
3.17.12 FR30 Optionsc.vvrii e 198
3.17.13 FRV Options 198
3.17.14 GNU/Linux Options.........c.ooviiiiiiiiiiiiiiiinan.. 202
3.17.15 H8/300 Options.vueneiriiii i, 203
3.17.16 HPPA Options.ottt 203
3.17.17 Intel 386 and AMD x86-64 Options 206
3.17.18 1386 and x86-64 Windows Options 220
31719 TA-64 Options . ..ot e 221
3.17.20 TA-64/VMS Optionsouvuiiiiiiiiniiinan... 224
31721 LM32 Options . .o ovve it 224
3.17.22 M32C Options . ..o oveei e 225
3.17.23 M32R/D Options.......c.ouiuiuiuiiiiiiiiinnann.. 225
3.17.24 M680X0 OPtions . ..ottt 227
3.17.25 MCore Optionsc.vviiiiii i 232
3.17.26 MeP Options ..o 233
3.17.27 MicroBlaze Options...........c.ooiiiiiiiiiieiiiina.n, 234
3.17.28 MIPS Optionsot 236
3.17.29 MMIX Optionsviii e 247
3.17.30 MN10300 Optionsovviiriiiiiiiii .. 248
3.17.31 PDP-11 Optionsvoutii e 249
3.17.32 picoChip Optionscooviiiiiiiiiiii ... 250
3.17.33 PowerPC Options........ ..o, 250
3.17.34 RL78 Options. . ..ottt 251
3.17.35 IBM RS/6000 and PowerPC Options.................. 251
3.17.36 RX Options ... 265
3.17.37 S/390 and zSeries Optionscocovvininininin.. 267
3.17.38 Score Options.oiii e 270
3.17.39 SH Optionsoouuuiiini e 271
3.17.40 Solaris 2 Optionscovviiiiiiii i 276
3.17.41 SPARC Optionsoviiiiiiiiii i 277
3.17.42 SPU OpPtions . ..ot 281
3.17.43 Options for System V........ ... i, 283
3.17.44 TILE-Gx Options.......ccouiuiiiiiiiiiiii .. 284
3.17.45 TILEPro Options.cooutiiii i, 284
3.17.46 V850 Options.oouuri e 284
3.17.47 VAX Options .. ovveeei e 285
3.17.48 VxWorks Options. ..., 286
3.17.49 x86-64 OPtionsouuriniii i 286
3.17.50 Xstormyl6 Optionsccoviiiiiiiiiinia... 286
3.17.51 Xtensa Options........ouiiiiiiieiiiii i, 286
3.17.52 zSeries Optionst 288
3.18 Options for Code Generation Conventions................... 288

3.19 Environment Variables Affecting GCC 296

3.20 Using Precompiled Headerst 299

C Implementation-defined behavior 303
4.1 Translationo 303
4.2 Environment............ i 303
4.3 Identifiers.o 303
4.4 CharaCters. ... e e 304
4.5 Inbegers. ... 304
4.6 Floating point i 305
4.7 Arrays and pointers........ 306
4.8 HintS ..ot 307
4.9 Structures, unions, enumerations, and bit-fields............... 307
410 Qualifiers.o 308
411 Declaratorsoooirii 308
412 Statementsooiiiii i e 308
4.13 Preprocessing directives......... ..o 308
4.14 Library functions 309
4.15 Architecture 309
4.16 Locale-specific behavior............ i 309

C++ Implementation-defined behavior 311

5.1 Conditionally-supported behavior 311
5.2 Exception handling o 311
Extensions to the C Language Family...... 313
6.1 Statements and Declarations in Expressions 313
6.2 Locally Declared Labels........ ... i it 314
6.3 Labels as Values ... 315
6.4 Nested Functionso 316
6.5 Constructing Function Calls.................. ..., 318
6.6 Referring to a Type with typeoft 320
6.7 Conditionals with Omitted Operands......................... 321
6.8 128-bits INtegersouti i 322
6.9 Double-Word Integers. ... 322
6.10 Complex NUmbersoouiiieii e, 322
6.11 Additional Floating Types........cooiiiiiiiiiiiii .. 323
6.12 Half-Precision Floating Point 323
6.13 Decimal Floating Types........coooiiiiiiiii .. 324
6.14 Hex Floats. e 324
6.15 Fixed-Point Types..... ..o 325
6.16 Named Address Spacescovuiiiiiiiie ... 326
6.16.1 AVR Named Address Spaces..........c.coovieeiieaan... 326
6.16.2 M32C Named Address Spaces...........cooovieenne ... 328
6.16.3 RL78 Named Address Spaces............ccoviiieannn.. 328
6.16.4 SPU Named Address Spacesccoviiiieiinn... 328
6.17 Arrays of Length Zero o i 328

6.18 Structures With No Members 330

vi

Using the GNU Compiler Collection (GCC)

6.19 Arrays of Variable Length................................... 330
6.20 Macros with a Variable Number of Arguments............... 331
6.21 Slightly Looser Rules for Escaped Newlines.................. 331
6.22 Non-Lvalue Arrays May Have Subscripts.................... 332
6.23 Arithmetic on void- and Function-Pointers.................. 332
6.24 Non-Constant Initializers, 332
6.25 Compound Literalso i 332
6.26 Designated Initializers i i 333
6.27 Case Ranges. 335
6.28 Cast toa Union Type... ..o 335
6.29 Mixed Declarations and Code.................coiiiiion... 336
6.30 Declaring Attributes of Functions.............. 336
6.31 Attribute Syntax 365
6.32 Prototypes and Old-Style Function Definitions 368
6.33 C++ Style Commentsc.ooviiiiiiiii .. 369
6.34 Dollar Signs in Identifier Names.......... 369
6.35 The Character ESC in Constants............................ 369
6.36 Specifying Attributes of Variables................ 369
6.36.1 AVR Variable Attributes..........., 374
6.36.2 Blackfin Variable Attributes............... 374
6.36.3 M32R/D Variable Attributes........................... 375
6.36.4 MeP Variable Attributes........... 375
6.36.5 1386 Variable Attributes........... L. 376
6.36.6 PowerPC Variable Attributes........................... 378
6.36.7 SPU Variable Attributes........... 378
6.36.8 Xstormyl6 Variable Attributes................ 378
6.37 Specifying Attributes of Types...........oooiiiiiiiiiiL. 378
6.37.1 ARM Type Attributes, 382
6.37.2 MeP Type Attributes ..., 383
6.37.3 1386 Type Attributes. ...t 383
6.37.4 PowerPC Type Attributes............. 383
6.37.5 SPU Type Attributes, 384
6.38 Inquiring on Alignment of Types or Variables 384
6.39 An Inline Function is As Fast As a Macro................... 384
6.40 When is a Volatile Object Accessed? 386
6.41 Assembler Instructions with C Expression Operands......... 387
6.41.1 Sizeof an @asm...........oouiiiiiiiiiiii 393
6.41.2 1386 floating point asm operands 393
6.42 Constraints for asm Operands............. ..., 394
6.42.1 Simple Constraints....................iiiiiiineo.... 394
6.42.2 Multiple Alternative Constraints 397
6.42.3 Constraint Modifier Characters......................... 397
6.42.4 Constraints for Particular Machines 398
6.43 Controlling Names Used in Assembler Code................. 422
6.44 Variables in Specified Registers............. 423
6.44.1 Defining Global Register Variables 423
6.44.2 Specifying Registers for Local Variables 424

6.45 Alternate Keywords. ... 425

6.46 Incomplete enum Typescooviiiiiiiiiiiiiiiiiea... 426
6.47 Function Names as Strings. ..., 426
6.48 Getting the Return or Frame Address of a Function......... 427
6.49 Using vector instructions through built-in functions 428
6.50 Offsetof. 430
6.51 Legacy __sync built-in functions for atomic memory access. .. 430
6.52 Built-in functions for memory model aware atomic operations
.. 432
6.53 Object Size Checking Builtins............. 436
6.54 Other built-in functions provided by GCC................... 438
6.55 Built-in Functions Specific to Particular Target Machines. ... 447
6.55.1 Alpha Built-in Functions................, 447
6.55.2 ARM iWMMX¢t Built-in Functions..................... 448
6.55.3 ARM NEON Intrinsics.........cooeeiiiiiiiniane.... 450
6.55.3.1 Addition..........cooiiiiiii 451
6.55.3.2 Multiplication........... ... i 454
6.55.3.3 Multiply-accumulatel 456
6.55.3.4 Multiply-subtract 457
6.55.3.5 Subtraction.......... i 458
6.55.3.6 Comparison (equal-to) 462
6.55.3.7 Comparison (greater-than-or-equal-to)............. 462
6.55.3.8 Comparison (less-than-or-equal-to) 463
6.55.3.9 Comparison (greater-than) 464
6.55.3.10 Comparison (less-than)........................... 464
6.55.3.11 Comparison (absolute greater-than-or-equal-to)... 465
6.55.3.12 Comparison (absolute less-than-or-equal-to) 465
6.55.3.13 Comparison (absolute greater-than) 465
6.55.3.14 Comparison (absolute less-than).................. 466
6.55.3.15 Test bits.o 466
6.55.3.16 Absolute difference..............l 466
6.55.3.17 Absolute difference and accumulate............... 467
6.55.3.18 Maximum.t 468
6.55.3.19 Minimumo 469
6.55.3.20 Pairwise add......... .. i 470
6.55.3.21 Pairwise add, single_opcode widen and accumulate
.. 471
6.55.3.22 Folding maximum............... 471
6.55.3.23 Folding minimum oo 472
6.55.3.24 Reciprocal step ... 472
6.55.3.25 Vector shift left, 472
6.55.3.26 Vector shift left by constant...................... 475
6.55.3.27 Vector shift right by constant 478
6.55.3.28 Vector shift right by constant and accumulate 481
6.55.3.29 Vector shift right and insert...................... 482
6.55.3.30 Vector shift left and insert 483
6.55.3.31 Absolute value.......... 484
6.55.3.32 Negation...........oooiiiiiiiiiiii i, 485

6.55.3.33 Bitwise not i 485

vii

viii Using the GNU Compiler Collection (GCC)

6.55.3.34 Count leading sign bits........................... 486
6.55.3.35 Count leading zeros ..., 486
6.55.3.36 Count number of set bits......................... 487
6.55.3.37 Reciprocal estimate 487
6.55.3.38 Reciprocal square-root estimate 488
6.55.3.39 Get lanes from a vector 488
6.55.3.40 Set lanes in a vector, 489
6.55.3.41 Create vector from literal bit pattern............. 490
6.55.3.42 Set all lanes to the same value.................... 490
6.55.3.43 Combining vectorscooiiiiiiiiii.. 493
6.55.3.44 Splitting vectorsooeiiiiiiiiiiia. 494
6.55.3.45 CONVETSIONS . . o\ttt it e 494
6.55.3.46 Move, single_opcode narrowing................... 495
6.55.3.47 Move, single_opcode long......................... 496
6.55.3.48 Table lookup.........cooviiiiiiii .. 496
6.55.3.49 Extended table lookup 497
6.55.3.50 Multiply, lane......... ... 497
6.55.3.51 Long multiply, lane, 498
6.55.3.52 Saturating doubling long multiply, lane........... 498
6.55.3.53 Saturating doubling multiply high, lane 498
6.55.3.54 Multiply-accumulate, lane........................ 499
6.55.3.55 Multiply-subtract, lane................ 500
6.55.3.56 Vector multiply by scalar......................... 500
6.55.3.57 Vector long multiply by scalar.................... 501
6.55.3.58 Vector saturating doubling long multiply by scalar
.. 501
6.55.3.59 Vector saturating doubling multiply high by scalar
.. 501
6.55.3.60 Vector multiply-accumulate by scalar............. 502
6.55.3.61 Vector multiply-subtract by scalar................ 502
6.55.3.62 Vector extracto i 503
6.55.3.63 Reverse elements..................... L 504
6.55.3.64 Bit selectiono 506
6.55.3.65 Transpose elements, 508
6.55.3.66 Zipelements............. . . i 509
6.55.3.67 Unzip elements, 509
6.55.3.68 Element/structure loads, VLD1 variants.......... 510
6.55.3.69 Element/structure stores, VST1 variants 514
6.55.3.70 Element/structure loads, VLD2 variants.......... 516
6.55.3.71 Element/structure stores, VST2 variants 518
6.55.3.72 Element /structure loads, VLD3 variants.......... 520
6.55.3.73 Element/structure stores, VST3 variants 522
6.55.3.74 Element/structure loads, VLD4 variants.......... 524
6.55.3.75 Element/structure stores, VST4 variants 526
6.55.3.76 Logical operations (AND)........................ 527
6.55.3.77 Logical operations (OR).......................... 528
6.55.3.78 Logical operations (exclusive OR)................ 529
6.55.3.79 Logical operations (AND-NOT) 530

6.55.3.80 Logical operations (OR-NOT).................... 531

6.55.3.81 Reinterpret casts.......... ... 531
6.55.4 AVR Built-in Functions, 537
6.55.5 Blackfin Built-in Functions.............., 538
6.55.6 FR-V Built-in Functions 538

6.55.6.1 Argument Types.........cooiiiiiiiiiiiiiiii... 538

6.55.6.2 Directly-mapped Integer Functions................ 539

6.55.6.3 Directly-mapped Media Functions................. 539

6.55.6.4 Raw read/write Functions......................... 541

6.55.6.5 Other Built-in Functions, 541
6.55.7 X86 Built-in Functions............ 542
6.55.8 MIPS DSP Built-in Functions.......................... 562
6.55.9 MIPS Paired-Single Support ..., 566
6.55.10 MIPS Loongson Built-in Functions.................... 566

6.55.10.1 Paired-Single Arithmetic......................... 568

6.55.10.2 Paired-Single Built-in Functions.................. 569

6.55.10.3 MIPS-3D Built-in Functions...................... 570
6.55.11 picoChip Built-in Functions........................... 572
6.55.12 Other MIPS Built-in Functions........................ 573
6.55.13 PowerPC AltiVec Built-in Functions................... 573
6.55.14 RX Built-in Functions, 608
6.55.15 SPARC VIS Built-in Functions........................ 610
6.55.16 SPU Built-in Functions, 612
6.55.17 TI C6X Built-in Functions................... 612
6.55.18 TILE-Gx Built-in Functions................... 613
6.55.19 TILEPro Built-in Functions........................... 613

6.56 Format Checks Specific to Particular Target Machines....... 614
6.56.1 Solaris Format Checks 614
6.56.2 Darwin Format Checks.............. e, 614

6.57 Pragmas Accepted by GCC...... i, 614
6.57.1 ARM Pragmas. ... 614
6.57.2 M32C Pragmasouuutiniti i 615
6.57.3 MeP Pragmas..........coooiiiiiiiiiiiiii i 615
6.57.4 RS/6000 and PowerPC Pragmas 616
6.57.5 Darwin Pragmas............ .. o i 616
6.57.6 Solaris Pragmas. ... 617
6.57.7 Symbol-Renaming Pragmas.............. 617
6.57.8 Structure-Packing Pragmas 618
6.57.9 Weak Pragmas...........ccoiiiiiiiiii i, 618
6.57.10 Diagnostic Pragmas.............. L. 618
6.57.11 Visibility Pragmas............. oL 620
6.57.12 Push/Pop Macro Pragmascoooou... 620
6.57.13 Function Specific Option Pragmas..................... 620

6.58 Unnamed struct/union fields within structs/unions.......... 621

6.59 Thread-Local Storage.............co i 622
6.59.1 ISO/IEC 9899:1999 Edits for Thread-Local Storage..... 623

6.59.2 ISO/IEC 14882:1998 Edits for Thread-Local Storage.... 623
6.60 Binary constants using the ‘Ob’ prefix 625

X Using the GNU Compiler Collection (GCC)

7 Extensions to the C++4 Language 627
7.1 When is a Volatile C++ Object Accessed? 627
7.2 Restricting Pointer Aliasing...........o .. 627
7.3 Vague Linkageo 628
7.4 #pragma interface and implementation....................... 629
7.5 Where’s the Template?......... .. i, 630
7.6 Extracting the function pointer from a bound pointer to member

functiono 633
7.7 C++-Specific Variable, Function, and Type Attributes 633
7.8 Namespace Association ..., 634
7.9 Type Traits. ... e 634
7.10 Java Exceptionso 636
7.11 Deprecated Features......... ..., 637
7.12 Backwards Compatibilitycoiiiiiii ... 638

8 GNU Objective-C features.................. 639

8.1 GNU Objective-C runtime APL........ 639
8.1.1 Modern GNU Objective-C runtime API 639
8.1.2 Traditional GNU Objective-C runtime APT.............. 640

8.2 +load: Executing code before main 640
8.2.1 What you can and what you cannot do in +load......... 641

8.3 Typeencoding.......coouuuiiiiiiiiiiii i 642
8.3.1 Legacy type encodingc.ooiiiiiiiiiiiiieaann. 644
8.3.2 @encode. ... 644
8.3.3 Method signatureso i 645

8.4 Garbage Collection. 645

8.5 Constant string objects i 646

8.6 compatibility_alias......... ... i 647

8.7 EXCEPIONS. ..o 647

8.8 Synchronization........... 649

8.9 Fast enumeration i 649
8.9.1 Using fast enumeration..........., 649
8.9.2 ¢99-like fast enumeration syntax......................... 649
8.9.3 Fast enumeration details o 650
8.9.4 Fast enumeration protocol............... 651

8.10 Messaging with the GNU Objective-C runtime 652
8.10.1 Dynamically registering methods....................... 652
8.10.2 Forwarding hook........ i 652

9 Binary Compatibility 655

10 gcov—a Test Coverage Program........... 659
10.1 Introduction to gcov......... ..o 659
10.2 Invoking Cov ...ttt 659
10.3 Using gcov with GCC Optimization......................... 665
10.4 Brief description of gcov data files.......... L. 666

10.5 Data file relocation to support cross-profiling................ 666

11 Known Causes of Trouble with GCC...... 667
11.1 Actual Bugs We Haven’t Fixed Yet 667
11.2 Cross-Compiler Problemso i, 667
11.3 Interoperationooiiiiiiiiiiii . 667
11.4 Incompatibilities of GCC....... i ... 669
11.5 Fixed Header Files........ ..o, 672
11.6 Standard Libraries............ .o i 672
11.7 Disappointments and Misunderstandings 673
11.8 Common Misunderstandings with GNU C4++ 674

11.8.1 Declare and Define Static Members 674
11.8.2 Name lookup, templates, and accessing members of base

ClaSSES . o ot 675

11.8.3 Temporaries May Vanish Before You Expect............ 676

11.8.4 TImplicit Copy-Assignment for Virtual Bases............ 677

11.9 Certain Changes We Don’t Want to Make................... 678

11.10 Warning Messages and Error Messages..................... 681

12 Reporting Bugs............................. 683
12.1 Have You Found a Bug? L 683
12.2 How and where to Report Bugs.................. 683

13 How To Get Help with GCC 685

14 Contributing to GCC Development 687

Funding Free Software........................... 689

The GNU Project and GNU/Linux............ 691

GNU General Public License 693

GNU Free Documentation License 705
ADDENDUM: How to use this License for your documents 712

Contributors to GCC............................ 713

Option Index, 729

Keyword Index................cooiiiiiiiiii... 747

xi

Introduction 1

Introduction

This manual documents how to use the GNU compilers, as well as their features and in-
compatibilities, and how to report bugs. It corresponds to the compilers (crosstool-NG
linaro-1.13.1-4.7-2013.04-20130415 - Linaro GCC 2013.04) version 4.7.3. The internals of
the GNU compilers, including how to port them to new targets and some information
about how to write front ends for new languages, are documented in a separate manual.
See Section “Introduction” in GNU Compiler Collection (GCC) Internals.

Chapter 1: Programming Languages Supported by GCC 3

1 Programming Languages Supported by GCC

GCC stands for “GNU Compiler Collection”. GCC is an integrated distribution of compil-
ers for several major programming languages. These languages currently include C, C++,
Objective-C, Objective-C++, Java, Fortran, Ada, and Go.

The abbreviation GCC has multiple meanings in common use. The current official mean-
ing is “GNU Compiler Collection”, which refers generically to the complete suite of tools.
The name historically stood for “GNU C Compiler”, and this usage is still common when
the emphasis is on compiling C programs. Finally, the name is also used when speaking
of the language-independent component of GCC: code shared among the compilers for all
supported languages.

The language-independent component of GCC includes the majority of the optimizers,
as well as the “back ends” that generate machine code for various processors.

The part of a compiler that is specific to a particular language is called the “front end”.
In addition to the front ends that are integrated components of GCC, there are several
other front ends that are maintained separately. These support languages such as Pascal,
Mercury, and COBOL. To use these, they must be built together with GCC proper.

Most of the compilers for languages other than C have their own names. The C++ compiler
is G++, the Ada compiler is GNAT, and so on. When we talk about compiling one of those
languages, we might refer to that compiler by its own name, or as GCC. Either is correct.

Historically, compilers for many languages, including C++ and Fortran, have been im-
plemented as “preprocessors” which emit another high level language such as C. None of
the compilers included in GCC are implemented this way; they all generate machine code
directly. This sort of preprocessor should not be confused with the C preprocessor, which
is an integral feature of the C, C++, Objective-C and Objective-C++ languages.

Chapter 2: Language Standards Supported by GCC 5

2 Language Standards Supported by GCC

For each language compiled by GCC for which there is a standard, GCC attempts to follow
one or more versions of that standard, possibly with some exceptions, and possibly with
some extensions.

2.1 C language

GCC supports three versions of the C standard, although support for the most recent version
is not yet complete.

The original ANSI C standard (X3.159-1989) was ratified in 1989 and published in 1990.
This standard was ratified as an ISO standard (ISO/IEC 9899:1990) later in 1990. There
were no technical differences between these publications, although the sections of the ANSI
standard were renumbered and became clauses in the ISO standard. This standard, in
both its forms, is commonly known as C89, or occasionally as C90, from the dates of
ratification. The ANSI standard, but not the ISO standard, also came with a Rationale
document. To select this standard in GCC, use one of the options ‘-ansi’, ‘-std=c90’ or
‘-std=1509899:1990’; to obtain all the diagnostics required by the standard, you should
also specify ‘-pedantic’ (or ‘-pedantic-errors’ if you want them to be errors rather than
warnings). See Section 3.4 [Options Controlling C Dialect], page 29.

Errors in the 1990 ISO C standard were corrected in two Technical Corrigenda published
in 1994 and 1996. GCC does not support the uncorrected version.

