The GNU C Library Reference Manual

The GNU C Library

Reference Manual

Sandra Loosemore
with
Richard M. Stallman, Roland McGrath, Andrew Oram, and Ulrich Drepper

for version 2.18-2013.10

(crosstool-NG linaro-1.13.1-4.8-2013.10 - Linaro GCC 2013.10)

This file documents the GNU C Library.

This is The GNU C Library Reference Manual, for version 2.18-2013.10 (crosstool-NG
linaro-1.13.1-4.8-2013.10 - Linaro GCC 2013.10).

Copyright (©) 1993-2013 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.3 or any later version published by the
Free Software Foundation; with the Invariant Sections being “Free Software Needs Free
Documentation” and “GNU Lesser General Public License”, the Front-Cover texts being
“A GNU Manual”, and with the Back-Cover Texts as in (a) below. A copy of the license is
included in the section entitled "GNU Free Documentation License".

(a) The FSF’s Back-Cover Text is: “You have the freedom to copy and modify this GNU
manual. Buying copies from the FSF supports it in developing GNU and promoting software
freedom.”

Short Contents

O 0 J O O = W N

> W W W W W YNNI NN NN e = = e =
= W N R O © 00~ O UL i W N+~ O O© 0 O O i Wi+~ O

Introduction e 1
Error Reporting o 13
Virtual Memory Allocation And Paging 30
Character Handling 65
String and Array Utilities. L. 73
Character Set Handling 109
Locales and Internationalization 150
Message Translation 168
Searching and Sorting. 192
Pattern Matching 202
Input/Output Overview, 222
Input/Output on Streamscooveienennenenan.. 227
Low-Level Input/Output oo, 296
File System Interface 343
Pipesand FIFOs. i 384
SOCKETS .« vt 389
Low-Level Terminal Interface............. 434
SYSlOg e 460
Mathematics 467
Arithmetic Functions i L. 510
Dateand Time i 541
Resource Usage And Limitation........................ 574
Non-Local Exits 594
Signal Handling. 603
The Basic Program/System Interface 647
Processeso 690
Job Control. 701
System Databases and Name Service Switch.............. 720
Users and Groups ovviiii i 729
System Management. 756
System Configuration Parameters 772
DES Encryption and Password Handling 792
Debugging support e 799
POSIX Threads.o v it 801

C Language Facilities in the Library 802

B Summary of Library Facilities 817
C Installing the GNU C Library 920
D Library Maintenance. 928
E Platform-specific facilities. o i L 935
F Contributors to the GNU C Library 937
G Free Software Needs Free Documentation................ 941
H GNU Lesser General Public License 943
I GNU Free Documentation License. 952
Concept Index 960
TypeIndex oo 970
Function and MacroIndex. 972
Variable and Constant Macro Index 984

Program and File Index o o i L 994

11

Table of Contents

1 Introduction................, 1
1.1 Getting Started 1
1.2 Standards and Portability i 1

1.2.1 IS0 O 2
1.2.2 POSIX (The Portable Operating System Interface) 2
1.2.3 Berkeley Unix.o i 2
1.2.4 SVID (The System V Interface Description) 3
1.2.5 XPG (The X/Open Portability Guide)..................... 3
1.3 Using the Library ... et 3
1.3.1 Header Files.o 3
1.3.2 Macro Definitions of Functions 5
1.3.3 Reserved Names........coiutiiiiiiiiii i 5
1.3.4 Feature Test Macros.ccoovviiiiiiiiiiiiiiiiiea... 7
1.4 Roadmap tothe Manual iiiiiiinn.. 10

2 Error Reporting 13
2.1 Checking for Errors 13
2.2 BError Codes. e 14
2.3 Error MeSsages.vvut ittt e 24

3 Virtual Memory Allocation And Paging..... 30
3.1 Process Memory Concepts.ovurieeiiiieniinenannn.ns 30
3.2 Allocating Storage For Program Data 31

3.2.1 Memory Allocation in C Programs........................ 32
3.2.1.1 Dynamic Memory Allocation 32
3.2.2 Unconstrained Allocation.............. ..., 33
3.2.2.1 Basic Memory Allocation............................ 33
3.2.2.2 Examples of malloc........cooiiuiiiiiiiiiiiiann. 33
3.2.2.3 Freeing Memory Allocated with malloc.............. 34
3.2.2.4 Changing the Size of a Block 35
3.2.2.5 Allocating Cleared Spacec.cccviiio. ... 36
3.2.2.6 Efficiency Considerations for malloc................. 36
3.2.2.7 Allocating Aligned Memory Blocks 36
3.2.2.8 Malloc Tunable Parameters.......................... 37
3.2.2.9 Heap Consistency Checking.......................... 38
3.2.2.10 Memory Allocation Hooks.......................... 40
3.2.2.11 Statistics for Memory Allocation with malloc....... 42
3.2.2.12 Summary of malloc-Related Functions 43
3.2.3 Allocation Debugging i 44
3.2.3.1 How to install the tracing functionality 44
3.2.3.2 Example program exXcerptscoeeeeeeeeiiannn. 45

3.2.3.3 Some more or less cleverideas 45

3.2.3.4 Interpreting the traces..............., 46

3.2.4 Obstacks.o 48
3.2.4.1 Creating Obstacks..........cooiiiiiiiiiiiiii ... 48
3.2.4.2 Preparing for Using Obstacks........................ 48
3.2.4.3 Allocation in an Obstack 49
3.2.4.4 Freeing Objects in an Obstack....................... 50
3.2.4.5 Obstack Functions and Macros 51
3.2.4.6 Growing Objectscoiiiiiiii i 51
3.2.4.7 Extra Fast Growing Objects................., 53
3.2.4.8 Status of an Obstackl 54
3.2.4.9 Alignment of Data in Obstacks...................... 55
3.2.4.10 Obstack Chunks.......... ... i, 55
3.2.4.11 Summary of Obstack Functions..................... 56