An amendment to the 1990 standard was published in 1995. This amendment added
digraphs and __STDC_VERSION__ to the language, but otherwise concerned the library. This
amendment is commonly known as AMDI; the amended standard is sometimes known as
C94 or C95. To select this standard in GCC, use the option ‘~std=1s09899:199409’ (with,
as for other standard versions, ‘-pedantic’ to receive all required diagnostics).

A new edition of the ISO C standard was published in 1999 as ISO/IEC 9899:1999, and
is commonly known as C99. GCC has incomplete support for this standard version; see
http://gcc.gnu.org/gcc-4.7/c99status.html for details. To select this standard, use
‘~std=c99’ or ‘-std=1s509899:1999’. (While in development, drafts of this standard version
were referred to as C9X.)

Errors in the 1999 ISO C standard were corrected in three Technical Corrigenda published
in 2001, 2004 and 2007. GCC does not support the uncorrected version.

A fourth version of the C standard, known as C11, was published in 2011 as ISO/IEC
9899:2011. GCC has limited incomplete support for parts of this standard, enabled with
‘~std=c11’ or ‘-std=is09899:2011’. (While in development, drafts of this standard version
were referred to as C1X.)

By default, GCC provides some extensions to the C language that on rare occasions con-
flict with the C standard. See Chapter 6 [Extensions to the C Language Family], page 313.
Use of the ‘-std’ options listed above will disable these extensions where they conflict with
the C standard version selected. You may also select an extended version of the C lan-
guage explicitly with ‘-std=gnu90’ (for C90 with GNU extensions), ‘~std=gnu99’ (for C99
with GNU extensions) or ‘-std=gnull’ (for C11 with GNU extensions). The default, if
no C language dialect options are given, is ‘~std=gnu90’; this will change to ‘-std=gnu99’

¢

or ‘-std=gnull’ in some future release when the C99 or C11 support is complete. Some

http://gcc.gnu.org/gcc-4.7/c99status.html

6 Using the GNU Compiler Collection (GCC)

features that are part of the C99 standard are accepted as extensions in C90 mode, and
some features that are part of the C11 standard are accepted as extensions in C90 and C99
modes.

The ISO C standard defines (in clause 4) two classes of conforming implementation. A
conforming hosted implementation supports the whole standard including all the library fa-
cilities; a conforming freestanding implementation is only required to provide certain library
facilities: those in <float.h>, <limits.h>, <stdarg.h>, and <stddef.h>; since AMDI,
also those in <is0646.h>; since C99, also those in <stdbool.h> and <stdint.h>; and since
C11, also those in <stdalign.h> and <stdnoreturn.h>. In addition, complex types, added
in C99, are not required for freestanding implementations. The standard also defines two
environments for programs, a freestanding environment, required of all implementations and
which may not have library facilities beyond those required of freestanding implementations,
where the handling of program startup and termination are implementation-defined, and a
hosted environment, which is not required, in which all the library facilities are provided
and startup is through a function int main (void) or int main (int, char *[]). An OS
kernel would be a freestanding environment; a program using the facilities of an operating
system would normally be in a hosted implementation.

GCC aims towards being usable as a conforming freestanding implementation, or as the
compiler for a conforming hosted implementation. By default, it will act as the compiler for a
hosted implementation, defining __STDC_HOSTED__ as 1 and presuming that when the names
of ISO C functions are used, they have the semantics defined in the standard. To make it act
as a conforming freestanding implementation for a freestanding environment, use the option
‘~ffreestanding’; it will then define __STDC_HOSTED__ to O and not make assumptions
about the meanings of function names from the standard library, with exceptions noted
below. To build an OS kernel, you may well still need to make your own arrangements for
linking and startup. See Section 3.4 [Options Controlling C Dialect], page 29.

GCC does not provide the library facilities required only of hosted implementations, nor
yet all the facilities required by C99 of freestanding implementations; to use the facilities
of a hosted environment, you will need to find them elsewhere (for example, in the GNU C
library). See Section 11.6 [Standard Libraries|, page 672.

Most of the compiler support routines used by GCC are present in ‘libgcc’, but there
are a few exceptions. GCC requires the freestanding environment provide memcpy, memmove,
memset and memcmp. Finally, if __builtin_trap is used, and the target does not implement
the trap pattern, then GCC will emit a call to abort.

For references to Technical Corrigenda, Rationale documents and information concerning
the history of C that is available online, see http://gcc.gnu.org/readings.html

2.2 C++ language

GCC supports the original ISO C++ standard (1998) and contains experimental support for
the second ISO C++ standard (2011).

The original ISO C++ standard was published as the ISO standard (ISO/IEC 14882:1998)
and amended by a Technical Corrigenda published in 2003 (ISO/IEC 14882:2003). These
standards are referred to as C++98 and C++03, respectively. GCC implements the majority
of C++98 (export is a notable exception) and most of the changes in C++03. To select
this standard in GCC, use one of the options ‘-ansi’, ‘-std=c++98’, or ‘-std=c++03’; to

http://gcc.gnu.org/readings.html

Chapter 2: Language Standards Supported by GCC 7

obtain all the diagnostics required by the standard, you should also specify ‘-pedantic’ (or
‘-pedantic-errors’ if you want them to be errors rather than warnings).

A revised ISO C++ standard was published in 2011 as ISO/IEC 14882:2011, and is re-
ferred to as C++11; before its publication it was commonly referred to as C++0x. C++11
contains several changes to the C++ language, most of which have been implemented in an
experimental C++11 mode in GCC. For information regarding the C++11 features avail-
able in the experimental C++11 mode, see http://gcc.gnu.org/projects/cxx0x.html.
To select this standard in GCC, use the option ‘-std=c++11’; to obtain all the diagnostics
required by the standard, you should also specify ‘-pedantic’ (or ‘-pedantic-errors’ if
you want them to be errors rather than warnings).

More information about the C++ standards is available on the ISO C++ committee’s web
site at http://www.open-std.org/jtcl/sc22/wg21/.

By default, GCC provides some extensions to the C++ language; See Section 3.5 [C++
Dialect Options], page 35. Use of the ‘-std’ option listed above will disable these extensions.
You may also select an extended version of the C++ language explicitly with ‘-std=gnu++98’
(for C++98 with GNU extensions) or ‘-std=gnu++11’ (for C++11 with GNU extensions). The
default, if no C++ language dialect options are given, is ‘~std=gnu++98’.

2.3 Objective-C and Objective-C++ languages

GCC supports “traditional” Objective-C (also known as “Objective-C 1.0”) and contains
support for the Objective-C exception and synchronization syntax. It has also support for
a number of “Objective-C 2.0” language extensions, including properties, fast enumeration
(only for Objective-C), method attributes and the @optional and @required keywords in
protocols. GCC supports Objective-C++ and features available in Objective-C are also
available in Objective-C++.

GCC by default uses the GNU Objective-C runtime library, which is part of GCC and
is not the same as the Apple/NeXT Objective-C runtime library used on Apple systems.
There are a number of differences documented in this manual. The options ‘-fgnu-runtime’
and ‘-fnext-runtime’ allow you to switch between producing output that works with the
GNU Objective-C runtime library and output that works with the Apple/NeXT Objective-
C runtime library.

There is no formal written standard for Objective-C or Objective-C++. The authori-
tative manual on traditional Objective-C (1.0) is “Object-Oriented Programming and the
Objective-C Language”, available at a number of web sites:

e http://www.gnustep.org/resources/documentation/ObjectivCBook.pdf 1is the
original NeXTstep document;

e http://objc.toodarkpark.net is the same document in another format;

e http://developer.apple.com/mac/library/documentation/Cocoa/Conceptual/
ObjectiveC/ has an updated version but make sure you search for “Object Oriented
Programming and the Objective-C Programming Language 1.0”, not documentation
on the newer “Objective-C 2.0” language

The Objective-C exception and synchronization syntax (that is, the keywords @try,
@throw, @catch, @finally and @synchronized) is supported by GCC and is enabled with the

http://gcc.gnu.org/projects/cxx0x.html
http://www.open-std.org/jtc1/sc22/wg21/
http://www.gnustep.org/resources/documentation/ObjectivCBook.pdf
http://objc.toodarkpark.net
http://developer.apple.com/mac/library/documentation/Cocoa/Conceptual/ObjectiveC/
http://developer.apple.com/mac/library/documentation/Cocoa/Conceptual/ObjectiveC/

8 Using the GNU Compiler Collection (GCC)

option ‘~fobjc-exceptions’. The syntax is briefly documented in this manual and in the
Objective-C 2.0 manuals from Apple.

The Objective-C 2.0 language extensions and features are automatically enabled; they
include properties (via the @property, @synthesize and @dynamic keywords), fast enumera-
tion (not available in Objective-C++), attributes for methods (such as deprecated, noreturn,
sentinel, format), the unused attribute for method arguments, the @package keyword for in-
stance variables and the @optional and @required keywords in protocols. You can disable
all these Objective-C 2.0 language extensions with the option ‘-fobjc-std=objcl’, which
causes the compiler to recognize the same Objective-C language syntax recognized by GCC
4.0, and to produce an error if one of the new features is used.

GCC has currently no support for non-fragile instance variables.

The authoritative manual on Objective-C 2.0 is available from Apple:

e http://developer.apple.com/mac/library/documentation/Cocoa/Conceptual/
ObjectiveC/

For more information concerning the history of Objective-C that is available online, see
http://gcc.gnu.org/readings.html

2.4 Go language

The Go language continues to evolve as of this writing; see the current language specifi-
cations. At present there are no specific versions of Go, and there is no way to describe
the language supported by GCC in terms of a specific version. In general GCC tracks the
evolving specification closely, and any given release will support the language as of the date
that the release was frozen.

2.5 References for other languages
See Section “About This Guide” in GNAT Reference Manual, for information on standard
conformance and compatibility of the Ada compiler.

See Section “Standards” in The GNU Fortran Compiler, for details of standards sup-
ported by GNU Fortran.

See Section “Compatibility with the Java Platform” in GNU gcj, for details of compati-
bility between gcj and the Java Platform.

http://developer.apple.com/mac/library/documentation/Cocoa/Conceptual/ObjectiveC/
http://developer.apple.com/mac/library/documentation/Cocoa/Conceptual/ObjectiveC/
http://gcc.gnu.org/readings.html
http://golang.org/doc/go_spec.html
http://golang.org/doc/go_spec.html

Chapter 3: GCC Command Options 9

3 GCC Command Options

When you invoke GCC, it normally does preprocessing, compilation, assembly and linking.
The “overall options” allow you to stop this process at an intermediate stage. For example,
the ‘=c’ option says not to run the linker. Then the output consists of object files output
by the assembler.

Other options are passed on to one stage of processing. Some options control the prepro-
cessor and others the compiler itself. Yet other options control the assembler and linker;
most of these are not documented here, since you rarely need to use any of them.

Most of the command-line options that you can use with GCC are useful for C programs;
when an option is only useful with another language (usually C++), the explanation says
so explicitly. If the description for a particular option does not mention a source language,
you can use that option with all supported languages.

See Section 3.3 [Compiling C++ Programs|, page 29, for a summary of special options for
compiling C++ programs.

The gcc program accepts options and file names as operands. Many options have multi-
letter names; therefore multiple single-letter options may not be grouped: ‘-dv’ is very
different from ‘-4 -v’.

You can mix options and other arguments. For the most part, the order you use doesn’t
matter. Order does matter when you use several options of the same kind; for example, if
you specify ‘=L’ more than once, the directories are searched in the order specified. Also,
the placement of the ‘-1’ option is significant.

Many options have long names starting with ‘-f’ or with ‘-W—for example,
‘-fmove-loop-invariants’, ‘-Wformat’ and so on. Most of these have both positive and
negative forms; the negative form of ‘~ffoo’ would be ‘~fno-foo’. This manual documents
only one of these two forms, whichever one is not the default.

See [Option Index|, page 729, for an index to GCC’s options.

3.1 Option Summary

Here is a summary of all the options, grouped by type. Explanations are in the following
sections.

Overall Options
See Section 3.2 [Options Controlling the Kind of Output], page 23.

-c -S -E -o file -no-canonical-prefixes

-pipe -pass-exit-codes

-x language -v -### --help[=class|,...|] ——target-help
--version -wrapper Qfile -fplugin=file -fplugin-arg-name=arg
-fdump-ada-spec[-slim| -fdump-go-spec=file

C' Language Options
See Section 3.4 [Options Controlling C Dialect], page 29.

-ansi -std=standard -fgnu89-inline

-aux-info filename -fallow-parameterless-variadic-functions
-fno-asm -fno-builtin -fno-builtin-function

-fhosted -ffreestanding -fopenmp -fms-extensions -fplan9-extensions
-trigraphs -no-integrated-cpp -traditional -traditional-cpp

10 Using the GNU Compiler Collection (GCC)

-fallow-single-precision -fcond-mismatch -flax-vector-conversions
-fsigned-bitfields -fsigned-char
-funsigned-bitfields -funsigned-char

C++ Language Options
See Section 3.5 [Options Controlling C++ Dialect|, page 35.

-fabi-version=n -fno-access-control -fcheck-new
-fconserve-space -fconstexpr-depth=n -ffriend-injection
-fno-elide-constructors

-fno-enforce-eh-specs

-ffor-scope -fno-for-scope -fno-gnu-keywords
-fno-implicit-templates

-fno-implicit-inline-templates

-fno-implement-inlines -fms-extensions
-fno-nonansi-builtins -fnothrow-opt -fno-operator-names
-fno-optional-diags -fpermissive

-fno-pretty-templates

-frepo -fno-rtti -fstats -ftemplate-depth=n
-fno-threadsafe-statics -fuse-cxa-atexit -fno-weak -nostdinc++
-fno-default-inline -fvisibility-inlines-hidden
-fvisibility-ms-compat

-Wabi -Wconversion-null -Wctor-dtor-privacy
-Wdelete-non-virtual-dtor -Wnarrowing -Wnoexcept
-Wnon-virtual-dtor -Wreorder

-Weffc++ -Wstrict-null-sentinel
-Wno-non-template-friend -Wold-style-cast
-Woverloaded-virtual -Wno-pmf-conversions

-Wsign-promo

Objective-C and Objective-C++ Language Options
See Section 3.6 [Options Controlling Objective-C and Objective-C++ Dialects],
page 45.

-fconstant-string-class=class—name
-fgnu-runtime -fnext-runtime
-fno-nil-receivers
-fobjc-abi-version=n
-fobjc-call-cxx-cdtors
-fobjc-direct-dispatch
-fobjc-exceptions

-fobjc-gc

-fobjc-nilcheck
-fobjc-std=objcl
-freplace-objc-classes
-fzero-link

-gen-decls
-Wassign-intercept
-Wno-protocol -Wselector
-Wstrict-selector-match
-Wundeclared-selector

Language Independent Options
See Section 3.7 [Options to Control Diagnostic Messages Formatting|, page 48.
-fmessage-length=n
-fdiagnostics-show-location=[once|every-line]
-fno-diagnostics-show-option
Warning Options
See Section 3.8 [Options to Request or Suppress Warnings|, page 49.

Chapter 3: GCC Command Options 11

-fsyntax-only -fmax-errors=n -pedantic

-pedantic-errors

-w -Wextra -Wall -Waddress -Waggregate-return -Warray-bounds

-Wno-attributes -Wno-builtin-macro-redefined

-Wc++-compat -Wc++1ll-compat -Wcast-align -Wcast-qual

-Wchar-subscripts -Wclobbered -Wcomment

-Wconversion -Wcoverage-mismatch -Wno-cpp -Wno-deprecated

-Wno-deprecated-declarations -Wdisabled-optimization

-Wno-div-by-zero -Wdouble-promotion -Wempty-body -Wenum-compare

-Wno-endif-labels -Werror -Werror=*

-Wfatal-errors -Wfloat-equal -Wformat -Wformat=2

-Wno-format-contains-nul -Wno-format-extra-args -Wformat-nonliteral

-Wformat-security -Wformat-y2k

-Wframe-larger-than=len -Wno-free-nonheap-object -Wjump-misses-init

-Wignored-qualifiers

-Wimplicit -Wimplicit-function-declaration -Wimplicit-int

-Winit-self -Winline -Wmaybe-uninitialized

-Wno-int-to-pointer-cast -Wno-invalid-offsetof

-Winvalid-pch -Wlarger-than=len -Wunsafe-loop-optimizations

-Wlogical-op -Wlong-long

-Wmain -Wmaybe-uninitialized -Wmissing-braces -Wmissing-field-initializers [}

-Wmissing-format-attribute -Wmissing-include-dirs

-Wno-mudflap

-Wno-multichar -Wnonnull -Wno-overflow

-Woverlength-strings -Wpacked -Wpacked-bitfield-compat -Wpadded

-Wparentheses -Wpedantic-ms-format -Wno-pedantic-ms-format

-Wpointer-arith -Wno-pointer-to-int-cast

-Wredundant-decls

-Wreturn-type -Wsequence-point -Wshadow

-Wsign-compare -Wsign-conversion -Wstack-protector

-Wstack-usage=len -Wstrict-aliasing -Wstrict-aliasing=n

-Wstrict-overflow -Wstrict-overflow=n

-Wsuggest-attribute=[pure|const |noreturn]

-Wswitch -Wswitch-default -Wswitch-enum -Wsync-nand

-Wsystem-headers -Wtrampolines -Wtrigraphs -Wtype-limits -Wundef

-Wuninitialized -Wunknown-pragmas -Wno-pragmas

-Wunsuffixed-float-constants -Wunused -Wunused-function

-Wunused-label -Wunused-local-typedefs -Wunused-parameter

-Wno-unused-result -Wunused-value

-Wunused-variable

-Wunused-but-set-parameter -Wunused-but-set-variable

-Wvariadic-macros -Wvector-operation-performance -Wvla -Wvolatile-register-Jj
var -Wwrite-strings -Wzero-as-null-pointer-constant

C and Objective-C-only Warning Options
-Wbad-function-cast -Wmissing-declarations
-Wmissing-parameter-type -Wmissing-prototypes -Wnested-externs
-Wold-style-declaration -Wold-style-definition
-Wstrict-prototypes -Wtraditional -Wtraditional-conversion
-Wdeclaration-after-statement -Wpointer-sign

Debugging Options
See Section 3.9 [Options for Debugging Your Program or GCC], page 72.
-dletters -dumpspecs -dumpmachine -dumpversion
-fdbg-cnt-list -fdbg-cnt=counter-value-list
-fdisable-ipa-pass_name
-fdisable-rtl-pass_name
-fdisable-rtl-pass-name=range-list
-fdisable-tree-pass_name

12 Using the GNU Compiler Collection (GCC)

-fdisable-tree-pass-name=range-list

-fdump-noaddr -fdump-unnumbered -fdump-unnumbered-links
-fdump-translation-unit|-n]

-fdump-class-hierarchy[-n]

-fdump-ipa-all -fdump-ipa-cgraph -fdump-ipa-inline
-fdump-passes

-fdump-statistics

-fdump-tree-all

-fdump-tree-original[-n]|

-fdump-tree-optimized|-n]|

-fdump-tree-cfg -fdump-tree-vcg -fdump-tree-alias
-fdump-tree-ch

-fdump-tree-ssal-n] -fdump-tree-pre[-n]

-fdump-tree-ccp[-n] -fdump-tree-dce[-n]
-fdump-tree-gimple[-raw|] -fdump-tree-mudflap|-n]
-fdump-tree-dom[-n]

-fdump-tree-dse[-n]

-fdump-tree-phiprop[-n]

-fdump-tree-phiopt|-n]

-fdump-tree-forwprop|-n]

-fdump-tree-copyrename[-n]

-fdump-tree-nrv -fdump-tree-vect

-fdump-tree-sink

-fdump-tree-sra[-n]

-fdump-tree-forwprop|-n|

-fdump-tree-fre[-n]

-fdump-tree-vrp[-n]

-ftree-vectorizer-verbose=n

-fdump-tree-storeccp|-n]

-fdump-final-insns=file

-fcompare-debug[=opts]| -fcompare-debug-second
-feliminate-dwarf2-dups -feliminate-unused-debug-types
-feliminate-unused-debug-symbols -femit-class-debug-always
-fenable-kind-pass

-fenable-kind-pass=range-list

-fdebug-types-section

-fmem-report -fpre-ipa-mem-report -fpost-ipa-mem-report -fprofile-arcs
-frandom-seed=string -fsched-verbose=n
-fsel-sched-verbose -fsel-sched-dump-cfg -fsel-sched-pipelining-verbose
-fstack-usage -ftest-coverage -ftime-report -fvar-tracking
-fvar-tracking-assignments -fvar-tracking-assignments-toggle
-g —glevel -gtoggle -gcoff -gdwarf-version

-ggdb -grecord-gcc-switches -gno-record-gcc-switches
-gstabs -gstabs+ -gstrict-dwarf -gno-strict-dwarf

-gvms -gxcoff -gxcoff+

-fno-merge-debug-strings -fno-dwarf2-cfi-asm
-fdebug-prefix-map=old=new

-femit-struct-debug-baseonly -femit-struct-debug-reduced
-femit-struct-debug-detailed|[=spec-1list]

-p -pg -print-file-name=Ilibrary -print-libgcc-file-name
-print-multi-directory -print-multi-lib -print-multi-os-directory
-print-prog-name=program -print-search-dirs -Q
-print-sysroot -print-sysroot-headers-suffix

-save-temps -save-temps=cwd -save-temps=obj -time[=file|

Optimization Options
See Section 3.10 [Options that Control Optimization], page 92.

Chapter 3: GCC Command Options 13

-falign-functions[=n] -falign-jumps[=n]

-falign-labels[=n] -falign-loops[=n] -fassociative-math
-fauto-inc-dec -fbranch-probabilities -fbranch-target-load-optimize
-fbranch-target-load-optimize2 -fbtr-bb-exclusive -fcaller-saves
-fcheck-data-deps -fcombine-stack-adjustments -fconserve-stack
-fcompare-elim -fcprop-registers -fcrossjumping

-fcse-follow-jumps -fcse-skip-blocks -fcx-fortran-rules
-fcx-limited-range

-fdata-sections -fdce -fdelayed-branch

-fdelete-null-pointer-checks -fdevirtualize -fdse

-fearly-inlining -fipa-sra -fexpensive-optimizations -ffat-lto-objects
-ffast-math -ffinite-math-only -ffloat-store -fexcess-precision=style
-fforward-propagate -ffp-contract=style -ffunction-sections

-fgcse -fgcse-after-reload -fgcse-las -fgcse-1lm -fgraphite-identity
-fgcse-sm -fif-conversion -fif-conversion2 -findirect-inlining
-finline-functions -finline-functions-called-once -finline-limit=n
-finline-small-functions -fipa-cp -fipa-cp-clone -fipa-matrix-reorg
-fipa-pta -fipa-profile -fipa-pure-const -fipa-reference
-fira-algorithm=algorithm

-fira-region=region

-fira-loop-pressure -fno-ira-share-save-slots
-fno-ira-share-spill-slots -fira-verbose=n

-fivopts -fkeep-inline-functions -fkeep-static-consts

-floop-block -floop-flatten -floop-interchange -floop-strip-mine
-floop-parallelize-all -flto -flto-compression-level
-flto-partition=alg -flto-report -fmerge-all-constants
-fmerge-constants -fmodulo-sched -fmodulo-sched-allow-regmoves
-fmove-loop-invariants fmudflap -fmudflapir -fmudflapth -fno-branch-count-
reg

-fno-default-inline

-fno-defer-pop -fno-function-cse -fno-guess-branch-probability
-fno-inline -fno-math-errno -fno-peephole -fno-peephole2
-fno-sched-interblock -fno-sched-spec -fno-signed-zeros
-fno-toplevel-reorder -fno-trapping-math -fno-zero-initialized-in-bss
-fomit-frame-pointer -foptimize-register-move -foptimize-sibling-calls
-fpartial-inlining -fpeel-loops -fpredictive-commoning
-fprefetch-loop-arrays

-fprofile-correction -fprofile-dir=path -fprofile-generate
-fprofile-generate=path

-fprofile-use -fprofile-use=path -fprofile-values

-freciprocal-math -free -fregmove -frename-registers -freorder-blocks
-freorder-blocks-and-partition -freorder-functions
-frerun-cse-after-loop -freschedule-modulo-scheduled-loops
-frounding-math -fsched2-use-superblocks -fsched-pressure
-fsched-spec-load -fsched-spec-load-dangerous
-fsched-stalled-insns-dep[=n] -fsched-stalled-insns[=n]
-fsched-group-heuristic -fsched-critical-path-heuristic
-fsched-spec-insn-heuristic -fsched-rank-heuristic
-fsched-last-insn-heuristic -fsched-dep-count-heuristic
-fschedule-insns -fschedule-insns2 -fsection-anchors
-fselective-scheduling -fselective-scheduling?

-fsel-sched-pipelining -fsel-sched-pipelining-outer-loops
-fshrink-wrap -fsignaling-nans -fsingle-precision-constant
-fsplit-ivs-in-unroller -fsplit-wide-types -fstack-protector
-fstack-protector-all -fstrict-aliasing -fstrict-overflow
-fthread-jumps -ftracer -ftree-bit-ccp

-ftree-builtin-call-dce -ftree-ccp -ftree-ch
-ftree-coalesce-inline-vars -ftree-coalesce-vars -ftree-copy-prop

14 Using the GNU Compiler Collection (GCC)

-ftree-copyrename -ftree-dce -ftree-dominator-opts -ftree-dse
-ftree-forwprop -ftree-fre -ftree-loop-if-convert
-ftree-loop-if-convert-stores -ftree-loop-im

-ftree-phiprop -ftree-loop-distribution -ftree-loop-distribute-patterns
-ftree-loop-ivcanon -ftree-loop-linear -ftree-loop-optimize
-ftree-parallelize-loops=n -ftree-pre -ftree-partial-pre -ftree-pta
-ftree-reassoc

-ftree-sink -ftree-sra -ftree-switch-conversion -ftree-tail-merge
-ftree-ter -ftree-vect-loop-version -ftree-vectorize -ftree-vrp
-funit-at-a-time -funroll-all-loops -funroll-loops
-funsafe-loop-optimizations -funsafe-math-optimizations -funswitch-loops
-fvariable-expansion-in-unroller -fvect-cost-model -fvpt -fweb
-fwhole-program -fwpa -fuse-linker-plugin

--param name=value -0 -00 -01 -02 -03 -0s -Ofast

Preprocessor Options
See Section 3.11 [Options Controlling the Preprocessor], page 143.

-Aquestion=answer
-A-question|=answer|

-C -dD -dI -dM -dN

-Dmacro[=defn] -E -H

-idirafter dir

-include file -imacros file
-iprefix file -iwithprefix dir
-iwithprefixbefore dir -isystem dir
-imultilib dir -isysroot dir

-M -MM -MF -MG -MP -MQ -MT -nostdinc
-P -fdebug-cpp -ftrack-macro-expansion -fworking-directory
-remap -trigraphs -undef -Umacro
-Wp,option -Xpreprocessor option

Assembler Option
See Section 3.12 [Passing Options to the Assembler|, page 154.

-Wa,option -Xassembler option

Linker Options
See Section 3.13 [Options for Linking], page 154.

object-file-name -llibrary
-nostartfiles -nodefaultlibs -nostdlib -pie -rdynamic
-s -static -static-libgcc -static-libstdc++ -shared
-shared-libgcc -symbolic
-T script -Wl,option -Xlinker option
-u symbol

Directory Options
See Section 3.14 [Options for Directory Search], page 158.
-Bprefix -Idir -iplugindir=dir
-iquotedir -Ldir -specs=file -I-
--sysroot=dir
Machine Dependent Options
See Section 3.17 [Hardware Models and Configurations], page 167.

AArch6/ Options
-mbig-endian -mlittle-endian
-mgeneral-regs-only
-mcmodel=tiny -mcmodel=small -mcmodel=large

Chapter 3: GCC Command Options 15

-mstrict-align

-momit-leaf-frame-pointer -mno-omit-leaf-frame-pointer
-mtls-dialect=desc -mtls-dialect=traditional
-march=name -mcpu=name -mtune=name

Adapteva Epiphany Options
-mhalf-reg-file -mprefer-short-insn-regs
-mbranch-cost=num -mcmove -mnops=num -msoft-cmpsf
-msplit-lohi -mpost-inc -mpost-modify -mstack-offset=num
-mround-nearest -mlong-calls -mshort-calls -msmallil6
-mfp-mode=mode -mvect-double -max-vect-align=num
-msplit-vecmove-early -mlreg-reg

ARM Options
-mapcs-frame -mno-apcs-frame
-mabi=name
-mapcs-stack-check -mno-apcs-stack-check
-mapcs-float -mno-apcs-float
-mapcs-reentrant -mno-apcs-reentrant
-msched-prolog -mno-sched-prolog
-mlittle-endian -mbig-endian -mwords-little-endian
-mfloat-abi=name -mfpe
-mfpl6-format=name -mthumb-interwork -mno-thumb-interwork
-mcpu=name -march=name -mfpu=name
-mstructure-size-boundary=n
-mabort-on-noreturn
-mlong-calls -mno-long-calls
-msingle-pic-base -mno-single-pic-base
-mpic-register=reg
-mnop-fun-dllimport
-mcirrus-fix-invalid-insns -mno-cirrus-fix-invalid-insns
-mpoke-function-name
-mthumb -marm
-mtpcs-frame -mtpcs-leaf-frame
-mcaller-super-interworking -mcallee-super-interworking
-mtp=name -mtls-dialect=dialect
-mword-relocations
-mfix-cortex-m3-ldrd
-munaligned-access
-mneon-for-64bits

AVR Options

-mmcu=mcu -maccumulate-args -mbranch-cost=cost
-mcall-prologues -mint8 -mno-interrupts -mrelax -mshort-calls
-mstrict-X -mtiny-stack

Blackfin Options
-mcpu=cpu[-sirevision]
-msim -momit-leaf-frame-pointer -mno-omit-leaf-frame-pointer
-mspecld-anomaly -mno-specld-anomaly -mcsync-anomaly -mno-csync-anomaly
-mlow-64k -mno-low64k -mstack-check-11 -mid-shared-library
-mno-id-shared-library -mshared-library-id=n
-mleaf-id-shared-library -mno-leaf-id-shared-library
-msep-data -mno-sep-data -mlong-calls -mno-long-calls
-mfast-fp -minline-plt -mmulticore -mcorea -mcoreb -msdram
-micplb

C6X Options

-mbig-endian -mlittle-endian -march=cpu
-msim -msdata=sdata-type

Using the GNU Compiler Collection (GCC)

CRIS Options
-mcpu=cpu -march=cpu -mtune=cpu
-mmax-stack-frame=n -melinux-stacksize=n
-metrax4 -metraxl100 -mpdebug -mcc-init -mno-side-effects
-mstack-align -mdata-align -mconst-align
-m32-bit -m16-bit -m8-bit -mno-prologue-epilogue -mno-gotplt
-melf -maout -melinux -mlinux -sim -sim2
-mmul-bug-workaround -mno-mul-bug-workaround

CR16 Options

-mmac
-mcri6cplus -mcri6ec
-msim -mint32 -mbit-ops -mdata-model=model

Darwin Options

-all_load -allowable_client -arch -arch_errors_fatal
-arch_only -bind_at_load -bundle -bundle_loader
-client_name -compatibility_version -current_version
-dead_strip

-dependency-file -dylib_file -dylinker_install_name
-dynamic -dynamiclib -exported_symbols_list

-filelist -flat_namespace -force_cpusubtype_ALL
-force_flat_namespace -headerpad_max_install_names
-iframework

-image_base -init -install_name -keep_private_externs
-multi_module -multiply_defined -multiply_defined_unused
-noall_load -no_dead_strip_inits_and_terms
-nofixprebinding -nomultidefs -noprebind -noseglinkedit
-pagezero_size -prebind -prebind_all_twolevel_modules
-private_bundle -read_only_relocs -sectalign
-sectobjectsymbols -whyload -segladdr

-sectcreate -sectobjectsymbols -sectorder

-segaddr -segs_read_only_addr -segs_read_write_addr
-seg_addr_table -seg_addr_table_filename -seglinkedit
-segprot -segs_read_only_addr -segs_read_write_addr
-single_module -static -sub_library -sub_umbrella
-twolevel_namespace -umbrella -undefined
-unexported_symbols_list -weak_reference_mismatches
-whatsloaded -F -gused -gfull -mmacosx-version-min=version
-mkernel -mone-byte-bool

DEC Alpha Options
-mno-fp-regs -msoft-float -malpha-as -mgas
-mieee -mieee-with-inexact -mieee-conformant
-mfp-trap-mode=mode -mfp-rounding-mode=mode
-mtrap-precision=mode -mbuild-constants
-mcpu=cpu-type -mtune=cpu-type
-mbwx -mmax -mfix -mcix
-mfloat-vax -mfloat-ieee
-mexplicit-relocs -msmall-data -mlarge-data
-msmall-text -mlarge-text
-mmemory-latency=time

DEC Alpha/VMS Options

-mvms-return-codes -mdebug-main=prefix -mmalloc64

FR30 Options

-msmall-model -mno-lsim

FRV Options

Chapter 3: GCC Command Options

-mgpr-32 -mgpr-64 -mfpr-32 -mfpr-64

-mhard-float -msoft-float

-malloc-cc -mfixed-cc -mdword -mno-dword

-mdouble -mno-double

-mmedia -mno-media -mmuladd -mno-muladd

-mfdpic -minline-plt -mgprel-ro -multilib-library-pic
-mlinked-fp -mlong-calls -malign-labels

-mlibrary-pic -macc-4 -macc-8

-mpack -mno-pack -mno-eflags -mcond-move -mno-cond-move
-moptimize-membar -mno-optimize-membar

-mscc -mno-scc -mcond-exec -mno-cond-exec

-mvliw-branch -mno-vliw-branch

-mmulti-cond-exec -mno-multi-cond-exec -mnested-cond-exec
-mno-nested-cond-exec -mtomcat-stats

-mTLS -mtls

-mcpu=cpu

GNU/Linuz Options

-mglibc -muclibc -mbionic -mandroid
-tno-android-cc -tno-android-1d

HS8/300 Options
-mrelax -mh -ms -mn -mint32 -malign-300
HPPA Options

-march=architecture-type

-mbig-switch -mdisable-fpregs -mdisable-indexing
-mfast-indirect-calls -mgas -mgnu-1ld -mhp-1d
-mfixed-range=register-range

-mjump-in-delay -mlinker-opt -mlong-calls
-mlong-load-store -mno-big-switch -mno-disable-fpregs
-mno-disable-indexing -mno-fast-indirect-calls -mno-gas
-mno-jump-in-delay -mno-long-load-store
-mno-portable-runtime -mno-soft-float

-mno-space-regs -msoft-float -mpa-risc-1-0
-mpa-risc-1-1 -mpa-risc-2-0 -mportable-runtime
-mschedule=cpu-type -mspace-regs -msio -mwsio
-munix=unix-std -nolibdld -static -threads

1386 and x86-64 Options
-mtune=cpu-type -march=cpu-type
-mfpmath=unit
-masm=dialect -mno-fancy-math-387
-mno-fp-ret-in-387 -msoft-float
-mno-wide-multiply -mrtd -malign-double
-mpreferred-stack-boundary=num
-mincoming-stack-boundary=num
-mcld -mcx16 -msahf -mmovbe -mcrc32
-mrecip -mrecip=opt
-mvzeroupper -mprefer-avx128
-mmmx -msse -msse2 -msse3 -mssse3 -msse4.l -msse4.2 -msse4 -mavx
-mavx2 -maes -mpclmul -mfsgsbase -mrdrnd -mfi6c -mfma
-msse4a -m3dnow -mpopcnt -mabm -mbmi -mtbm -mfma4 -mxop -mlzcnt
-mbmi2 -mlwp -mthreads -mno-align-stringops -minline-all-stringops
-minline-stringops-dynamically -mstringop-strategy=alg
-mpush-args -maccumulate-outgoing-args -m128bit-long-double
-m96bit-long-double -mregparm=num -msseregparm
-mveclibabi=type -mvect8-ret-in-mem
-mpc32 -mpc64 -mpc80 -mstackrealign
-momit-leaf-frame-pointer -mno-red-zone -mno-tls-direct-seg-refs

18

Using the GNU Compiler Collection (GCC)

-mcmodel=code-model -mabi=name

-m32 -m64 -mx32 -mlarge-data-threshold=num

-msse2avx -mfentry -m8bit-idiv
-mavx256-split-unaligned-load -mavx256-split-unaligned-store

1386 and x86-64 Windows Options

IA-64

-mconsole -mcygwin -mno-cygwin -mdll
-mnop-fun-dllimport -mthread
-municode -mwin32 -mwindows -fno-set-stack-executable

Options

-mbig-endian -mlittle-endian -mgnu-as -mgnu-ld -mno-pic
-mvolatile-asm-stop -mregister-names -msdata -mno-sdata

-mconstant-gp -mauto-pic -mfused-madd

-minline-float-divide-min-latency

-minline-float-divide-max-throughput

-mno-inline-float-divide

-minline-int-divide-min-latency

-minline-int-divide-max-throughput

-mno-inline-int-divide

-minline-sqrt-min-latency -minline-sqrt-max-throughput

-mno-inline-sqrt

-mdwarf2-asm -mearly-stop-bits

-mfixed-range=register-range -mtls-size=tls-size

-mtune=cpu-type -milp32 -mlp64

-msched-br-data-spec -msched-ar-data-spec -msched-control-spec
-msched-br-in-data-spec -msched-ar-in-data-spec -msched-in-control-spec
-msched-spec-1ldc -msched-spec-control-ldc
-msched-prefer-non-data-spec-insns -msched-prefer-non-control-spec-insns
-msched-stop-bits-after-every-cycle -msched-count-spec-in-critical-path
-msel-sched-dont-check-control-spec -msched-fp-mem-deps-zero-cost
-msched-max-memory-insns-hard-limit -msched-max-memory-insns=max-insns

IA-64/VMS Options

-mvms-return-codes -mdebug-main=prefix -mmalloc64

LM32 Options

-mbarrel-shift-enabled -mdivide-enabled -mmultiply-enabled
-msign-extend-enabled -muser-enabled

MS32R /D Options

-m32r2 -m32rx -m32r

-mdebug

-malign-loops -mno-align-loops
-missue-rate=number
-mbranch-cost=number
-mmodel=code-size-model-type
-msdata=sdata-type

-mno-flush-func -mflush-func=name
-mno-flush-trap -mflush-trap=number
-G num

M32C Options

-mcpu=cpu -msim -memregs=number

M680x0 Options

-march=arch -mcpu=cpu -mtune=tune -m68000 -m68020 -m68020-40 -m68020-60 -
m68030 -m68040

-m68060 -mcpul32 -m5200 -m5206e -m528x -m5307 -mb5407

-mcfvde -mbitfield -mno-bitfield -mc68000 -mc68020

Chapter 3: GCC Command Options

-mnobitfield -mrtd -mno-rtd -mdiv -mno-div -mshort
-mno-short -mhard-float -m68881 -msoft-float -mpcrel
-malign-int -mstrict-align -msep-data -mno-sep-data
-mshared-library-id=n -mid-shared-library -mno-id-shared-library
-mxgot -mno-xgot

MCore Options
-mhardlit -mno-hardlit -mdiv -mno-div -mrelax-immediates
-mno-relax-immediates -mwide-bitfields -mno-wide-bitfields
-m4byte-functions -mno-4byte-functions -mcallgraph-data
-mno-callgraph-data -mslow-bytes -mno-slow-bytes -mno-lsim
-mlittle-endian -mbig-endian -m210 -m340 -mstack-increment

MeP Options
-mabsdiff -mall-opts -maverage -mbased=n -mbitops
-mc=n -mclip -mconfig=name -mcop -mcop32 -mcop64 -mivc2
-mdc -mdiv -meb -mel -mio-volatile -ml -mleadz -mm -mminmax
-mmult -mno-opts -mrepeat -ms -msatur -msdram -msim -msimnovec -mtf
-mtiny=n

MicroBlaze Options

-msoft-float -mhard-float -msmall-divides -mcpu=cpu

-mmemcpy -mxl-soft-mul -mxl-soft-div -mxl-barrel-shift
-mxl-pattern-compare -mxl-stack-check -mxl-gp-opt -mno-clearbss
-mxl-multiply-high -mxl-float-convert -mxl-float-sqrt
-mxl-mode-app-model

MIPS Options

-EL -EB -march=arch -mtune=arch

-mipsl -mips2 -mips3 -mips4 -mips32 -mips32r2

-mips64 -mips64r2

-mips16 -mno-mips16 -mflip-mipsi6

-minterlink-mips16 -mno-interlink-mips16

-mabi=abi -mabicalls -mno-abicalls

-mshared -mno-shared -mplt -mno-plt -mxgot -mno-xgot
-mgp32 -mgp64 -mfp32 -mfp64 -mhard-float -msoft-float
-msingle-float -mdouble-float -mdsp -mno-dsp -mdspr2 -mno-dspr2
-mfpu=fpu-type

-msmartmips -mno-smartmips

-mpaired-single -mno-paired-single -mdmx -mno-mdmx
-mips3d -mno-mips3d -mmt -mno-mt -mllsc -mno-llsc
-mlong64 -mlong32 -msym32 -mno-sym32

-Gnum -mlocal-sdata -mno-local-sdata

-mextern-sdata -mno-extern-sdata -mgpopt -mno-gopt
-membedded-data -mno-embedded-data
-muninit-const-in-rodata -mno-uninit-const-in-rodata
-mcode-readable=setting

-msplit-addresses -mno-split-addresses
-mexplicit-relocs -mno-explicit-relocs
-mcheck-zero-division -mno-check-zero-division
-mdivide-traps -mdivide-breaks

-mmemcpy -mno-memcpy -mlong-calls -mno-long-calls
-mmad -mno-mad -mfused-madd -mno-fused-madd -nocpp
-mfix-24k -mno-fix-24k

-mfix-r4000 -mno-fix-r4000 -mfix-r4400 -mno-fix-r4400
-mfix-r10000 -mno-fix-r10000 -mfix-vr4120 -mno-fix-vr4120
-mfix-vr4130 -mno-fix-vr4130 -mfix-sbl -mno-fix-sbil
-mflush-func=func -mno-flush-func

-mbranch-cost=num -mbranch-likely -mno-branch-likely
-mfp-exceptions -mno-fp-exceptions

19

20

Using the GNU Compiler Collection (GCC)

-mvr4130-align -mno-vr4130-align -msynci -mno-synci
-mrelax-pic-calls -mno-relax-pic-calls -mmcount-ra-address

MMIX Options

-mlibfuncs -mno-libfuncs -mepsilon -mno-epsilon -mabi=gnu
-mabi=mmixware -mzero-extend -mknuthdiv -mtoplevel-symbols
-melf -mbranch-predict -mno-branch-predict -mbase-addresses
-mno-base-addresses -msingle-exit -mno-single-exit

MN10300 Options

-mmult-bug -mno-mult-bug
-mno-am33 -mam33 -mam33-2 -mam34
-mtune=cpu-type
-mreturn-pointer-on-do

-mno-crt0 -mrelax -mliw -msetlb

PDP-11 Options

-mfpu -msoft-float -macO -mno-acO -m40 -m45 -m10
-mbcopy -mbcopy-builtin -mint32 -mno-inti16
-mint16 -mno-int32 -mfloat32 -mno-float64
-mfloat64 -mno-float32 -mabshi -mno-abshi
-mbranch-expensive -mbranch-cheap

-munix-asm -mdec-asm

picoChip Options

-mae=ae_type -mvliw-lookahead=N
-msymbol-as-address -mno-inefficient-warnings

PowerPC Options See RS/6000 and PowerPC Options.
RL78 Options

-msim -mmul=none -mmul=gl3 -mmul=rl78

RS/6000 and PowerPC Options

-mcpu=cpu-type

-mtune=cpu-type

-mcmodel=code-model

-mpower -mno-power -mpower2 -mno-power2

-mpowerpc -mpowerpc64 -mno-powerpc

-maltivec -mno-altivec

-mpowerpc-gpopt -mno-powerpc-gpopt

-mpowerpc-gfxopt -mno-powerpc-gfxopt

-mmfcrf -mno-mfcrf -mpopcntb -mno-popcntb -mpopcntd -mno-popcntd
-mfprnd -mno-fprnd

-mcmpb -mno-cmpb -mmfpgpr -mno-mfpgpr -mhard-dfp -mno-hard-dfp
-mnew-mnemonics -mold-mnemonics

-mfull-toc -mminimal-toc -mno-fp-in-toc -mno-sum-in-toc
-m64 -m32 -mxl-compat -mno-xl-compat -mpe

-malign-power -malign-natural

-msoft-float -mhard-float -mmultiple -mno-multiple
-msingle-float -mdouble-float -msimple-fpu

-mstring -mno-string -mupdate -mno-update
-mavoid-indexed-addresses -mno-avoid-indexed-addresses
-mfused-madd -mno-fused-madd -mbit-align -mno-bit-align
-mstrict-align -mno-strict-align -mrelocatable
-mno-relocatable -mrelocatable-lib -mno-relocatable-1ib
-mtoc -mno-toc -mlittle -mlittle-endian -mbig -mbig-endian
-mdynamic-no-pic -maltivec -mswdiv -msingle-pic-base
-mprioritize-restricted-insns=priority
-msched-costly-dep=dependence_type

Chapter 3: GCC Command Options

-minsert-sched-nops=scheme

-mcall-sysv -mcall-netbsd
-maix-struct-return -msvr4-struct-return
-mabi=abi-type -msecure-plt -mbss-plt
-mblock-move-inline-limit=num

-misel -mno-isel

-misel=yes -misel=no

-mspe -mno-spe

-mspe=yes -mspe=no

-mpaired

-mgen-cell-microcode -mwarn-cell-microcode
-mvrsave -mno-vrsave

-mmulhw -mno-mulhw

-mdlmzb -mno-dlmzb

21

-mfloat-gprs=yes -mfloat-gprs=no -mfloat-gprs=single -mfloat-gprs=double

-mprototype -mno-prototype

-msim -mmvme -mads -myellowknife -memb -msdata

-msdata=opt -mvxworks -G num -pthread

-mrecip -mrecip=opt -mno-recip -mrecip-precision
-mno-recip-precision

-mveclibabi=type -mfriz -mno-friz
-mpointers-to-nested-functions -mno-pointers-to-nested-functions
-msave-toc-indirect -mno-save-toc-indirect

RX Options

S/390

-m64bit-doubles -m32bit-doubles -fpu -nofpu

-mcpu=

-mbig-endian-data -mlittle-endian-data

-msmall-data

-msim -mno-sim

-mas100-syntax -mno-as100-syntax

-mrelax

-mmax-constant-size=

-mint-register=

-mpid

-msave-acc-in-interrupts

and zSeries Options

-mtune=cpu-type -march=cpu-type

-mhard-float -msoft-float -mhard-dfp -mno-hard-dfp
-mlong-double-64 -mlong-double-128

-mbackchain -mno-backchain -mpacked-stack -mno-packed-stack
-msmall-exec -mno-small-exec -mmvcle -mno-mvcle

-m64 -m31 -mdebug -mno-debug -mesa -mzarch

-mtpf-trace -mno-tpf-trace -mfused-madd -mno-fused-madd
-mwvarn-framesize -mwarn-dynamicstack -mstack-size -mstack-guard

Score Options

-meb -mel

-mnhwloop

-muls

-mmac

-mscoreb -mscorebu -mscore7 -mscore7d

SH Options

-ml -m2 -m2e

-m2a-nofpu -m2a-single-only -m2a-single -m2a

-m3 -m3e

-m4-nofpu -m4-single-only -mé4-single -mé
-m4a-nofpu -mé4a-single-only -m4a-single -mda -m4al

22

Using the GNU Compiler Collection (GCC)

-mb-64media -m5-64media-nofpu

-m5-32media -m5-32media-nofpu

-mb-compact -mbS-compact-nofpu

-mb -ml -mdalign -mrelax

-mbigtable -mfmovd -mhitachi -mrenesas -mno-renesas -mnomacsave
-mieee -mno-ieee -mbitops -misize -minline-ic_invalidate -mpadstruct
-mspace -mprefergot -musermode -multcost=number -mdiv=strategy
-mdivsi3_libfunc=name -mfixed-range=register-range

-madjust-unroll -mindexed-addressing -mgettrcost=number -mpt-fixed
-maccumulate-outgoing-args -minvalid-symbols -msoft-atomic
-mbranch-cost=num -mcbranchdi -mcmpeqdi -mfused-madd -mpretend-cmove

Solaris 2 Options
-mimpure-text -mno-impure-text
-pthreads -pthread

SPARC Options
-mcpu=cpu-type
-mtune=cpu-type
-mcmodel=code-model
-mmemory-model=mem-model
-m32 -m64 -mapp-regs -mno-app-regs
-mfaster-structs -mno-faster-structs -mflat -mno-flat
-mfpu -mno-fpu -mhard-float -msoft-float
-mhard-quad-float -msoft-quad-float
-mstack-bias -mno-stack-bias
-munaligned-doubles -mno-unaligned-doubles
-mv8plus -mno-v8plus -mvis -mno-vis
-mvis2 -mno-vis2 -mvis3 -mno-vis3
-mfmaf -mno-fmaf -mpopc -mno-popc
-mfix-at697f

SPU Options

-mwarn-reloc -merror-reloc

-msafe-dma -munsafe-dma

-mbranch-hints

-msmall-mem -mlarge-mem -mstdmain
-mfixed-range=register-range

-mea32 -mea64

-maddress-space-conversion -mno-address-space-conversion
-mcache-size=cache-size

-matomic-updates -mno-atomic-updates

System V Options

-Qy -Qn -YP,paths -Ym,dir
TILE-Gx Options

-mcpu=cpu -m32 -m64
TILEPro Options

-mcpu=cpu -m32
V850 Options

-mlong-calls -mno-long-calls -mep -mno-ep
-mprolog-function -mno-prolog-function -mspace
-mtda=n -msda=n -mzda=n

-mapp-regs -mno-app-regs

-mdisable-callt -mno-disable-callt

-mv850e2v3

-mv850e2

Chapter 3: GCC Command Options 23

-mv850el -mv850es
-mv850e
-mv850 -mbig-switch

VAX Options
-mg -mgnu —munix
VaeWorks Options

-mrtp -non-static -Bstatic -Bdynamic
-Xbind-lazy -Xbind-now

286-64 Options See 1386 and x86-64 Options.
Xstormyl16 Options

—msim
Xtensa Options

-mconst1l6 -mno-constl16

-mfused-madd -mno-fused-madd

-mforce-no-pic

-mserialize-volatile -mno-serialize-volatile
-mtext-section-literals -mno-text-section-literals
-mtarget-align -mno-target-align

-mlongcalls -mno-longcalls

zSeries Options See S/390 and zSeries Options.

Code Generation Options
See Section 3.18 [Options for Code Generation Conventions|, page 288.

-fcall-saved-reg -fcall-used-reg

-ffixed-reg -fexceptions

-fnon-call-exceptions -funwind-tables
-fasynchronous-unwind-tables

-finhibit-size-directive -finstrument-functions
-finstrument-functions-exclude-function-list=sym,sym, ...
—finstrument-functions-exclude-file-list=file,file,...
-fno-common -fno-ident

-fpcc-struct-return -fpic -fPIC -fpie -fPIE
-fno-jump-tables

-frecord-gcc-switches

-freg-struct-return -fshort-enums

-fshort-double -fshort-wchar

-fverbose-asm -fpack-struct[=n] -fstack-check
-fstack-limit-register=reg -fstack-limit-symbol=sym
-fno-stack-limit -fsplit-stack

-fleading-underscore -ftls-model=model

-ftrapv -fwrapv -fbounds-check

-fvisibility -fstrict-volatile-bitfields

3.2 Options Controlling the Kind of Output

Compilation can involve up to four stages: preprocessing, compilation proper, assembly
and linking, always in that order. GCC is capable of preprocessing and compiling several
files either into several assembler input files, or into one assembler input file; then each
assembler input file produces an object file, and linking combines all the object files (those
newly compiled, and those specified as input) into an executable file.

For any given input file, the file name suffix determines what kind of compilation is done:

file.c C source code that must be preprocessed.

24

file.
file.
file.

file.

file.
file.

file.
file.

file.
file.
file.
-CpPpP
file.
file.
file.

file

file.
file.

file.

file.
file.
.hp
file.
file.
file.
file.
file.

file

file.
file.
file.

file.
file.
file.
file.
file.

ii

mi

mii

ccC

cp
CXX

CPP
cH++

mii

hh

hxx

hpp
HPP
h++

tcc

for
ftn

FOR
frp
FPP
FTN

Using the GNU Compiler Collection (GCC)

C source code that should not be preprocessed.
C++ source code that should not be preprocessed.

Objective-C source code. Note that you must link with the ‘1ibobjc’ library
to make an Objective-C program work.

Objective-C source code that should not be preprocessed.

Objective-C++ source code. Note that you must link with the ‘1ibobjc’ library
to make an Objective-C++ program work. Note that ‘.M refers to a literal
capital M.

Objective-C++ source code that should not be preprocessed.

C, C++, Objective-C or Objective-C++ header file to be turned into a precom-
piled header (default), or C, C++ header file to be turned into an Ada spec (via
the ‘~fdump-ada-spec’ switch).

C++ source code that must be preprocessed. Note that in ‘.cxx’, the last two
letters must both be literally ‘x’. Likewise, ‘.C’ refers to a literal capital C.

Objective-C++ source code that must be preprocessed.

Objective-C++ source code that should not be preprocessed.

C++ header file to be turned into a precompiled header or Ada spec.

Fixed form Fortran source code that should not be preprocessed.

Fixed form Fortran source code that must be preprocessed (with the traditional
preprocessor).

Chapter 3:

file.
file.
file.
file.

file.
file.
file.
file.

file.
file.

file.

file.

file.
file.

other

£90
£95
f£03
£08

F90
Fo5
FO3
FO8

go
ads

adb

S

S
sX

GCC Command Options 25

Free form Fortran source code that should not be preprocessed.

Free form Fortran source code that must be preprocessed (with the traditional
preprocessor).

Go source code.

Ada source code file that contains a library unit declaration (a declaration of a
package, subprogram, or generic, or a generic instantiation), or a library unit
renaming declaration (a package, generic, or subprogram renaming declaration).
Such files are also called specs.

Ada source code file containing a library unit body (a subprogram or package
body). Such files are also called bodies.

Assembler code.

Assembler code that must be preprocessed.

An object file to be fed straight into linking. Any file name with no recognized
suffix is treated this way.

You can specify the input language explicitly with the ‘-x’ option:

-x language

—X none

Specify explicitly the language for the following input files (rather than letting
the compiler choose a default based on the file name suffix). This option applies
to all following input files until the next ‘-x’ option. Possible values for language
are:

¢ c-header cpp-output

c++ c++-header c++-cpp-output

objective-c objective-c-header objective-c-cpp-output

objective-c++ objective-c++-header objective-c++-cpp-output

assembler assembler-with-cpp

ada

£77 £77-cpp-input £95 f95-cpp-input

go

java

Turn off any specification of a language, so that subsequent files are handled

according to their file name suffixes (as they are if ‘-x’ has not been used at
all).

-pass-exit-codes

Normally the gcc program will exit with the code of 1 if any phase of the
compiler returns a non-success return code. If you specify ‘-pass-exit-codes’,
the gcc program will instead return with numerically highest error produced by
any phase that returned an error indication. The C, C++, and Fortran frontends
return 4, if an internal compiler error is encountered.

26

Using the GNU Compiler Collection (GCC)

If you only want some of the stages of compilation, you can use ‘-x’ (or filename suffixes)

to tell gcc where to start, and one of the options

¢

-c’, *=8’, or ‘-E’ to say where gcc is to

stop. Note that some combinations (for example, ‘-x cpp-output -E’) instruct gcc to do
nothing at all.

-C

-o file

—###

-pipe

--help

Compile or assemble the source files, but do not link. The linking stage simply
is not done. The ultimate output is in the form of an object file for each source
file.

By default, the object file name for a source file is made by replacing the suffix

3 7 ¢ L 4

.c’y .17 fus’) ete., with fLo’.

Unrecognized input files, not requiring compilation or assembly, are ignored.

Stop after the stage of compilation proper; do not assemble. The output is in
the form of an assembler code file for each non-assembler input file specified.
By default, the assembler file name for a source file is made by replacing the

suffix <.¢’, ‘.17, etc., with ‘.s’.

Input files that don’t require compilation are ignored.

Stop after the preprocessing stage; do not run the compiler proper. The output
is in the form of preprocessed source code, which is sent to the standard output.

Input files that don’t require preprocessing are ignored.

Place output in file file. This applies regardless to whatever sort of output is
being produced, whether it be an executable file, an object file, an assembler
file or preprocessed C code.

If ‘=0’ is not specified, the default is to put an executable file in ‘a.out’, the
object file for ‘source.suffix’ in ‘source.o’, its assembler file in ‘source.s’, a
precompiled header file in ‘source.suffix.gch’, and all preprocessed C source
on standard output.

Print (on standard error output) the commands executed to run the stages of
compilation. Also print the version number of the compiler driver program and
of the preprocessor and the compiler proper.

Like ‘-v’ except the commands are not executed and arguments are quoted
unless they contain only alphanumeric characters or ./-_. This is useful for
shell scripts to capture the driver-generated command lines.

Use pipes rather than temporary files for communication between the various
stages of compilation. This fails to work on some systems where the assembler
is unable to read from a pipe; but the GNU assembler has no trouble.

Print (on the standard output) a description of the command-line options un-
derstood by gcc. If the ‘=v’ option is also specified then ‘--help’ will also be
passed on to the various processes invoked by gcc, so that they can display
the command-line options they accept. If the ‘-Wextra’ option has also been
specified (prior to the ‘-=help’ option), then command-line options that have
no documentation associated with them will also be displayed.

Chapter 3: GCC Command Options 27

-—target-help
Print (on the standard output) a description of target-specific command-line
options for each tool. For some targets extra target-specific information may
also be printed.

--help={class|["|qualifier}|,...]
Print (on the standard output) a description of the command-line options un-
derstood by the compiler that fit into all specified classes and qualifiers. These
are the supported classes:

‘optimizers’
This will display all of the optimization options supported by the
compiler.

‘warnings’
This will display all of the options controlling warning messages
produced by the compiler.

‘target’ This will display target-specific options. Unlike the
‘-—target-help’ option however, target-specific options of the
linker and assembler will not be displayed. This is because those
tools do not currently support the extended ‘--help=" syntax.

‘params’ This will display the values recognized by the ‘~-param’ option.

language This will display the options supported for language, where lan-
guage is the name of one of the languages supported in this version
of GCC.

‘common’ This will display the options that are common to all languages.
These are the supported qualifiers:

‘undocumented’
Display only those options that are undocumented.

‘joined’ Display options taking an argument that appears after an equal sign
in the same continuous piece of text, such as: ‘--help=target’.

‘separate’
Display options taking an argument that appears as a separate word
following the original option, such as: ‘-o output-file’.

Thus for example to display all the undocumented target-specific switches sup-
ported by the compiler the following can be used:

--help=target,undocumented

)

The sense of a qualifier can be inverted by prefixing it with the ‘*’ character,

so for example to display all binary warning options (i.e., ones that are either

on or off and that do not take an argument) that have a description, use:
--help=warnings,~joined, “undocumented

The argument to ‘--help="should not consist solely of inverted qualifiers.

Combining several classes is possible, although this usually restricts the output
by so much that there is nothing to display. One case where it does work

28

Using the GNU Compiler Collection (GCC)

however is when one of the classes is target. So for example to display all the
target-specific optimization options the following can be used:

--help=target,optimizers

The ‘--help=’ option can be repeated on the command line. Each successive
use will display its requested class of options, skipping those that have already
been displayed.

If the ‘-Q’ option appears on the command line before the ‘-~help=" option, then
the descriptive text displayed by ‘--help=’is changed. Instead of describing
the displayed options, an indication is given as to whether the option is enabled,
disabled or set to a specific value (assuming that the compiler knows this at the
point where the ‘-=help=" option is used).

Here is a truncated example from the ARM port of gee:
% gcc -Q -mabi=2 --help=target -c
The following options are target specific:

-mabi= 2
-mabort-on-noreturn [disabled]
-mapcs [disabled]

The output is sensitive to the effects of previous command-line options, so for
example it is possible to find out which optimizations are enabled at ‘-02’ by
using:

-Q -02 --help=optimizers
Alternatively you can discover which binary optimizations are enabled by ‘~03’
by using:

gcc —c¢ -Q -03 --help=optimizers > /tmp/03-opts

gcc -c¢ -Q -02 --help=optimizers > /tmp/02-opts

diff /tmp/02-opts /tmp/03-opts | grep enabled

-no-canonical-prefixes

—--version

-wrapper

Do not expand any symbolic links, resolve references to ‘/../” or ‘/./’, or make
the path absolute when generating a relative prefix.

Display the version number and copyrights of the invoked GCC.

Invoke all subcommands under a wrapper program. The name of the wrapper
program and its parameters are passed as a comma separated list.

gcc —-c¢ t.c -wrapper gdb,--args
This will invoke all subprograms of gcc under ‘gdb --args’, thus the invocation
of ccl will be ‘gdb -—args ccl ...".

-fplugin=name.so

Load the plugin code in file name.so, assumed to be a shared object to
be dlopen’d by the compiler. The base name of the shared object file
is used to identify the plugin for the purposes of argument parsing (See
‘~fplugin-arg-name-key=value’ below). Each plugin should define the
callback functions specified in the Plugins API.

-fplugin-arg-name-key=value

Define an argument called key with a value of value for the plugin called name.

Chapter 3: GCC Command Options 29

-fdump-ada-spec[-slim]
For C and C++ source and include files, generate corresponding Ada specs. See
Section “Generating Ada Bindings for C and C++ headers” in GNAT User’s
Guide, which provides detailed documentation on this feature.

-fdump-go-spec=file
For input files in any language, generate corresponding Go declarations in file.
This generates Go const, type, var, and func declarations which may be
a useful way to start writing a Go interface to code written in some other
language.

@file Read command-line options from file. The options read are inserted in place
of the original @file option. If file does not exist, or cannot be read, then the
option will be treated literally, and not removed.

Options in file are separated by whitespace. A whitespace character may be
included in an option by surrounding the entire option in either single or double
quotes. Any character (including a backslash) may be included by prefixing the
character to be included with a backslash. The file may itself contain additional
@file options; any such options will be processed recursively.

3.3 Compiling C++ Programs

)

C++ source files conventionally use one of the suffixes ‘.C’, ‘.cc’, ‘.cpp’, ‘.CPP’, ‘.c++’,
‘.cp’, or ‘.cxx’; C++ header files often use ‘.hh’, ‘.hpp’, ‘.H’, or (for shared template code)
‘.tcc’; and preprocessed C++ files use the suffix ‘.ii’. GCC recognizes files with these
names and compiles them as C++ programs even if you call the compiler the same way as
for compiling C programs (usually with the name gcc).

However, the use of gcc does not add the C++ library. g++ is a program that calls GCC
and treats ‘.c’, ‘.h’ and ‘.1’ files as C++ source files instead of C source files unless *
is used, and automatically specifies linking against the C++ library. This program is also
useful when precompiling a C header file with a ‘.h’ extension for use in C++ compilations.
On many systems, g++ is also installed with the name c++.

_X7

When you compile C++ programs, you may specify many of the same command-line
options that you use for compiling programs in any language; or command-line options
meaningful for C and related languages; or options that are meaningful only for C++ pro-
grams. See Section 3.4 [Options Controlling C Dialect|, page 29, for explanations of options
for languages related to C. See Section 3.5 [Options Controlling C++ Dialect], page 35, for
explanations of options that are meaningful only for C++ programs.

3.4 Options Controlling C Dialect

The following options control the dialect of C (or languages derived from C, such as C++,
Objective-C and Objective-C++) that the compiler accepts:

-ansi In C mode, this is equivalent to ‘-std=c90’. In C++ mode, it is equivalent to
‘-std=c++98’.
This turns off certain features of GCC that are incompatible with ISO C90

(when compiling C code), or of standard C++ (when compiling C++ code), such
as the asm and typeof keywords, and predefined macros such as unix and vax

30

-std=

Using the GNU Compiler Collection (GCC)

that identify the type of system you are using. It also enables the undesirable
and rarely used ISO trigraph feature. For the C compiler, it disables recognition
of C++ style ¢//’ comments as well as the inline keyword.

The alternate keywords __asm__, __extension__, __inline__ and __typeof_
_ continue to work despite ‘—~ansi’. You would not want to use them in an ISO
C program, of course, but it is useful to put them in header files that might be
included in compilations done with ‘-ansi’. Alternate predefined macros such
as __unix__ and __vax__ are also available, with or without ‘-~ansi’.

The ‘-ansi’ option does not cause non-ISO programs to be rejected gratu-
itously. For that, ‘-pedantic’ is required in addition to ‘~ansi’. See Section 3.8
[Warning Options]|, page 49.
The macro __STRICT_ANSI__ is predefined when the ‘-ansi’ option is used.
Some header files may notice this macro and refrain from declaring certain
functions or defining certain macros that the ISO standard doesn’t call for; this
is to avoid interfering with any programs that might use these names for other

things.

¢

Functions that would normally be built in but do not have semantics defined
by ISO C (such as alloca and ffs) are not built-in functions when ‘-ansi’ is
used. See Section 6.54 [Other built-in functions provided by GCC], page 438,
for details of the functions affected.

Determine the language standard. See Chapter 2 [Language Standards Sup-
ported by GCC], page 5, for details of these standard versions. This option is
currently only supported when compiling C or C++.

The compiler can accept several base standards, such as ‘c90’ or ‘c++98’, and
GNU dialects of those standards, such as ‘gnu90’ or ‘gnu++98’. By specifying a
base standard, the compiler will accept all programs following that standard and
those using GNU extensions that do not contradict it. For example, ‘-std=c90’
turns off certain features of GCC that are incompatible with ISO C90, such as
the asm and typeof keywords, but not other GNU extensions that do not have
a meaning in ISO C90, such as omitting the middle term of a 7: expression.
On the other hand, by specifying a GNU dialect of a standard, all features the
compiler support are enabled, even when those features change the meaning
of the base standard and some strict-conforming programs may be rejected.
The particular standard is used by ‘-pedantic’ to identify which features are
GNU extensions given that version of the standard. For example ‘~std=gnu90
-pedantic’ would warn about C++ style ‘//’ comments, while ‘-std=gnu99
-pedantic’ would not.

A value for this option must be provided; possible values are

‘c90’

‘c89’

‘1509899:1990’

Support all ISO C90 programs (certain GNU extensions that con-
flict with ISO C90 are disabled). Same as ‘-ansi’ for C code.

‘1809899:199409’
ISO C90 as modified in amendment 1.

Chapter 3: GCC Command Options 31

‘c99’
‘c9x

9y

‘1509899:1999’
‘1509899:199x’

‘cl1t’

‘clx’

ISO C99. Note that this standard is not yet fully supported;
see http://gcc.gnu.org/gcc-4.7/c99status.html for more in-
formation. The names ‘c9x’ and ‘is09899:199x’ are deprecated.

‘1509899:2011°

‘gnu90’
‘gnu89’

‘gnu99’
‘gnu9x’

‘gnull’

‘gnulx’

‘c++98’

‘gnu++98’

‘c++11’

‘gnu++11’

-fgnu89-inline

ISO C11, the 2011 revision of the ISO C standard. Support is
incomplete and experimental. The name ‘c1x’ is deprecated.

GNU dialect of ISO C90 (including some C99 features). This is the
default for C code.

GNU dialect of ISO C99. When ISO C99 is fully implemented in
GCC, this will become the default. The name ‘gnu9x’ is deprecated.

GNU dialect of ISO C11. Support is incomplete and experimental.
The name ‘gnulx’ is deprecated.

The 1998 ISO C++ standard plus amendments. Same as ‘—ansi’
for C++ code.

GNU dialect of ‘-std=c++98’. This is the default for C++ code.

The 2011 ISO C++ standard plus amendments. Support for C++11
is still experimental, and may change in incompatible ways in future
releases.

GNU dialect of ‘-std=c++11’. Support for C++11 is still experi-
mental, and may change in incompatible ways in future releases.

The option ‘~fgnu89-inline’ tells GCC to use the traditional GNU semantics
for inline functions when in C99 mode. See Section 6.39 [An Inline Function
is As Fast As a Macro], page 384. This option is accepted and ignored by
GCC versions 4.1.3 up to but not including 4.3. In GCC versions 4.3 and later
it changes the behavior of GCC in C99 mode. Using this option is roughly
equivalent to adding the gnu_inline function attribute to all inline functions
(see Section 6.30 [Function Attributes], page 336).

The option ‘~fno-gnu89-inline’ explicitly tells GCC to use the C99 semantics
for inline when in C99 or gnu99 mode (i.e., it specifies the default behavior).
This option was first supported in GCC 4.3. This option is not supported in
‘-std=c90’ or ‘-std=gnu90’ mode.

http://gcc.gnu.org/gcc-4.7/c99status.html

32

Using the GNU Compiler Collection (GCC)

The preprocessor macros __GNUC_GNU_INLINE__ and __GNUC_STDC_INLINE__
may be used to check which semantics are in effect for inline functions. See
Section “Common Predefined Macros” in The C Preprocessor.

—aux-info filename

Output to the given filename prototyped declarations for all functions declared
and/or defined in a translation unit, including those in header files. This option
is silently ignored in any language other than C.

Besides declarations, the file indicates, in comments, the origin of each declara-
tion (source file and line), whether the declaration was implicit, prototyped or
unprototyped (‘I’, ‘N’ for new or ‘0’ for old, respectively, in the first character
after the line number and the colon), and whether it came from a declaration
or a definition (‘C’ or ‘F’, respectively, in the following character). In the case
of function definitions, a K&R-style list of arguments followed by their decla-
rations is also provided, inside comments, after the declaration.

-fallow-parameterless-variadic-functions

-fno-asm

Accept variadic functions without named parameters.

Although it is possible to define such a function, this is not very useful as it
is not possible to read the arguments. This is only supported for C as this
construct is allowed by C++.

Do not recognize asm, inline or typeof as a keyword, so that code can use
these words as identifiers. You can use the keywords __asm__, __inline__ and
typeof__ instead. ‘~ansi’ implies ‘~fno-asm’.

In C++, this switch only affects the typeof keyword, since asm and inline
are standard keywords. You may want to use the ‘-fno-gnu-keywords’ flag
instead, which has the same effect. In C99 mode (‘-std=c99’ or ‘-std=gnu99’),
this switch only affects the asm and typeof keywords, since inline is a standard
keyword in ISO C99.

—-fno-builtin
—-fno-builtin-function

Don’t recognize built-in functions that do not begin with ‘__builtin_’ as prefix.
See Section 6.54 [Other built-in functions provided by GCC], page 438, for
details of the functions affected, including those which are not built-in functions
when ‘-ansi’ or ‘-std’ options for strict ISO C conformance are used because
they do not have an ISO standard meaning.

GCC normally generates special code to handle certain built-in functions more
efficiently; for instance, calls to alloca may become single instructions which
adjust the stack directly, and calls to memcpy may become inline copy loops.
The resulting code is often both smaller and faster, but since the function
calls no longer appear as such, you cannot set a breakpoint on those calls,
nor can you change the behavior of the functions by linking with a different
library. In addition, when a function is recognized as a built-in function, GCC
may use information about that function to warn about problems with calls to
that function, or to generate more efficient code, even if the resulting code still
contains calls to that function. For example, warnings are given with ‘~-Wformat’

Chapter 3: GCC Command Options 33

—-fhosted

for bad calls to printf, when printf is built in, and strlen is known not to
modify global memory.

With the ‘~fno-builtin-function’ option only the built-in function function
is disabled. function must not begin with ‘__builtin_’. If a function is named
that is not built-in in this version of GCC, this option is ignored. There is
no corresponding ‘~fbuiltin-function’ option; if you wish to enable built-in
functions selectively when using ‘~fno-builtin’ or ‘~-ffreestanding’, you may
define macros such as:

#define abs(n) __builtin_abs ((n))
#define strcpy(d, s) __builtin_strcpy ((d), (s))

Assert that compilation takes place in a hosted environment. This implies
‘~fbuiltin’. A hosted environment is one in which the entire standard library
is available, and in which main has a return type of int. Examples are nearly
everything except a kernel. This is equivalent to ‘-fno-freestanding’.

-ffreestanding

—-fopenmp

-fgnu-tm

Assert that compilation takes place in a freestanding environment. This implies
‘~fno-builtin’. A freestanding environment is one in which the standard
library may not exist, and program startup may not necessarily be at main. The
most obvious example is an OS kernel. This is equivalent to ‘~fno-hosted’.

See Chapter 2 [Language Standards Supported by GCC], page 5, for details of
freestanding and hosted environments.

Enable handling of OpenMP directives #pragma omp in C/C++ and !$omp
in Fortran. When ‘-fopenmp’ is specified, the compiler generates parallel
code according to the OpenMP Application Program Interface v3.0
http://www.openmp.org/. This option implies ‘-pthread’, and thus is only
supported on targets that have support for ‘-pthread’.

When the option ‘-fgnu-tm’ is specified, the compiler will generate code for
the Linux variant of Intel’s current Transactional Memory ABI specification
document (Revision 1.1, May 6 2009). This is an experimental feature whose
interface may change in future versions of GCC, as the official specification
changes. Please note that not all architectures are supported for this feature.

For more information on GCC’s support for transactional memory, See Section
“The GNU Transactional Memory Library” in GNU Transactional Memory
Library.

Note that the transactional memory feature is not supported with non-call
exceptions (‘-fnon-call-exceptions’).

-fms-extensions

Accept some non-standard constructs used in Microsoft header files.

In C++ code, this allows member names in structures to be similar to previous
types declarations.

typedef int UOW;
struct ABC {
Uow U0W;

http://www.openmp.org/

34

Using the GNU Compiler Collection (GCC)

};
Some cases of unnamed fields in structures and unions are only accepted
with this option. See Section 6.58 [Unnamed struct/union fields within
structs/unions|, page 621, for details.

-fplan9-extensions

-trigraphs

Accept some non-standard constructs used in Plan 9 code.

This enables ‘~fms-extensions’, permits passing pointers to structures with
anonymous fields to functions that expect pointers to elements of the type of
the field, and permits referring to anonymous fields declared using a typedef.
See Section 6.58 [Unnamed struct/union fields within structs/unions|, page 621,
for details. This is only supported for C, not C++.

Support ISO C trigraphs. The ‘-ansi’ option (and ‘-std’ options for strict ISO
C conformance) implies ‘~trigraphs’.

-no-integrated-cpp

Performs a compilation in two passes: preprocessing and compiling. This option
allows a user supplied "ccl", "cclplus", or "cclobj" via the ‘-B’ option. The
user supplied compilation step can then add in an additional preprocessing
step after normal preprocessing but before compiling. The default is to use the
integrated cpp (internal cpp)

The semantics of this option will change if "ccl", "cclplus", and "cclobj" are
merged.

-traditional
-traditional-cpp

Formerly, these options caused GCC to attempt to emulate a pre-standard C
compiler. They are now only supported with the ‘~E’ switch. The preprocessor
continues to support a pre-standard mode. See the GNU CPP manual for
details.

—-fcond-mismatch

Allow conditional expressions with mismatched types in the second and third
arguments. The value of such an expression is void. This option is not supported
for C++.

-flax-vector-conversions

Allow implicit conversions between vectors with differing numbers of elements
and/or incompatible element types. This option should not be used for new
code.

-funsigned-char

Let the type char be unsigned, like unsigned char.

Each kind of machine has a default for what char should be. It is either like
unsigned char by default or like signed char by default.

Ideally, a portable program should always use signed char or unsigned char
when it depends on the signedness of an object. But many programs have been
written to use plain char and expect it to be signed, or expect it to be unsigned,

Chapter 3: GCC Command Options 35

depending on the machines they were written for. This option, and its inverse,
let you make such a program work with the opposite default.

The type char is always a distinct type from each of signed char or unsigned
char, even though its behavior is always just like one of those two.

-fsigned-char
Let the type char be signed, like signed char.

Note that this is equivalent to ‘-fno-unsigned-char’, which is the negative
form of ‘~funsigned-char’. Likewise, the option ‘~fno-signed-char’ is equiv-
alent to ‘-funsigned-char’.

-fsigned-bitfields

-funsigned-bitfields

-fno-signed-bitfields

-fno-unsigned-bitfields
These options control whether a bit-field is signed or unsigned, when the dec-
laration does not use either signed or unsigned. By default, such a bit-field is
signed, because this is consistent: the basic integer types such as int are signed

types.

3.5 Options Controlling C++ Dialect

This section describes the command-line options that are only meaningful for C++ programs;
but you can also use most of the GNU compiler options regardless of what language your
program is in. For example, you might compile a file firstClass.C like this:

g+t+ -g -frepo -0 -c firstClass.C

In this example, only ‘~frepo’ is an option meant only for C++ programs; you can use the
other options with any language supported by GCC.

Here is a list of options that are only for compiling C++ programs:

-fabi-version=n
Use version n of the C++ ABI. Version 2 is the version of the C++ ABI that
first appeared in G++ 3.4. Version 1 is the version of the C++ ABI that first
appeared in G++ 3.2. Version 0 will always be the version that conforms most
closely to the C++ ABI specification. Therefore, the ABI obtained using version
0 will change as ABI bugs are fixed.

The default is version 2.

Version 3 corrects an error in mangling a constant address as a template argu-
ment.

Version 4, which first appeared in G++ 4.5, implements a standard mangling
for vector types.

Version 5, which first appeared in G++ 4.6, corrects the mangling of attribute
const/volatile on function pointer types, decltype of a plain decl, and use of a
function parameter in the declaration of another parameter.

Version 6, which first appeared in G++ 4.7, corrects the promotion behav-
ior of C++11 scoped enums and the mangling of template argument packs,

36 Using the GNU Compiler Collection (GCC)

const/static_cast, prefix ++ and —, and a class scope function used as a tem-
plate argument.

See also ‘-Wabi’.

-fno-access-control
Turn off all access checking. This switch is mainly useful for working around
bugs in the access control code.

—-fcheck-new

Check that the pointer returned by operator new is non-null before attempting
to modify the storage allocated. This check is normally unnecessary because
the C++ standard specifies that operator new will only return 0 if it is declared
‘throw()’, in which case the compiler will always check the return value even
without this option. In all other cases, when operator new has a non-empty
exception specification, memory exhaustion is signalled by throwing std: :bad_
alloc. See also ‘new (nothrow)’.

-fconserve-space
Put uninitialized or run-time-initialized global variables into the common seg-
ment, as C does. This saves space in the executable at the cost of not diagnosing
duplicate definitions. If you compile with this flag and your program mysteri-
ously crashes after main() has completed, you may have an object that is being
destroyed twice because two definitions were merged.

This option is no longer useful on most targets, now that support has been
added for putting variables into BSS without making them common.

-fconstexpr-depth=n
Set the maximum nested evaluation depth for C++11 constexpr functions to
n. A limit is needed to detect endless recursion during constant expression
evaluation. The minimum specified by the standard is 512.

-fdeduce-init-list
Enable deduction of a template type parameter as std::initializer_list from a
brace-enclosed initializer list, i.e.
template <class T> auto forward(T t) -> decltype (realfn (t))

{
return realfn (t);
}
void f()
{
forward({1,2}); // call forward<std::initializer_list<int>>
¥

This deduction was implemented as a possible extension to the originally pro-
posed semantics for the C++11 standard, but was not part of the final standard,
so it is disabled by default. This option is deprecated, and may be removed in
a future version of G++.

-ffriend-injection
Inject friend functions into the enclosing namespace, so that they are visible
outside the scope of the class in which they are declared. Friend functions were

Chapter 3: GCC Command Options 37

documented to work this way in the old Annotated C++ Reference Manual, and
versions of G++ before 4.1 always worked that way. However, in ISO C++ a
friend function that is not declared in an enclosing scope can only be found
using argument dependent lookup. This option causes friends to be injected as
they were in earlier releases.

This option is for compatibility, and may be removed in a future release of G++.

-fno-elide-constructors
The C++ standard allows an implementation to omit creating a temporary that
is only used to initialize another object of the same type. Specifying this option
disables that optimization, and forces G++ to call the copy constructor in all
cases.

-fno-enforce-eh-specs
Don’t generate code to check for violation of exception specifications at run
time. This option violates the C++ standard, but may be useful for reducing
code size in production builds, much like defining ‘NDEBUG’. This does not
give user code permission to throw exceptions in violation of the exception
specifications; the compiler will still optimize based on the specifications, so
throwing an unexpected exception will result in undefined behavior.

-ffor-scope

—-fno-for-scope
If ‘~ffor-scope’ is specified, the scope of variables declared in a for-init-
statement is limited to the ‘for’ loop itself, as specified by the C++ standard.
If ‘“~fno-for-scope’ is specified, the scope of variables declared in a for-init-
statement extends to the end of the enclosing scope, as was the case in old
versions of G++, and other (traditional) implementations of C++.

The default if neither flag is given to follow the standard, but to allow and give
a warning for old-style code that would otherwise be invalid, or have different
behavior.

—-fno-gnu-keywords
Do not recognize typeof as a keyword, so that code can use this word as
an identifier. You can use the keyword __typeof__ instead. ‘-ansi’ implies
‘~fno-gnu-keywords’.

-fno-implicit-templates
Never emit code for non-inline templates that are instantiated implicitly (i.e.
by use); only emit code for explicit instantiations. See Section 7.5 [Template
Instantiation], page 630, for more information.

-fno-implicit-inline-templates
Don’t emit code for implicit instantiations of inline templates, either. The
default is to handle inlines differently so that compiles with and without opti-
mization will need the same set of explicit instantiations.

-fno-implement-inlines
To save space, do not emit out-of-line copies of inline functions controlled by
‘#pragma implementation’. This will cause linker errors if these functions are
not inlined everywhere they are called.

38 Using the GNU Compiler Collection (GCC)

-fms-extensions
Disable pedantic warnings about constructs used in MFC, such as implicit int
and getting a pointer to member function via non-standard syntax.

-fno-nonansi-builtins
Disable built-in declarations of functions that are not mandated by ANSI/ISO
C. These include ffs, alloca, _exit, index, bzero, conjf, and other related
functions.

-fnothrow-opt

Treat a throw() exception specification as though it were a noexcept spec-
ification to reduce or eliminate the text size overhead relative to a function
with no exception specification. If the function has local variables of types
with non-trivial destructors, the exception specification will actually make the
function smaller because the EH cleanups for those variables can be optimized
away. The semantic effect is that an exception thrown out of a function with
such an exception specification will result in a call to terminate rather than
unexpected.

-fno-operator-names
Do not treat the operator name keywords and, bitand, bitor, compl, not, or
and xor as synonyms as keywords.

-fno-optional-diags
Disable diagnostics that the standard says a compiler does not need to issue.
Currently, the only such diagnostic issued by G++ is the one for a name having
multiple meanings within a class.

-fpermissive
Downgrade some diagnostics about nonconformant code from errors to warn-
ings. Thus, using ‘~fpermissive’ will allow some nonconforming code to com-
pile.

-fno-pretty-templates

When an error message refers to a specialization of a function template, the
compiler will normally print the signature of the template followed by the tem-
plate arguments and any typedefs or typenames in the signature (e.g. void £ (T)
[with T = int] rather than void f(int)) so that it’s clear which template is
involved. When an error message refers to a specialization of a class template,
the compiler will omit any template arguments that match the default template
arguments for that template. If either of these behaviors make it harder to un-
derstand the error message rather than easier, using ‘~fno-pretty-templates’
will disable them.

-frepo Enable automatic template instantiation at link time. This option also im-
plies ‘~fno-implicit-templates’. See Section 7.5 [Template Instantiation],
page 630, for more information.

-fno-rtti
Disable generation of information about every class with virtual functions
for use by the C++ run-time type identification features (‘dynamic_cast’

Chapter 3: GCC Command Options 39

-fstats

and ‘typeid’). If you don’t use those parts of the language, you can save
some space by using this flag. Note that exception handling uses the same
information, but it will generate it as needed. The ‘dynamic_cast’ operator
can still be used for casts that do not require run-time type information, i.e.
casts to void * or to unambiguous base classes.

Emit statistics about front-end processing at the end of the compilation. This
information is generally only useful to the G++ development team.

—-fstrict-enums

Allow the compiler to optimize using the assumption that a value of enumerated
type can only be one of the values of the enumeration (as defined in the C++
standard; basically, a value that can be represented in the minimum number
of bits needed to represent all the enumerators). This assumption may not be
valid if the program uses a cast to convert an arbitrary integer value to the
enumerated type.

-ftemplate-depth=n

Set the maximum instantiation depth for template classes to n. A limit on
the template instantiation depth is needed to detect endless recursions during
template class instantiation. ANSI/ISO C++ conforming programs must not
rely on a maximum depth greater than 17 (changed to 1024 in C++11). The
default value is 900, as the compiler can run out of stack space before hitting
1024 in some situations.

—-fno-threadsafe-statics

Do not emit the extra code to use the routines specified in the C++ ABI for
thread-safe initialization of local statics. You can use this option to reduce code
size slightly in code that doesn’t need to be thread-safe.

-fuse-cxa—-atexit

Register destructors for objects with static storage duration with the __cxa_
atexit function rather than the atexit function. This option is required for
fully standards-compliant handling of static destructors, but will only work if
your C library supports __cxa_atexit.

-fno-use-cxa-get-exception-ptr

Don’t use the __cxa_get_exception_ptr runtime routine. This will cause

std: :uncaught_exception to be incorrect, but is necessary if the runtime rou-
tine is not available.

-fvisibility-inlines-hidden

This switch declares that the user does not attempt to compare pointers to inline
functions or methods where the addresses of the two functions were taken in
different shared objects.

The effect of this is that GCC may, effectively, mark inline methods with __
attribute__ ((visibility ("hidden"))) so that they do not appear in the
export table of a DSO and do not require a PLT indirection when used within
the DSO. Enabling this option can have a dramatic effect on load and link
times of a DSO as it massively reduces the size of the dynamic export table
when the library makes heavy use of templates.

40

Using the GNU Compiler Collection (GCC)

The behavior of this switch is not quite the same as marking the methods as
hidden directly, because it does not affect static variables local to the function
or cause the compiler to deduce that the function is defined in only one shared
object.

You may mark a method as having a visibility explicitly to negate the effect of
the switch for that method. For example, if you do want to compare pointers
to a particular inline method, you might mark it as having default visibility.
Marking the enclosing class with explicit visibility will have no effect.

Explicitly instantiated inline methods are unaffected by this option as their link-
age might otherwise cross a shared library boundary. See Section 7.5 [Template
Instantiation], page 630.

-fvisibility-ms-compat

-fno-weak

This flag attempts to use visibility settings to make GCC’s C++ linkage model
compatible with that of Microsoft Visual Studio.

The flag makes these changes to GCC’s linkage model:
1. It sets the default visibility to hidden, like ‘~fvisibility=hidden’.
2. Types, but not their members, are not hidden by default.

3. The One Definition Rule is relaxed for types without explicit visibility
specifications that are defined in more than one different shared object:
those declarations are permitted if they would have been permitted when
this option was not used.

In new code it is better to use ‘~fvisibility=hidden’ and export those classes
that are intended to be externally visible. Unfortunately it is possible for code
to rely, perhaps accidentally, on the Visual Studio behavior.

Among the consequences of these changes are that static data members of the
same type with the same name but defined in different shared objects will
be different, so changing one will not change the other; and that pointers to
function members defined in different shared objects may not compare equal.
When this flag is given, it is a violation of the ODR to define types with the
same name differently.

Do not use weak symbol support, even if it is provided by the linker. By
default, G++ will use weak symbols if they are available. This option exists
only for testing, and should not be used by end-users; it will result in inferior

code and has no benefits. This option may be removed in a future release of
G++.

-nostdinc++

Do not search for header files in the standard directories specific to C++, but do
still search the other standard directories. (This option is used when building
the C++ library.)

In addition, these optimization, warning, and code generation options have meanings only
for C++ programs:

Chapter 3: GCC Command Options 41

-fno-default-inline
Do not assume ‘inline’ for functions defined inside a class scope. See
Section 3.10 [Options That Control Optimization], page 92. Note that these
functions will have linkage like inline functions; they just won’t be inlined by
default.

-Wabi (C, Objective-C, C++ and Objective-C++ only)
Warn when G++ generates code that is probably not compatible with the
vendor-neutral C++ ABI. Although an effort has been made to warn about
all such cases, there are probably some cases that are not warned about, even
though G++ is generating incompatible code. There may also be cases where
warnings are emitted even though the code that is generated will be compatible.

You should rewrite your code to avoid these warnings if you are concerned about
the fact that code generated by G++ may not be binary compatible with code
generated by other compilers.

The known incompatibilities in ‘~fabi-version=2’ (the default) include:

e A template with a non-type template parameter of reference type is man-
gled incorrectly:
extern int N;
template <int &> struct S {};
void n (S<N>) {2}
This is fixed in ‘~fabi-version=3’.
e SIMD vector types declared using __attribute ((vector_size)) are
mangled in a non-standard way that does not allow for overloading of
functions taking vectors of different sizes.

The mangling is changed in ‘~fabi-version=4’.
The known incompatibilities in ‘~fabi-version=1’ include:

e Incorrect handling of tail-padding for bit-fields. G++ may attempt to pack

data into the same byte as a base class. For example:

struct A { virtual void £(); int f1 : 1; };

struct B : public A { int £2 : 1; };
In this case, G++ will place B: : £2 into the same byte asA: :£1; other com-
pilers will not. You can avoid this problem by explicitly padding A so that
its size is a multiple of the byte size on your platform; that will cause G++
and other compilers to layout B identically.

e Incorrect handling of tail-padding for virtual bases. G++ does not use tail

padding when laying out virtual bases. For example:

struct A { virtual void f(); char cl; };

struct B { B(); char c2; };

struct C : public A, public virtual B {};
In this case, G++ will not place B into the tail-padding for A; other compilers
will. You can avoid this problem by explicitly padding A so that its size is
a multiple of its alignment (ignoring virtual base classes); that will cause
G++ and other compilers to layout C identically.

e Incorrect handling of bit-fields with declared widths greater than that of
their underlying types, when the bit-fields appear in a union. For example:

42 Using the GNU Compiler Collection (GCC)

union U { int i : 4096; };

Assuming that an int does not have 4096 bits, G++ will make the union
too small by the number of bits in an int.

e Empty classes can be placed at incorrect offsets. For example:
struct A {};

struct B {
A a;
virtual void f ();

};

struct C : public B, public A {};

G++ will place the A base class of C at a nonzero offset; it should be placed
at offset zero. G++ mistakenly believes that the A data member of B is
already at offset zero.

e Names of template functions whose types involve typename or template
template parameters can be mangled incorrectly.

template <typename Q>
void f(typename Q::X) {}

template <template <typename> class Q>
void f(typename Q<int>::X) {}

Instantiations of these templates may be mangled incorrectly.

It also warns psABI related changes. The known psABI changes at this point
include:

e For SYSV/x86-64, when passing union with long double, it is changed to
pass in memory as specified in psABI. For example:

union U {
long double 1d;
int i;

};
union U will always be passed in memory.

-Wector-dtor-privacy (C++ and Objective-C++ only)
Warn when a class seems unusable because all the constructors or destructors
in that class are private, and it has neither friends nor public static member
functions.

-Wdelete-non-virtual-dtor (C++ and Objective-C++ only)
Warn when ‘delete’ is used to destroy an instance of a class that has virtual
functions and non-virtual destructor. It is unsafe to delete an instance of a
derived class through a pointer to a base class if the base class does not have a
virtual destructor. This warning is enabled by ‘-Wall’.

-Wnarrowing (C++ and Objective-C++ only)
Warn when a narrowing conversion prohibited by C++11 occurs within ‘{ },
e.g.
int i = { 2.2 }; // error: narrowing from double to int

This flag is included in ‘-Wall’ and ‘-Wc++11-compat’.

Chapter 3: GCC Command Options 43

With -std=c++11, ‘-Wno-narrowing’ suppresses the diagnostic required by the
standard. Note that this does not affect the meaning of well-formed code;
narrowing conversions are still considered ill-formed in SFINAE context.

-Wnoexcept (C++ and Objective-C++ only)
Warn when a noexcept-expression evaluates to false because of a call to a func-
tion that does not have a non-throwing exception specification (i.e. ‘throw()’
or ‘noexcept’) but is known by the compiler to never throw an exception.

-Wnon-virtual-dtor (C++ and Objective-C++ only)
Warn when a class has virtual functions and accessible non-virtual destructor, in
which case it would be possible but unsafe to delete an instance of a derived class
through a pointer to the base class. This warning is also enabled if ‘~Weffc++’
is specified.

-Wreorder (C++ and Objective-C++ only)
Warn when the order of member initializers given in the code does not match
the order in which they must be executed. For instance:

struct A {

int i;

int j;

AQO: j (), i (1) {3
};

The compiler will rearrange the member initializers for ‘i’ and ‘j’ to match
the declaration order of the members, emitting a warning to that effect. This
warning is enabled by ‘-Wall’.

The following ‘-W. ..’ options are not affected by ‘-Wall’.

-Weffc++ (C++ and Objective-C++ only)
Warn about violations of the following style guidelines from Scott Meyers’ Ef-
fective C++, Second Edition book:

e Item 11: Define a copy constructor and an assignment operator for classes
with dynamically allocated memory.

e Item 12: Prefer initialization to assignment in constructors.

e Item 14: Make destructors virtual in base classes.

e [tem 15: Have operator= return a reference to *this.

e Item 23: Don’t try to return a reference when you must return an object.
Also warn about violations of the following style guidelines from Scott Meyers’
More Effective C++ book:

e Item 6: Distinguish between prefix and postfix forms of increment and
decrement operators.

e Item 7: Never overload &&, ||, or ,.

When selecting this option, be aware that the standard library headers do not
obey all of these guidelines; use ‘grep -v’ to filter out those warnings.

-Wstrict-null-sentinel (C++ and Objective-C++ only)
Warn also about the use of an uncasted NULL as sentinel. When compiling only
with GCC this is a valid sentinel, as NULL is defined to __null. Although it is

44 Using the GNU Compiler Collection (GCC)

a null pointer constant not a null pointer, it is guaranteed to be of the same
size as a pointer. But this use is not portable across different compilers.

-Wno-non-template-friend (C++ and Objective-C++ only)

Disable warnings when non-templatized friend functions are declared within a
template. Since the advent of explicit template specification support in G++,
if the name of the friend is an unqualified-id (i.e., ‘friend foo(int)’), the
C++ language specification demands that the friend declare or define an ordi-
nary, nontemplate function. (Section 14.5.3). Before G++ implemented explicit
specification, unqualified-ids could be interpreted as a particular specialization
of a templatized function. Because this non-conforming behavior is no longer
the default behavior for G++, ‘-Wnon-template-friend’ allows the compiler to
check existing code for potential trouble spots and is on by default. This new
compiler behavior can be turned off with ‘~-Wno-non-template-friend’, which
keeps the conformant compiler code but disables the helpful warning.

-Wold-style-cast (C++ and Objective-C++ only)
Warn if an old-style (C-style) cast to a mnon-void type is used within
a C++ program. The new-style casts (‘dynamic_cast’, ‘static_cast’,
‘reinterpret_cast’, and ‘const_cast’) are less vulnerable to unintended
effects and much easier to search for.

-Woverloaded-virtual (C++ and Objective-C++ only)
Warn when a function declaration hides virtual functions from a base class. For
example, in:
struct A {
virtual void f£();

};

struct B: public A {
void f(int);
};
the A class version of f is hidden in B, and code like:
B*x b;
b->f(0);

will fail to compile.

-Wno-pmf-conversions (C++ and Objective-C++ only)
Disable the diagnostic for converting a bound pointer to member function to a
plain pointer.

-Wsign-promo (C++ and Objective-C++ only)
Warn when overload resolution chooses a promotion from unsigned or enumer-
ated type to a signed type, over a conversion to an unsigned type of the same
size. Previous versions of G++ would try to preserve unsignedness, but the
standard mandates the current behavior.

struct A {

operator int ();

A& operator = (int);
};

main ()

Chapter 3: GCC Command Options 45

A a,b;
a =b;
}
In this example, G++ will synthesize a default ‘A& operator = (const A%);’,
while cfront will use the user-defined ‘operator =’.

3.6 Options Controlling Objective-C and Objective-C++
Dialects

(NOTE: This manual does not describe the Objective-C and Objective-C++ languages them-
selves. See Chapter 2 [Language Standards Supported by GCC], page 5, for references.)

This section describes the command-line options that are only meaningful for Objective-C
and Objective-C++ programs, but you can also use most of the language-independent GNU
compiler options. For example, you might compile a file some_class.m like this:

gcc -g —fgnu-runtime -0 -c some_class.m

In this example, ‘~fgnu-runtime’ is an option meant only for Objective-C and Objective-
C++ programs; you can use the other options with any language supported by GCC.

Note that since Objective-C is an extension of the C language, Objective-C compila-
tions may also use options specific to the C front-end (e.g., ‘-Wtraditional’). Similarly,
Objective-C++ compilations may use C++-specific options (e.g., ‘~Wabi’).

Here is a list of options that are only for compiling Objective-C and Objective-C++
programs:

-fconstant-string-class=class-name
Use class-name as the name of the class to instantiate for each literal string
specified with the syntax @"...". The default class name is NXConstantString
if the GNU runtime is being used, and NSConstantString if the NeXT runtime
is being used (see below). The ‘~fconstant-cfstrings’ option, if also present,
will override the ‘~-fconstant-string-class’ setting and cause @"..." literals
to be laid out as constant CoreFoundation strings.

-fgnu-runtime
Generate object code compatible with the standard GNU Objective-C runtime.
This is the default for most types of systems.

—-fnext-runtime
Generate output compatible with the NeXT runtime. This is the default for
NeXT-based systems, including Darwin and Mac OS X. The macro __NEXT_
RUNTIME__ is predefined if (and only if) this option is used.

-fno-nil-receivers
Assume that all Objective-C message dispatches ([receiver message:arg]) in
this translation unit ensure that the receiver is not nil. This allows for more
efficient entry points in the runtime to be used. This option is only available in
conjunction with the NeXT runtime and ABI version 0 or 1.

-fobjc-abi-version=n
Use version n of the Objective-C ABI for the selected runtime. This option is
currently supported only for the NeXT runtime. In that case, Version 0 is the

46

Using the GNU Compiler Collection (GCC)

traditional (32-bit) ABI without support for properties and other Objective-
C 2.0 additions. Version 1 is the traditional (32-bit) ABI with support for
properties and other Objective-C 2.0 additions. Version 2 is the modern (64-bit)
ABI. If nothing is specified, the default is Version 0 on 32-bit target machines,
and Version 2 on 64-bit target machines.

-fobjc-call-cxx-cdtors

For each Objective-C class, check if any of its instance variables is a C++ object
with a non-trivial default constructor. If so, synthesize a special - (id) .cxx_
construct instance method which will run non-trivial default constructors on
any such instance variables, in order, and then return self. Similarly, check if
any instance variable is a C++ object with a non-trivial destructor, and if so,
synthesize a special - (void) .cxx_destruct method which will run all such
default destructors, in reverse order.

The - (id) .cxx_construct and - (void) .cxx_destruct methods thusly
generated will only operate on instance variables declared in the current
Objective-C class, and not those inherited from superclasses. It is the
responsibility of the Objective-C runtime to invoke all such methods in an
object’s inheritance hierarchy. The - (id) .cxx_construct methods will be
invoked by the runtime immediately after a new object instance is allocated;
the = (void) .cxx_destruct methods will be invoked immediately before the
runtime deallocates an object instance.

As of this writing, only the NeXT runtime on Mac OS X 10.4 and later has sup-
port for invoking the - (id) .cxx_construct and - (void) .cxx_destruct
methods.

-fobjc-direct-dispatch

Allow fast jumps to the message dispatcher. On Darwin this is accomplished
via the comm page.

-fobjc-exceptions

-fobjc-gc

Enable syntactic support for structured exception handling in Objective-C, sim-
ilar to what is offered by C++ and Java. This option is required to use the
Objective-C keywords @try, @throw, @catch, @finally and @synchronized.
This option is available with both the GNU runtime and the NeXT runtime
(but not available in conjunction with the NeXT runtime on Mac OS X 10.2
and earlier).

Enable garbage collection (GC) in Objective-C and Objective-C++ programs.
This option is only available with the NeXT runtime; the GNU runtime has a
different garbage collection implementation that does not require special com-
piler flags.

-fobjc-nilcheck

For the NeXT runtime with version 2 of the ABI, check for a nil receiver in
method invocations before doing the actual method call. This is the default
and can be disabled using ‘~fno-objc-nilcheck’. Class methods and super
calls are never checked for nil in this way no matter what this flag is set to.

Chapter 3: GCC Command Options 47

Currently this flag does nothing when the GNU runtime, or an older version of
the NeXT runtime ABI, is used.

-fobjc-std=objcl

Conform to the language syntax of Objective-C 1.0, the language recognized by
GCC 4.0. This only affects the Objective-C additions to the C/C++ language;
it does not affect conformance to C/C++ standards, which is controlled by
the separate C/C++ dialect option flags. When this option is used with the
Objective-C or Objective-C++ compiler, any Objective-C syntax that is not
recognized by GCC 4.0 is rejected. This is useful if you need to make sure that
your Objective-C code can be compiled with older versions of GCC.

-freplace-objc-classes

Emit a special marker instructing 1d(1) not to statically link in the resulting
object file, and allow dyld(1) to load it in at run time instead. This is used
in conjunction with the Fix-and-Continue debugging mode, where the object
file in question may be recompiled and dynamically reloaded in the course of
program execution, without the need to restart the program itself. Currently,
Fix-and-Continue functionality is only available in conjunction with the NeXT
runtime on Mac OS X 10.3 and later.

-fzero-link

When compiling for the NeXT runtime, the compiler ordinarily replaces calls to
objc_getClass("...") (when the name of the class is known at compile time)
with static class references that get initialized at load time, which improves run-
time performance. Specifying the ‘~fzero-1link’ flag suppresses this behavior
and causes calls to objc_getClass("...") to be retained. This is useful in
Zero-Link debugging mode, since it allows for individual class implementations
to be modified during program execution. The GNU runtime currently always
retains calls to objc_get_class("...") regardless of command-line options.

-gen-decls
Dump interface declarations for all classes seen in the source file to a file named
‘sourcename.decl’.

-Wassign-intercept (Objective-C and Objective-C++ only)
Warn whenever an Objective-C assignment is being intercepted by the garbage
collector.

-Wno-protocol (Objective-C and Objective-C++ only)
If a class is declared to implement a protocol, a warning is issued for every
method in the protocol that is not implemented by the class. The default
behavior is to issue a warning for every method not explicitly implemented in the
class, even if a method implementation is inherited from the superclass. If you
use the ‘-Wno-protocol’ option, then methods inherited from the superclass
are considered to be implemented, and no warning is issued for them.

-Wselector (Objective-C and Objective-C++ only)
Warn if multiple methods of different types for the same selector are found
during compilation. The check is performed on the list of methods in the
final stage of compilation. Additionally, a check is performed for each selector

48 Using the GNU Compiler Collection (GCC)

appearing in a @selector(...) expression, and a corresponding method for
that selector has been found during compilation. Because these checks scan the
method table only at the end of compilation, these warnings are not produced
if the final stage of compilation is not reached, for example because an error
is found during compilation, or because the ‘~fsyntax-only’ option is being
used.

-Wstrict-selector-match (Objective-C and Objective-C++ only)
Warn if multiple methods with differing argument and/or return types are found
for a given selector when attempting to send a message using this selector to
a receiver of type id or Class. When this flag is off (which is the default
behavior), the compiler will omit such warnings if any differences found are
confined to types that share the same size and alignment.

-Wundeclared-selector (Objective-C and Objective-C++ only)

Warn if a @selector(...) expression referring to an undeclared selector is
found. A selector is considered undeclared if no method with that name has
been declared before the @selector(...) expression, either explicitly in an
@interface or @protocol declaration, or implicitly in an @implementation
section. This option always performs its checks as soon as a @selector(...)
expression is found, while ‘-Wselector’ only performs its checks in the final
stage of compilation. This also enforces the coding style convention that meth-
ods and selectors must be declared before being used.

-print-objc-runtime-info
Generate C header describing the largest structure that is passed by value, if
any.

3.7 Options to Control Diagnostic Messages Formatting

Traditionally, diagnostic messages have been formatted irrespective of the output device’s
aspect (e.g. its width, ...). The options described below can be used to control the diag-
nostic messages formatting algorithm, e.g. how many characters per line, how often source
location information should be reported. Right now, only the C++ front end can honor these
options. However it is expected, in the near future, that the remaining front ends would be
able to digest them correctly.

-fmessage-length=n
Try to format error messages so that they fit on lines of about n characters. The
default is 72 characters for g++ and 0 for the rest of the front ends supported
by GCC. If n is zero, then no line-wrapping will be done; each error message
will appear on a single line.

-fdiagnostics-show-location=once
Only meaningful in line-wrapping mode. Instructs the diagnostic messages re-
porter to emit once source location information; that is, in case the message
is too long to fit on a single physical line and has to be wrapped, the source
location won’t be emitted (as prefix) again, over and over, in subsequent con-
tinuation lines. This is the default behavior.

Chapter 3: GCC Command Options 49

-fdiagnostics-show-location=every-line
Only meaningful in line-wrapping mode. Instructs the diagnostic messages
reporter to emit the same source location information (as prefix) for physical
lines that result from the process of breaking a message which is too long to fit
on a single line.

-fno-diagnostics-show-option
By default, each diagnostic emitted includes text indicating the command-line
option that directly controls the diagnostic (if such an option is known to the
diagnostic machinery). Specifying the ‘~fno-diagnostics-show-option’ flag
suppresses that behavior.

3.8 Options to Request or Suppress Warnings

Warnings are diagnostic messages that report constructions that are not inherently erro-
neous but that are risky or suggest there may have been an error.

The following language-independent options do not enable specific warnings but control
the kinds of diagnostics produced by GCC.

-fsyntax-only
Check the code for syntax errors, but don’t do anything beyond that.

-fmax-errors=n
Limits the maximum number of error messages to n, at which point GCC bails
out rather than attempting to continue processing the source code. If n is 0
(the default), there is no limit on the number of error messages produced. If
‘~Wfatal-errors’ is also specified, then ‘-Wfatal-errors’ takes precedence
over this option.

-w Inhibit all warning messages.
-Werror Make all warnings into errors.

-Werror= Make the specified warning into an error. The specifier for a warning is
appended, for example ‘-Werror=switch’ turns the warnings controlled by
‘~Wswitch’ into errors. This switch takes a negative form, to be used to negate
‘-Werror’ for specific warnings, for example ‘-Wno-error=switch’ makes
‘~Wswitch’ warnings not be errors, even when ‘-Werror’ is in effect.

The warning message for each controllable warning includes the option that
controls the warning. That option can then be used with ‘-Werror=" and
‘~Wno-error=’ as described above. (Printing of the option in the warning mes-
sage can be disabled using the ‘~fno-diagnostics-show-option’ flag.)

Note that specifying ‘-Werror="foo automatically implies ‘-Wfoo. However,
‘~Wno-error="foo does not imply anything.

-Wfatal-errors
This option causes the compiler to abort compilation on the first error occurred
rather than trying to keep going and printing further error messages.

You can request many specific warnings with options beginning ‘-W’, for example
‘~Wimplicit’ to request warnings on implicit declarations. Each of these specific warning

50 Using the GNU Compiler Collection (GCC)

options also has a negative form beginning ‘-Wno-’ to turn off warnings; for example,
‘-Wno-implicit’. This manual lists only one of the two forms, whichever is not the default.
For further, language-specific options also refer to Section 3.5 [C++ Dialect Options],
page 35 and Section 3.6 [Objective-C and Objective-C++ Dialect Options], page 45.

When an unrecognized warning option is requested (e.g., ‘~Wunknown-warning’), GCC
will emit a diagnostic stating that the option is not recognized. However, if the ‘-Wno-’
form is used, the behavior is slightly different: No diagnostic will be produced for
‘~Wno-unknown-warning’ unless other diagnostics are being produced. This allows the use
of new ‘~Wno-’ options with old compilers, but if something goes wrong, the compiler will
warn that an unrecognized option was used.

-pedantic
Issue all the warnings demanded by strict ISO C and ISO C++; reject all pro-
grams that use forbidden extensions, and some other programs that do not
follow ISO C and ISO C++. For ISO C, follows the version of the ISO C stan-
dard specified by any ‘-std’ option used.

Valid ISO C and ISO C++ programs should compile properly with or without
this option (though a rare few will require ‘-ansi’ or a ‘-std’ option specifying
the required version of ISO C). However, without this option, certain GNU
extensions and traditional C and C++ features are supported as well. With this
option, they are rejected.

‘-pedantic’ does not cause warning messages for use of the alternate keywords
whose names begin and end with ‘__’. Pedantic warnings are also disabled in
the expression that follows __extension__. However, only system header files

should use these escape routes; application programs should avoid them. See
Section 6.45 [Alternate Keywords], page 425.

Some users try to use ‘-pedantic’ to check programs for strict ISO C con-
formance. They soon find that it does not do quite what they want: it finds
some non-ISO practices, but not all—only those for which ISO C requires a
diagnostic, and some others for which diagnostics have been added.

A feature to report any failure to conform to ISO C might be useful in some
instances, but would require considerable additional work and would be quite
different from ‘-pedantic’. We don’t have plans to support such a feature in
the near future.

Where the standard specified with ‘-std’ represents a GNU extended dialect
of C, such as ‘gnu90’ or ‘gnu99’; there is a corresponding base standard, the
version of ISO C on which the GNU extended dialect is based. Warnings from
‘-pedantic’ are given where they are required by the base standard. (It would
not make sense for such warnings to be given only for features not in the spec-
ified GNU C dialect, since by definition the GNU dialects of C include all fea-
tures the compiler supports with the given option, and there would be nothing
to warn about.)

-pedantic-errors
Like ‘-pedantic’, except that errors are produced rather than warnings.

-Wall This enables all the warnings about constructions that some users consider
questionable, and that are easy to avoid (or modify to prevent the warning),

Chapter 3: GCC Command Options 51

-Wextra

even in conjunction with macros. This also enables some language-specific
warnings described in Section 3.5 [C++ Dialect Options|, page 35 and Section 3.6
[Objective-C and Objective-C++ Dialect Options], page 45.

‘-Wall’ turns on the following warning flags:

-Waddress

-Warray-bounds (only with ‘-027)

-Wc++11-compat

-Wchar-subscripts

-Wenum-compare (in C/Objc; this is on by default in C++)
-Wimplicit-int (C and Objective-C only)
-Wimplicit-function-declaration (C and Objective-C only)
-Wcomment

-Wformat

-Wmain (only for C/ObjC and unless ‘-ffreestanding’)
-Wmaybe-uninitialized

-Wmissing-braces

-Wnonnull

-Wparentheses

-Wpointer-sign

-Wreorder

-Wreturn-type

-Wsequence-point

-Wsign-compare (only in C++)

-Wstrict-aliasing

-Wstrict-overflow=1

-Wswitch

-Wtrigraphs

-Wuninitialized

-Wunknown-pragmas

-Wunused-function

-Wunused-label

-Wunused-value

-Wunused-variable

-Wvolatile-register-var

Note that some warning flags are not implied by ‘-Wall’. Some of them warn
about constructions that users generally do not consider questionable, but which
occasionally you might wish to check for; others warn about constructions that
are necessary or hard to avoid in some cases, and there is no simple way to mod-
ify the code to suppress the warning. Some of them are enabled by ‘-Wextra’
but many of them must be enabled individually.

This enables some extra warning flags that are not enabled by ‘-Wall’. (This
option used to be called ‘-W’. The older name is still supported, but the newer
name is more descriptive.)

-Wclobbered

-Wempty-body
-Wignored-qualifiers
-Wmissing-field-initializers
-Wmissing-parameter-type (C only)
-Wold-style-declaration (C only)
-Woverride-init

-Wsign-compare

-Wtype-limits

-Wuninitialized

52

Using the GNU Compiler Collection (GCC)

-Wunused-parameter (only with ‘-Wunused’ or ‘-Wall’)
-Wunused-but-set-parameter (only with ‘-Wunused’ or ‘-Wall’)

The option ‘-Wextra’ also prints warning messages for the following cases:
e A pointer is compared against integer zero with ‘<’, ‘<=’ ‘>’ or >=’".
e (C++ only) An enumerator and a non-enumerator both appear in a condi-

tional expression.

o (C++ only) Ambiguous virtual bases.

(C++ only) Subscripting an array that has been declared ‘register’.

e (C++ only) Taking the address of a variable that has been declared
‘register’.

e (C++ only) A base class is not initialized in a derived class’ copy construc-
tor.

-Wchar-subscripts

-Wcomment

Warn if an array subscript has type char. This is a common cause of error,
as programmers often forget that this type is signed on some machines. This
warning is enabled by ‘-Wall’.

Warn whenever a comment-start sequence ‘/*’ appears in a ‘/*’ comment, or
whenever a Backslash-Newline appears in a ‘//’ comment. This warning is
enabled by ‘-Wall’.

-Wno-coverage-mismatch

-Wno-cpp

Warn if feedback profiles do not match when using the ‘~-fprofile-use’ option.
If a source file was changed between ‘~-fprofile-gen’ and ‘~fprofile-use’, the
files with the profile feedback can fail to match the source file and GCC cannot
use the profile feedback information. By default, this warning is enabled and
is treated as an error. ‘-Wno-coverage-mismatch’ can be used to disable the
warning or ‘-Wno-error=coverage-mismatch’ can be used to disable the error.
Disabling the error for this warning can result in poorly optimized code and is
useful only in the case of very minor changes such as bug fixes to an existing
code-base. Completely disabling the warning is not recommended.

(C, Objective-C, C++, Objective-C++ and Fortran only)
Suppress warning messages emitted by #warning directives.

-Wdouble-promotion (C, C++, Objective-C and Objective-C++ only)

Give a warning when a value of type float is implicitly promoted to double.
CPUs with a 32-bit “single-precision” floating-point unit implement float in
hardware, but emulate double in software. On such a machine, doing compu-
tations using double values is much more expensive because of the overhead
required for software emulation.

It is easy to accidentally do computations with double because floating-point
literals are implicitly of type double. For example, in:
float area(float radius)

{

return 3.14159 * radius * radius;

}

Chapter 3: GCC Command Options 53

-Wformat

the compiler will perform the entire computation with double because the
floating-point literal is a double.

Check calls to printf and scanf, etc., to make sure that the arguments supplied
have types appropriate to the format string specified, and that the conversions
specified in the format string make sense. This includes standard functions, and
others specified by format attributes (see Section 6.30 [Function Attributes],
page 336), in the printf, scanf, strftime and strfmon (an X/Open exten-
sion, not in the C standard) families (or other target-specific families). Which
functions are checked without format attributes having been specified depends
on the standard version selected, and such checks of functions without the at-
tribute specified are disabled by ‘-ffreestanding’ or ‘-fno-builtin’.

The formats are checked against the format features supported by GNU libc
version 2.2. These include all ISO C90 and C99 features, as well as features
from the Single Unix Specification and some BSD and GNU extensions. Other
library implementations may not support all these features; GCC does not sup-
port warning about features that go beyond a particular library’s limitations.
However, if ‘-pedantic’ is used with ‘~-Wformat’, warnings will be given about
format features not in the selected standard version (but not for strfmon for-
mats, since those are not in any version of the C standard). See Section 3.4
[Options Controlling C Dialect], page 29.

Since ‘-Wformat’ also checks for null format arguments for several functions,
‘~Wformat’ also implies ‘~Wnonnull’.

‘~Wformat’ is included in ‘-Wall’. For more control over some aspects of
format checking, the options ‘-Wformat-y2k’, ‘-Wno-format-extra-args’,
‘~Wno-format-zero-length’, ‘-Wformat-nonliteral’, ‘-Wformat-security’,
and ‘-Wformat=2’ are available, but are not included in ‘-Wall’.

-Wformat-y2k

If ‘~Wformat’ is specified, also warn about strftime formats that may yield
only a two-digit year.

-Wno-format-contains—nul

If ‘~Wformat’ is specified, do not warn about format strings that contain NUL
bytes.

-Wno-format-extra-args

If ‘~Wformat’ is specified, do not warn about excess arguments to a printf
or scanf format function. The C standard specifies that such arguments are
ignored.

Where the unused arguments lie between used arguments that are specified
with ‘¢’ operand number specifications, normally warnings are still given, since
the implementation could not know what type to pass to va_arg to skip the
unused arguments. However, in the case of scanf formats, this option will
suppress the warning if the unused arguments are all pointers, since the Single
Unix Specification says that such unused arguments are allowed.

54 Using the GNU Compiler Collection (GCC)

-Wno-format-zero-length
If ‘~Wformat’ is specified, do not warn about zero-length formats. The C stan-
dard specifies that zero-length formats are allowed.

-Wformat-nonliteral
If ‘~Wformat’ is specified, also warn if the format string is not a string literal and
so cannot be checked, unless the format function takes its format arguments as
a va_list.

-Wformat-security

If ‘-Wformat’ is specified, also warn about uses of format functions that repre-
sent possible security problems. At present, this warns about calls to printf
and scanf functions where the format string is not a string literal and there
are no format arguments, as in printf (foo);. This may be a security hole
if the format string came from untrusted input and contains ‘%n’. (This is
currently a subset of what ‘~Wformat-nonliteral’ warns about, but in fu-
ture warnings may be added to ‘-Wformat-security’ that are not included in
‘~Wformat-nonliteral’.)

-Wformat=2
Enable ‘-Wformat’ plus format checks not included in ‘-Wformat’. Currently
equivalent to ‘-Wformat -Wformat-nonliteral -Wformat-security
-Wformat-y2k’.

-Wnonnull
Warn about passing a null pointer for arguments marked as requiring a non-null
value by the nonnull function attribute.
‘~Wnonnull’ is included in ‘-Wall’ and ‘-Wformat’. It can be disabled with the
‘~Wno-nonnull’ option.

-Winit-self (C, C++, Objective-C and Objective-C++ only)
Warn about uninitialized variables that are initialized with themselves. Note
this option can only be used with the ‘-Wuninitialized’ option.

For example, GCC will warn about i being uninitialized in the following snippet
only when ‘-Winit-self’ has been specified:

int £()

{
int i = i;
return i;

}
-Wimplicit-int (C and Objective-C only)
Warn when a declaration does not specify a type. This warning is enabled by
‘~Wall’.

-Wimplicit-function-declaration (C and Objective-C only)
Give a warning whenever a function is used before being declared. In C99 mode
(‘-std=c99’ or ‘-std=gnu99’), this warning is enabled by default and it is made
into an error by ‘-pedantic-errors’. This warning is also enabled by ‘-Wall’.
-Wimplicit (C and Objective-C only)
Same as ‘-Wimplicit-int’ and ‘-Wimplicit-function-declaration’. This
warning is enabled by ‘-Wall’.

Chapter 3: GCC Command Options 55

-Wignored-qualifiers (C and C++ only)

-Wmain

Warn if the return type of a function has a type qualifier such as const. For
ISO C such a type qualifier has no effect, since the value returned by a function
is not an lvalue. For C++, the warning is only emitted for scalar types or void.
ISO C prohibits qualified void return types on function definitions, so such
return types always receive a warning even without this option.

This warning is also enabled by ‘-Wextra’.

Warn if the type of ‘main’ is suspicious. ‘main’ should be a function with
external linkage, returning int, taking either zero arguments, two, or three
arguments of appropriate types. This warning is enabled by default in C++ and
is enabled by either ‘-Wall’ or ‘-pedantic’.

-Wmissing-braces

Warn if an aggregate or union initializer is not fully bracketed. In the following
example, the initializer for ‘a’ is not fully bracketed, but that for ‘b’ is fully
bracketed.

int a[2][2]
int b[2][2]

{0,1, 2, 3}
{{o0, 1} {2, 3}1}

This warning is enabled by ‘-Wall’.

-Wmissing-include-dirs (C, C++, Objective-C and Objective-C++ only)

Warn if a user-supplied include directory does not exist.

-Wparentheses

Warn if parentheses are omitted in certain contexts, such as when there is an
assignment in a context where a truth value is expected, or when operators are
nested whose precedence people often get confused about.

Also warn if a comparison like ‘x<=y<=z’ appears; this is equivalent to ‘(x<=y
7?1 : 0) <= z’, which is a different interpretation from that of ordinary math-
ematical notation.

Also warn about constructions where there may be confusion to which if state-
ment an else branch belongs. Here is an example of such a case:
{
if (a)
if (o)
foo O;
else
bar O;
}

In C/C++, every else branch belongs to the innermost possible if statement,
which in this example is if (b). This is often not what the programmer ex-
pected, as illustrated in the above example by indentation the programmer
chose. When there is the potential for this confusion, GCC will issue a warning
when this flag is specified. To eliminate the warning, add explicit braces around
the innermost if statement so there is no way the else could belong to the
enclosing if. The resulting code would look like this:

56

Using the GNU Compiler Collection (GCC)

{
if (a)
{
if (b)
foo ();
else
bar O;
}
}

Also warn for dangerous uses of the 7: with omitted middle operand GNU
extension. When the condition in the 7: operator is a boolean expression the
omitted value will be always 1. Often the user expects it to be a value computed
inside the conditional expression instead.

This warning is enabled by ‘-Wall’.

-Wsequence-point

Warn about code that may have undefined semantics because of violations of
sequence point rules in the C and C++ standards.

The C and C++ standards defines the order in which expressions in a C/C++
program are evaluated in terms of sequence points, which represent a partial
ordering between the execution of parts of the program: those executed before
the sequence point, and those executed after it. These occur after the evalua-
tion of a full expression (one which is not part of a larger expression), after the
evaluation of the first operand of a &&, ||, ? : or , (comma) operator, before a
function is called (but after the evaluation of its arguments and the expression
denoting the called function), and in certain other places. Other than as ex-
pressed by the sequence point rules, the order of evaluation of subexpressions
of an expression is not specified. All these rules describe only a partial order
rather than a total order, since, for example, if two functions are called within
one expression with no sequence point between them, the order in which the
functions are called is not specified. However, the standards committee have
ruled that function calls do not overlap.

It is not specified when between sequence points modifications to the values of
objects take effect. Programs whose behavior depends on this have undefined
behavior; the C and C++ standards specify that “Between the previous and
next sequence point an object shall have its stored value modified at most once
by the evaluation of an expression. Furthermore, the prior value shall be read
only to determine the value to be stored.”. If a program breaks these rules, the
results on any particular implementation are entirely unpredictable.

Examples of code with undefined behavior are a = a++;, a[n] = b[n++] and
ali++] = 1i;. Some more complicated cases are not diagnosed by this option,
and it may give an occasional false positive result, but in general it has been
found fairly effective at detecting this sort of problem in programs.

The standard is worded confusingly, therefore there is some debate over the
precise meaning of the sequence point rules in subtle cases. Links to discussions
of the problem, including proposed formal definitions, may be found on the GCC
readings page, at http://gcc.gnu.org/readings.html.

This warning is enabled by ‘-Wall’ for C and C++.

http://gcc.gnu.org/readings.html

Chapter 3: GCC Command Options 57

-Wreturn-type
Warn whenever a function is defined with a return-type that defaults to int.
Also warn about any return statement with no return-value in a function whose
return-type is not void (falling off the end of the function body is considered
returning without a value), and about a return statement with an expression
in a function whose return-type is void.

For C++, a function without return type always produces a diagnostic message,
even when ‘-Wno-return-type’ is specified. The only exceptions are ‘main’ and
functions defined in system headers.

This warning is enabled by ‘-Wall’.

-Wswitch Warn whenever a switch statement has an index of enumerated type and lacks
a case for one or more of the named codes of that enumeration. (The presence
of a default label prevents this warning.) case labels outside the enumeration
range also provoke warnings when this option is used (even if there is a default
label). This warning is enabled by ‘-Wall’.

-Wswitch-default
Warn whenever a switch statement does not have a default case.

-Wswitch-enum
Warn whenever a switch statement has an index of enumerated type and lacks
a case for one or more of the named codes of that enumeration. case labels
outside the enumeration range also provoke warnings when this option is used.
The only difference between ‘-Wswitch’ and this option is that this option gives
a warning about an omitted enumeration code even if there is a default label.

-Wsync-nand (C and C++ only)
Warn when __sync_fetch_and_nand and __sync_nand_and_fetch built-in

functions are used. These functions changed semantics in GCC 4.4.

-Wtrigraphs
Warn if any trigraphs are encountered that might change the meaning of the
program (trigraphs within comments are not warned about). This warning is
enabled by ‘-Wall’.

-Wunused-but-set-parameter
Warn whenever a function parameter is assigned to, but otherwise unused (aside
from its declaration).

To suppress this warning use the ‘unused’ attribute (see Section 6.36 [Variable
Attributes|, page 369).

This warning is also enabled by ‘-Wunused’ together with ‘~Wextra’.
-Wunused-but-set-variable

Warn whenever a local variable is assigned to, but otherwise unused (aside from
its declaration). This warning is enabled by ‘-Wall’.

To suppress this warning use the ‘unused’ attribute (see Section 6.36 [Variable
Attributes], page 369).

This warning is also enabled by ‘~Wunused’, which is enabled by ‘-Wall’.

58 Using the GNU Compiler Collection (GCC)

-Wunused-function
Warn whenever a static function is declared but not defined or a non-inline
static function is unused. This warning is enabled by ‘-Wall’.

-Wunused-label
Warn whenever a label is declared but not used. This warning is enabled by
‘~Wall’.
To suppress this warning use the ‘unused’ attribute (see Section 6.36 [Variable
Attributes|, page 369).

-Wunused-local-typedefs (C, Objective-C, C++ and Objective-C++ only)
Warn when a typedef locally defined in a function is not used.

-Wunused-parameter
Warn whenever a function parameter is unused aside from its declaration.

To suppress this warning use the ‘unused’ attribute (see Section 6.36 [Variable
Attributes], page 369).

-Wno-unused-result
Do not warn if a caller of a function marked with attribute warn_unused_
result (see Section 6.30 [Function Attributes|, page 336) does not use its return
value. The default is ‘-Wunused-result’.

-Wunused-variable
Warn whenever a local variable or non-constant static variable is unused aside
from its declaration. This warning is enabled by ‘-Wall’.

To suppress this warning use the ‘unused’ attribute (see Section 6.36 [Variable
Attributes|, page 369).

-Wunused-value
Warn whenever a statement computes a result that is explicitly not used. To
suppress this warning cast the unused expression to ‘void’. This includes an
expression-statement or the left-hand side of a comma expression that con-
tains no side effects. For example, an expression such as ‘x[i,j]’ will cause a
warning, while ‘x[(void)i,j]’ will not.

This warning is enabled by ‘-Wall’.

-Wunused All the above ‘~Wunused’ options combined.

In order to get a warning about an unused function parameter, you must either
specify ‘-Wextra -Wunused’ (note that ‘-Wall’ implies ‘-~Wunused’), or sepa-
rately specify ‘-Wunused-parameter’.

-Wuninitialized
Warn if an automatic variable is used without first being initialized or if a
variable may be clobbered by a setjmp call. In C++, warn if a non-static
reference or non-static ‘const’ member appears in a class without constructors.

If you want to warn about code that uses the uninitialized value of the variable
in its own initializer, use the ‘-Winit-self’ option.

These warnings occur for individual uninitialized or clobbered elements of struc-
ture, union or array variables as well as for variables that are uninitialized or

Chapter 3: GCC Command Options 59

clobbered as a whole. They do not occur for variables or elements declared
volatile. Because these warnings depend on optimization, the exact variables
or elements for which there are warnings will depend on the precise optimization
options and version of GCC used.

Note that there may be no warning about a variable that is used only to compute
a value that itself is never used, because such computations may be deleted by
data flow analysis before the warnings are printed.

-Wmaybe-uninitialized
For an automatic variable, if there exists a path from the function entry to
a use of the variable that is initialized, but there exist some other paths the
variable is not initialized, the compiler will emit a warning if it can not prove
the uninitialized paths do not happen at run time. These warnings are made
optional because GCC is not smart enough to see all the reasons why the code
might be correct despite appearing to have an error. Here is one example of
how this can happen:

{
int x;
switch (y)
{
case 1: x
break;
case 2: X
break;
case 3: X

}
foo (x);
}
If the value of y is always 1, 2 or 3, then x is always initialized, but GCC doesn’t
know this. To suppress the warning, the user needs to provide a default case
with assert(0) or similar code.

]
e

]
IS

]
]

This option also warns when a non-volatile automatic variable might be changed
by a call to longjmp. These warnings as well are possible only in optimizing
compilation.

The compiler sees only the calls to setjmp. It cannot know where longjmp will
be called; in fact, a signal handler could call it at any point in the code. As a
result, you may get a warning even when there is in fact no problem because
longjmp cannot in fact be called at the place that would cause a problem.

Some spurious warnings can be avoided if you declare all the functions you
use that never return as noreturn. See Section 6.30 [Function Attributes],
page 336.

This warning is enabled by ‘-Wall’ or ‘-Wextra’.

-Wunknown-pragmas
Warn when a #pragma directive is encountered that is not understood by GCC.
If this command-line option is used, warnings will even be issued for unknown
pragmas in system header files. This is not the case if the warnings were only
enabled by the ‘-Wall’ command-line option.

60 Using the GNU Compiler Collection (GCC)

-Wno-pragmas
Do not warn about misuses of pragmas, such as incorrect parameters, invalid
syntax, or conflicts between pragmas. See also ‘~Wunknown-pragmas’.

-Wstrict-aliasing
This option is only active when ‘~fstrict-aliasing’ is active. It warns about
code that might break the strict aliasing rules that the compiler is using for
optimization. The warning does not catch all cases, but does attempt to
catch the more common pitfalls. It is included in ‘-Wall’. It is equivalent
to ‘-Wstrict-aliasing=3’

-Wstrict-aliasing=n

This option is only active when ‘~fstrict-aliasing’ is active. It warns about
code that might break the strict aliasing rules that the compiler is using for
optimization. Higher levels correspond to higher accuracy (fewer false posi-
tives). Higher levels also correspond to more effort, similar to the way -O works.
‘-Wstrict-aliasing’ is equivalent to ‘-Wstrict-aliasing=n’, with n=3.
Level 1: Most aggressive, quick, least accurate. Possibly useful when higher
levels do not warn but -fstrict-aliasing still breaks the code, as it has very few
false negatives. However, it has many false positives. Warns for all pointer
conversions between possibly incompatible types, even if never dereferenced.
Runs in the front end only.

Level 2: Aggressive, quick, not too precise. May still have many false positives
(not as many as level 1 though), and few false negatives (but possibly more
than level 1). Unlike level 1, it only warns when an address is taken. Warns
about incomplete types. Runs in the front end only.

Level 3 (default for ‘-Wstrict-aliasing’): Should have very few false positives
and few false negatives. Slightly slower than levels 1 or 2 when optimization
is enabled. Takes care of the common pun+dereference pattern in the front
end: *(int*)&some_float. If optimization is enabled, it also runs in the back
end, where it deals with multiple statement cases using flow-sensitive points-to
information. Only warns when the converted pointer is dereferenced. Does not
warn about incomplete types.

-Wstrict-overflow

-Wstrict-overflow=n
This option is only active when ‘~fstrict-overflow’ is active. It warns about
cases where the compiler optimizes based on the assumption that signed over-
flow does not occur. Note that it does not warn about all cases where the code
might overflow: it only warns about cases where the compiler implements some
optimization. Thus this warning depends on the optimization level.

An optimization that assumes that signed overflow does not occur is perfectly
safe if the values of the variables involved are such that overflow never does, in
fact, occur. Therefore this warning can easily give a false positive: a warning
about code that is not actually a problem. To help focus on important issues,
several warning levels are defined. No warnings are issued for the use of unde-
fined signed overflow when estimating how many iterations a loop will require,
in particular when determining whether a loop will be executed at all.

Chapter 3: GCC Command Options 61

-Wstrict-overflow=1
Warn about cases that are both questionable and easy to avoid. For
example: x + 1 > x; with ‘~fstrict-overflow’, the compiler will
simplify this to 1. This level of ‘~-Wstrict-overflow’ is enabled by
‘~Wall’; higher levels are not, and must be explicitly requested.

-Wstrict-overflow=2
Also warn about other cases where a comparison is simplified to
a constant. For example: abs (x) >= 0. This can only be simpli-
fied when ‘~fstrict-overflow’ is in effect, because abs (INT_MIN)
overflows to INT_MIN, which is less than zero. ‘~Wstrict-overflow’
(with no level) is the same as ‘-Wstrict-overflow=2".

-Wstrict-overflow=3
Also warn about other cases where a comparison is simplified. For
example: x + 1 > 1 will be simplified to x > 0.

-Wstrict-overflow=4
Also warn about other simplifications not covered by the above
cases. For example: (x * 10) / 5 will be simplified to x * 2.

-Wstrict-overflow=5
Also warn about cases where the compiler reduces the magnitude of
a constant involved in a comparison. For example: x + 2 > y will
be simplified to x + 1 >=y. This is reported only at the highest
warning level because this simplification applies to many compar-
isons, so this warning level will give a very large number of false
positives.

-Wsuggest-attribute=|pure|const|noreturn]
Warn for cases where adding an attribute may be beneficial. The attributes
currently supported are listed below.

-Wsuggest-attribute=pure

-Wsuggest-attribute=const

-Wsuggest-attribute=noreturn
Warn about functions that might be candidates for attributes pure,
const or noreturn. The compiler only warns for functions visible
in other compilation units or (in the case of pure and const) if
it cannot prove that the function returns normally. A function
returns normally if it doesn’t contain an infinite loop nor returns
abnormally by throwing, calling abort () or trapping. This analysis
requires option ‘-fipa-pure-const’, which is enabled by default at
‘-0’ and higher. Higher optimization levels improve the accuracy
of the analysis.

-Warray-bounds
This option is only active when ‘-ftree-vrp’ is active (default for ‘-02’ and
above). It warns about subscripts to arrays that are always out of bounds. This
warning is enabled by ‘-Wall’.

62 Using the GNU Compiler Collection (GCC)

-Wno-div-by-zero
Do not warn about compile-time integer division by zero. Floating-point divi-
sion by zero is not warned about, as it can be a legitimate way of obtaining
infinities and NaNs.

-Wsystem-headers

Print warning messages for constructs found in system header files. Warnings
from system headers are normally suppressed, on the assumption that they
usually do not indicate real problems and would only make the compiler output
harder to read. Using this command-line option tells GCC to emit warnings
from system headers as if they occurred in user code. However, note that using
‘-Wall’ in conjunction with this option will not warn about unknown pragmas
in system headers—for that, ‘~Wunknown-pragmas’ must also be used.

-Wtrampolines
Warn about trampolines generated for pointers to nested functions.

A trampoline is a small piece of data or code that is created at run time on
the stack when the address of a nested function is taken, and is used to call
the nested function indirectly. For some targets, it is made up of data only and
thus requires no special treatment. But, for most targets, it is made up of code
and thus requires the stack to be made executable in order for the program to
work properly.

-Wfloat-equal
Warn if floating-point values are used in equality comparisons.

The idea behind this is that sometimes it is convenient (for the programmer)
to consider floating-point values as approximations to infinitely precise real
numbers. If you are doing this, then you need to compute (by analyzing the
code, or in some other way) the maximum or likely maximum error that the
computation introduces, and allow for it when performing comparisons (and
when producing output, but that’s a different problem). In particular, instead
of testing for equality, you would check to see whether the two values have
ranges that overlap; and this is done with the relational operators, so equality
comparisons are probably mistaken.

-Wtraditional (C and Objective-C only)
Warn about certain constructs that behave differently in traditional and ISO
C. Also warn about ISO C constructs that have no traditional C equivalent,
and/or problematic constructs that should be avoided.

e Macro parameters that appear within string literals in the macro body. In
traditional C macro replacement takes place within string literals, but does

not in ISO C.

e In traditional C, some preprocessor directives did not exist. Traditional
preprocessors would only consider a line to be a directive if the ‘#’ appeared
in column 1 on the line. Therefore ‘~Wtraditional’ warns about directives
that traditional C understands but would ignore because the ‘#" does not
appear as the first character on the line. It also suggests you hide directives
like ‘#pragma’ not understood by traditional C by indenting them. Some

Chapter 3: GCC Command Options 63

traditional implementations would not recognize ‘#elif’, so it suggests
avoiding it altogether.

e A function-like macro that appears without arguments.
e The unary plus operator.

e The ‘U’ integer constant suffix, or the ‘F’ or ‘L’ floating-point constant
suffixes. (Traditional C does support the ‘L’ suffix on integer constants.)
Note, these suffixes appear in macros defined in the system headers of most
modern systems, e.g. the ‘_MIN’/‘_MAX’ macros in <limits.h>. Use of these
macros in user code might normally lead to spurious warnings, however
GCC’s integrated preprocessor has enough context to avoid warning in
these cases.

e A function declared external in one block and then used after the end of
the block.

e A switch statement has an operand of type long.

e A non-static function declaration follows a static one. This construct
is not accepted by some traditional C compilers.

e The ISO type of an integer constant has a different width or signedness
from its traditional type. This warning is only issued if the base of the
constant is ten. I.e. hexadecimal or octal values, which typically represent
bit patterns, are not warned about.

e Usage of ISO string concatenation is detected.
e Initialization of automatic aggregates.

e Identifier conflicts with labels. Traditional C lacks a separate namespace
for labels.

e Initialization of unions. If the initializer is zero, the warning is omitted.
This is done under the assumption that the zero initializer in user code
appears conditioned on e.g. __STDC__ to avoid missing initializer warnings
and relies on default initialization to zero in the traditional C case.

e Conversions by prototypes between fixed/floating-point values and vice
versa. The absence of these prototypes when compiling with traditional C
would cause serious problems. This is a subset of the possible conversion
warnings, for the full set use ‘-Wtraditional-conversion’.

e Use of ISO C style function definitions. This warning intentionally is not
issued for prototype declarations or variadic functions because these ISO
C features will appear in your code when using libiberty’s traditional C
compatibility macros, PARAMS and VPARAMS. This warning is also bypassed
for nested functions because that feature is already a GCC extension and
thus not relevant to traditional C compatibility.

-Wtraditional-conversion (C and Objective-C only)
Warn if a prototype causes a type conversion that is different from what would
happen to the same argument in the absence of a prototype. This includes
conversions of fixed point to floating and vice versa, and conversions changing
the width or signedness of a fixed-point argument except when the same as the
default promotion.

64

Using the GNU Compiler Collection (GCC)

-Wdeclaration-after-statement (C and Objective-C only)

-Wundef

Warn when a declaration is found after a statement in a block. This construct,
known from C++, was introduced with ISO C99 and is by default allowed in
GCC. It is not supported by ISO C90 and was not supported by GCC versions
before GCC 3.0. See Section 6.29 [Mixed Declarations], page 336.

Warn if an undefined identifier is evaluated in an ‘#if’ directive.

-Wno-endif-labels

-Wshadow

Do not warn whenever an ‘#else’ or an ‘#endif’ are followed by text.

Warn whenever a local variable or type declaration shadows another variable,
parameter, type, or class member (in C++), or whenever a built-in function is
shadowed. Note that in C++, the compiler will not warn if a local variable
shadows a struct/class/enum, but will warn if it shadows an explicit typedef.

-Wlarger-than=Ien

Warn whenever an object of larger than len bytes is defined.

-Wframe-larger-than=Ien

Warn if the size of a function frame is larger than len bytes. The computation
done to determine the stack frame size is approximate and not conservative.
The actual requirements may be somewhat greater than len even if you do not
get a warning. In addition, any space allocated via alloca, variable-length
arrays, or related constructs is not included by the compiler when determining
whether or not to issue a warning.

-Wno-free-nonheap-object

Do not warn when attempting to free an object that was not allocated on the
heap.

-Wstack-usage=len

Warn if the stack usage of a function might be larger than len bytes. The
computation done to determine the stack usage is conservative. Any space
allocated via alloca, variable-length arrays, or related constructs is included
by the compiler when determining whether or not to issue a warning.

The message is in keeping with the output of ‘~fstack-usage’.
e If the stack usage is fully static but exceeds the specified amount, it’s:
warning: stack usage is 1120 bytes
e If the stack usage is (partly) dynamic but bounded, it’s:
warning: stack usage might be 1648 bytes
e If the stack usage is (partly) dynamic and not bounded, it’s:

warning: stack usage might be unbounded

-Wunsafe-loop-optimizations

Warn if the loop cannot be optimized because the compiler could
not assume anything on the bounds of the loop indices. With
‘~funsafe-loop-optimizations’ warn if the compiler made such
assumptions.

Chapter 3: GCC Command Options 65

-Wno-pedantic-ms-format (MinGW targets only)
Disables the warnings about non-ISO printf / scanf format width specifiers
132, 164, and I used on Windows targets depending on the MS runtime, when
you are using the options ‘-Wformat’ and ‘-pedantic’ without gnu-extensions.

-Wpointer-arith
Warn about anything that depends on the “size of” a function type or of void.
GNU C assigns these types a size of 1, for convenience in calculations with void
* pointers and pointers to functions. In C++, warn also when an arithmetic
operation involves NULL. This warning is also enabled by ‘-pedantic’.

-Wtype-limits
Warn if a comparison is always true or always false due to the limited range of
the data type, but do not warn for constant expressions. For example, warn if
an unsigned variable is compared against zero with ‘<’ or ‘>=". This warning is
also enabled by ‘-Wextra’.

-Wbad-function-cast (C and Objective-C only)
Warn whenever a function call is cast to a non-matching type. For example,
warn if int malloc() is cast to anything *.

-We++-compat (C and Objective-C only)
Warn about ISO C constructs that are outside of the common subset of ISO C
and ISO C++, e.g. request for implicit conversion from void * to a pointer to
non-void type.

-We++11-compat (C++ and Objective-C++ only)
Warn about C++ constructs whose meaning differs between ISO C++ 1998 and
ISO C++ 2011, e.g., identifiers in ISO C++ 1998 that are keywords in ISO C++
2011. This warning turns on ‘-Wnarrowing’ and is enabled by ‘-Wall’.

-Wcast-qual
Warn whenever a pointer is cast so as to remove a type qualifier from the target
type. For example, warn if a const char * is cast to an ordinary char *.

Also warn when making a cast that introduces a type qualifier in an unsafe way.
For example, casting char ** to const char *x is unsafe, as in this example:

/* p is char ** value. */
const char **q = (const char *x) p;
/* Assignment of readonly string to const char * is 0K. */

*q = "string";
/* Now charx* pointer points to read-only memory. */
*¥p = ’b’;

-Wcast-align
Warn whenever a pointer is cast such that the required alignment of the target
is increased. For example, warn if a char * is cast to an int * on machines
where integers can only be accessed at two- or four-byte boundaries.

-Wwrite-strings
When compiling C, give string constants the type const char[length] so that
copying the address of one into a non-const char * pointer will get a warning.
These warnings will help you find at compile time code that can try to write

66 Using the GNU Compiler Collection (GCC)

into a string constant, but only if you have been very careful about using const
in declarations and prototypes. Otherwise, it will just be a nuisance. This is
why we did not make ‘-Wall’ request these warnings.

When compiling C++, warn about the deprecated conversion from string literals
to char *. This warning is enabled by default for C++ programs.

-Wclobbered
Warn for variables that might be changed by ‘longjmp’ or ‘vfork’. This warning
is also enabled by ‘-Wextra’.

-Wconversion

Warn for implicit conversions that may alter a value. This includes conversions
between real and integer, like abs (x) when x is double; conversions between
signed and unsigned, like unsigned ui = -1; and conversions to smaller types,
like sqrtf (M_PI). Do not warn for explicit casts like abs ((int) x) and ui
= (unsigned) -1, or if the value is not changed by the conversion like in abs
(2.0). Warnings about conversions between signed and unsigned integers can
be disabled by using ‘~Wno-sign-conversion’.

For C++, also warn for confusing overload resolution for user-defined conver-
sions; and conversions that will never use a type conversion operator: conver-
sions to void, the same type, a base class or a reference to them. Warnings
about conversions between signed and unsigned integers are disabled by default
in C++ unless ‘-Wsign-conversion’ is explicitly enabled.

-Wno-conversion-null (C++ and Objective-C++ only)
Do not warn for conversions between NULL and non-pointer types.
‘~Wconversion-null’ is enabled by default.

-Wzero-as-null-pointer-constant (C++ and Objective-C++ only)
Warn when a literal ’0’ is used as null pointer constant. This can be useful to
facilitate the conversion to nullptr in C++11.

-Wempty-body
Warn if an empty body occurs in an ‘if’, ‘else’ or ‘do while’ statement. This
warning is also enabled by ‘-Wextra’.

-Wenum-compare
Warn about a comparison between values of different enumerated types. In
C++ enumeral mismatches in conditional expressions are also diagnosed and
the warning is enabled by default. In C this warning is enabled by ‘~-Wall’.

-Wjump-misses-init (C, Objective-C only)
Warn if a goto statement or a switch statement jumps forward across the
initialization of a variable, or jumps backward to a label after the variable has
been initialized. This only warns about variables that are initialized when they
are declared. This warning is only supported for C and Objective-C; in C++
this sort of branch is an error in any case.

‘~Wjump-misses-init’ is included in ‘-Wc++-compat’. It can be disabled with
the ‘-Wno-jump-misses-init’ option.

Chapter 3: GCC Command Options 67

-Wsign-compare
Warn when a comparison between signed and unsigned values could produce an
incorrect result when the signed value is converted to unsigned. This warning
is also enabled by ‘-Wextra’; to get the other warnings of ‘-Wextra’ without
this warning, use ‘-Wextra -Wno-sign-compare’.

-Wsign-conversion
Warn for implicit conversions that may change the sign of an integer value, like
assigning a signed integer expression to an unsigned integer variable. An explicit
cast silences the warning. In C, this option is enabled also by ‘-Wconversion’.

-Waddress

Warn about suspicious uses of memory addresses. These include using the
address of a function in a conditional expression, such as void func(void);
if (func), and comparisons against the memory address of a string literal,
such as if (x == "abc"). Such uses typically indicate a programmer error: the
address of a function always evaluates to true, so their use in a conditional
usually indicate that the programmer forgot the parentheses in a function call;
and comparisons against string literals result in unspecified behavior and are
not portable in C, so they usually indicate that the programmer intended to
use strcmp. This warning is enabled by ‘-Wall’.

-Wlogical-op
Warn about suspicious uses of logical operators in expressions. This includes
using logical operators in contexts where a bit-wise operator is likely to be
expected.

-Waggregate-return
Warn if any functions that return structures or unions are defined or called. (In
languages where you can return an array, this also elicits a warning.)

-Wno-attributes
Do not warn if an unexpected __attribute__ is used, such as unrecognized
attributes, function attributes applied to variables, etc. This will not stop
errors for incorrect use of supported attributes.

-Wno-builtin-macro-redefined
Do not warn if certain built-in macros are redefined. This suppresses warn-
ings for redefinition of __TIMESTAMP _TIME__, __DATE__, __FILE and
__BASE_FILE__.

- - ——

-Wstrict-prototypes (C and Objective-C only)
Warn if a function is declared or defined without specifying the argument types.
(An old-style function definition is permitted without a warning if preceded by
a declaration that specifies the argument types.)

-Wold-style-declaration (C and Objective-C only)
Warn for obsolescent usages, according to the C Standard, in a declaration. For
example, warn if storage-class specifiers like static are not the first things in
a declaration. This warning is also enabled by ‘-Wextra’.

68 Using the GNU Compiler Collection (GCC)

-Wold-style-definition (C and Objective-C only)
Warn if an old-style function definition is used. A warning is given even if there
is a previous prototype.

-Wmissing-parameter-type (C and Objective-C only)
A function parameter is declared without a type specifier in K&R-style func-
tions:

void foo(bar) { }

This warning is also enabled by ‘-Wextra’.

-Wmissing-prototypes (C and Objective-C only)
Warn if a global function is defined without a previous prototype declaration.
This warning is issued even if the definition itself provides a prototype. The
aim is to detect global functions that are not declared in header files.

-Wmissing-declarations
Warn if a global function is defined without a previous declaration. Do so even
if the definition itself provides a prototype. Use this option to detect global
functions that are not declared in header files. In C++, no warnings are issued
for function templates, or for inline functions, or for functions in anonymous
namespaces.

-Wmissing-field-initializers

Warn if a structure’s initializer has some fields missing. For example, the fol-
lowing code would cause such a warning, because x.h is implicitly zero:

struct s { int £, g, h; };

struct s x = { 3, 4 };
This option does not warn about designated initializers, so the following mod-
ification would not trigger a warning:

struct s { int £, g, h; };

struct s x = { .f =3, .g=4};
This warning is included in ‘~Wextra’. To get other ‘~Wextra’ warnings without
this one, use ‘-Wextra -Wno-missing-field-initializers’.

-Wmissing-format-attribute

Warn about function pointers that might be candidates for format attributes.
Note these are only possible candidates, not absolute ones. GCC will guess that
function pointers with format attributes that are used in assignment, initial-
ization, parameter passing or return statements should have a corresponding
format attribute in the resulting type. lL.e. the left-hand side of the assignment
or initialization, the type of the parameter variable, or the return type of the
containing function respectively should also have a format attribute to avoid
the warning.

GCC will also warn about function definitions that might be candidates for
format attributes. Again, these are only possible candidates. GCC will guess
that format attributes might be appropriate for any function that calls a func-
tion like vprintf or vscanf, but this might not always be the case, and some
functions for which format attributes are appropriate may not be detected.

Chapter 3: GCC Command Options 69

-Wno-multichar
Do not warn if a multicharacter constant (‘’FO0F’’) is used. Usually they
indicate a typo in the user’s code, as they have implementation-defined values,
and should not be used in portable code.

-Wnormalized=<none|id|nfc|nfkc>

In ISO C and ISO C++, two identifiers are different if they are different sequences
of characters. However, sometimes when characters outside the basic ASCII
character set are used, you can have two different character sequences that
look the same. To avoid confusion, the ISO 10646 standard sets out some
normalization rules which when applied ensure that two sequences that look the
same are turned into the same sequence. GCC can warn you if you are using
identifiers that have not been normalized; this option controls that warning.

There are four levels of warning supported by GCC. The default is
‘-Wnormalized=nfc’, which warns about any identifier that is not in the ISO
10646 “C” normalized form, NFC. NFC is the recommended form for most
uses.

Unfortunately, there are some characters allowed in identifiers by ISO C and
ISO C++ that, when turned into NFC, are not allowed in identifiers. That is,
there’s no way to use these symbols in portable ISO C or C++ and have all
your identifiers in NFC. ‘-Wnormalized=id’ suppresses the warning for these
characters. It is hoped that future versions of the standards involved will correct
this, which is why this option is not the default.

You can switch the warning off for all characters by writing
‘~Wnormalized=none’. You would only want to do this if you were
using some other normalization scheme (like “D”), because otherwise you can
easily create bugs that are literally impossible to see.

Some characters in ISO 10646 have distinct meanings but look identical in some
fonts or display methodologies, especially once formatting has been applied. For
instance \u207F, “SUPERSCRIPT LATIN SMALL LETTER N”, will display
just like a regular n that has been placed in a superscript. ISO 10646 defines the
NFKC normalization scheme to convert all these into a standard form as well,
and GCC will warn if your code is not in NFKC if you use ‘~-Wnormalized=nfkc’.
This warning is comparable to warning about every identifier that contains the
letter O because it might be confused with the digit 0, and so is not the default,
but may be useful as a local coding convention if the programming environment
is unable to be fixed to display these characters distinctly.

-Wno-deprecated
Do not warn about usage of deprecated features. See Section 7.11 [Deprecated
Features|, page 637.

-Wno-deprecated-declarations
Do not warn about uses of functions (see Section 6.30 [Function Attributes],
page 336), variables (see Section 6.36 [Variable Attributes|, page 369), and types
(see Section 6.37 [Type Attributes|, page 378) marked as deprecated by using
the deprecated attribute.

70

Using the GNU Compiler Collection (GCC)

-Wno-overflow

Do not warn about compile-time overflow in constant expressions.

-Woverride-init (C and Objective-C only)

-Wpacked

Warn if an initialized field without side effects is overridden when using desig-
nated initializers (see Section 6.26 [Designated Initializers|, page 333).

This warning is included in ‘-Wextra’. To get other ‘~Wextra’ warnings without
this one, use ‘-Wextra -Wno-override-init’.

Warn if a structure is given the packed attribute, but the packed attribute has
no effect on the layout or size of the structure. Such structures may be mis-
aligned for little benefit. For instance, in this code, the variable f.x in struct
bar will be misaligned even though struct bar does not itself have the packed
attribute:

struct foo {

int x;

char a, b, c, d;
} __attribute__((packed));
struct bar {

char z;

struct foo f;

};

-Wpacked-bitfield-compat

-Wpadded

The 4.1, 4.2 and 4.3 series of GCC ignore the packed attribute on bit-fields
of type char. This has been fixed in GCC 4.4 but the change can lead to
differences in the structure layout. GCC informs you when the offset of such a
field has changed in GCC 4.4. For example there is no longer a 4-bit padding
between field a and b in this structure:

struct foo
{

char a:4;
char b:8;
} __attribute__ ((packed));
This warning is enabled by default. Use ‘-Wno-packed-bitfield-compat’ to
disable this warning.

Warn if padding is included in a structure, either to align an element of the
structure or to align the whole structure. Sometimes when this happens it is
possible to rearrange the fields of the structure to reduce the padding and so
make the structure smaller.

-Wredundant-decls

Warn if anything is declared more than once in the same scope, even in cases
where multiple declaration is valid and changes nothing.

-Wnested-externs (C and Objective-C only)

-Winline

Warn if an extern declaration is encountered within a function.

Warn if a function can not be inlined and it was declared as inline. Even with
this option, the compiler will not warn about failures to inline functions declared
in system headers.

Chapter 3: GCC Command Options 71

The compiler uses a variety of heuristics to determine whether or not to inline a
function. For example, the compiler takes into account the size of the function
being inlined and the amount of inlining that has already been done in the cur-
rent function. Therefore, seemingly insignificant changes in the source program
can cause the warnings produced by ‘~Winline’ to appear or disappear.

-Wno-invalid-offsetof (C++ and Objective-C++ only)

Suppress warnings from applying the ‘offsetof’ macro to a non-POD type.
According to the 1998 ISO C++ standard, applying ‘offsetof’ to a non-POD
type is undefined. In existing C++ implementations, however, ‘offsetof’ typi-
cally gives meaningful results even when applied to certain kinds of non-POD
types. (Such as a simple ‘struct’ that fails to be a POD type only by virtue of
having a constructor.) This flag is for users who are aware that they are writ-
ing nonportable code and who have deliberately chosen to ignore the warning
about it.

The restrictions on ‘offsetof’ may be relaxed in a future version of the C++
standard.

-Wno-int-to-pointer-cast
Suppress warnings from casts to pointer type of an integer of a different
size. In C++, casting to a pointer type of smaller size is an error.
‘Wint-to-pointer-cast’ is enabled by default.

-Wno-pointer-to-int-cast (C and Objective-C only)
Suppress warnings from casts from a pointer to an integer type of a different
size.

-Winvalid-pch
Warn if a precompiled header (see Section 3.20 [Precompiled Headers],
page 299) is found in the search path but can’t be used.

-Wlong-long
Warn if ‘long long’ type is used. This is enabled by either ‘-pedantic’ or
‘~Wtraditional’ in ISO C90 and C++98 modes. To inhibit the warning mes-
sages, use ‘~Wno-long-long’.

3

-Wvariadic-macros
Warn if variadic macros are used in pedantic ISO C90 mode, or the GNU
alternate syntax when in pedantic ISO C99 mode. This is default. To inhibit
the warning messages, use ‘~Wno-variadic-macros’.

-Wvector-operation-performance

Warn if vector operation is not implemented via SIMD capabilities of the ar-
chitecture. Mainly useful for the performance tuning. Vector operation can be
implemented piecewise, which means that the scalar operation is performed
on every vector element; in parallel, which means that the vector operation
is implemented using scalars of wider type, which normally is more performance
efficient; and