3.2.5 Automatic Storage with Variable Size..................... 58
3.25.1 allocaExample.............ciiiiiiiiii 58
3.2.5.2 Advantages of allocacvviiiiiiiiiii . 58
3.2.5.3 Disadvantages of allocac.oviuiiiiiiiea.... 59
3.2.5.4 GNU C Variable-Size Arrays..................ooo... 59

3.3 Resizing the Data Segment............. o it 60
3.4 Locking Pages 60
3.41 Why Lock Pages ... i 61
3.4.2 Locked Memory Detailst 61
3.4.3 Functions To Lock And Unlock Pages 62
Character Handling 65
4.1 Classification of Characters................ 65
4.2 Case CONVEISIONttt e 67
4.3 Character class determination for wide characters.............. 67
4.4 Notes on using the wide character classes...................... 71
4.5 Mapping of wide characters.............. i 71
String and Array Utilities 73
5.1 Representation of Strings...............ciiiiiiiiiiiii., 73
5.2 String and Array Conventions...............cooeiiiiiinian.. e
5.3 String Length. ... i 75
5.4 Copying and Concatenation.................ooiiiiiiiiaa.. 7
5.5 String/Array CompariSonc.oeuuiuiiiiiiiiniiiiiina.. 86
5.6 Collation Functions, 90
5.7 Search Functions.......... i 94
5.7.1 Compatibility String Search Functions.................... 98
5.8 Finding Tokens in a String............ 98
5.9 SUI Ty . 102
5.10 Trivial Encryption...... ... oo i i 102
5.11 Encode Binary Data..............oooiiiiii i 103
5.12 Argz and Envz Vectors....... ... i 105
512.1 Argz Functionso, 105

5.12.2 Envz Functionso .. 107

iv

6 Character Set Handling 109

6.1 Introduction to Extended Characters......................... 109
6.2 Overview about Character Handling Functions 113
6.3 Restartable Multibyte Conversion Functions.................. 113
6.3.1 Selecting the conversion and its properties............... 113
6.3.2 Representing the state of the conversion................. 114
6.3.3 Converting Single Characters............................ 115
6.3.4 Converting Multibyte and Wide Character Strings....... 121
6.3.5 A Complete Multibyte Conversion Example 124
6.4 Non-reentrant Conversion Function........................... 125
6.4.1 Non-reentrant Conversion of Single Characters........... 126
6.4.2 Non-reentrant Conversion of Strings..................... 127
6.4.3 States in Non-reentrant Functions....................... 128
6.5 Generic Charset Conversion...............coviiiiieiieean... 129
6.5.1 Generic Character Set Conversion Interface.............. 130
6.5.2 A complete iconv example............ ...l 133
6.5.3 Some Details about other iconv Implementations........ 135
6.5.4 The iconv Implementation in the GNU C Library....... 136
6.5.4.1 Format of gconv-modules files 137
6.5.4.2 Finding the conversion path in iconv............... 138
6.5.4.3 iconv module data structures...................... 139
6.5.4.4 iconv module interfaces................. 142

7 Locales and Internationalization............ 150
7.1 What Effects a Locale Has........... ... it 150
7.2 Choosing a Locale i 151
7.3 Categories of Activities that Locales Affect................... 151
7.4 How Programs Set the Locale................................ 152
7.5 Standard Locales oo i 154
7.6 Accessing Locale Information 154
7.6.1 localeconv: It is portable but 155
7.6.1.1 Generic Numeric Formatting Parameters............ 155
7.6.1.2 Printing the Currency Symbol...................... 156
7.6.1.3 Printing the Sign of a Monetary Amount 157

7.6.2 Pinpoint Access to Locale Data 158
7.7 A dedicated function to format numbers.............., 164
7.8 Yes-or-No QUestionsoouuiiiiii i 167
8 Message Translation......................... 168
8.1 X/Open Message Catalog Handling 168
8.1.1 The catgets function family, 168
8.1.2 Format of the message catalog files...................... 171
8.1.3 Generate Message Catalogs files............... 173
8.1.4 How to use the catgets interface........................ 174
8.1.4.1 Not using symbolic names.......................... 174
8.1.4.2 Using symbolic names................coooiiiiean.. 175

8.1.4.3 How does to this allow to develop 176

8.2 The Uniforum approach to Message Translation 177

8.2.1 The gettext family of functions......................... 177
8.2.1.1 What has to be done to translate a message? 177
8.2.1.2 How to determine which catalog to be used......... 179
8.2.1.3 Additional functions for more complicated situations

.. 181

8.2.1.4 How to specify the output character set gettext uses
.. 186
8.2.1.5 How to use gettext in GUI programs.............. 186
8.2.1.6 User influence on gettext................c.oooa... 188
8.2.2 Programs to handle message catalogs for gettext 191
9 Searching and Sorting 192
9.1 Defining the Comparison Function 192
9.2 Array Search Function............ 192
9.3 Array Sort Function 193
9.4 Searching and Sorting Example 194
9.5 The hsearch function., 196
9.6 The tsearch function., 199
10 Pattern Matching........................... 202
10.1 Wildcard Matchingc o i i 202
10.2 Globbing . ..o 203

10.2.1 Calling glob ...t 203

10.2.2 Flags for Globbing 207

10.2.3 More Flags for Globbing, 208

10.3 Regular Expression Matching, 210

10.3.1 POSIX Regular Expression Compilation................ 210

10.3.2 Flags for POSIX Regular Expressions 212

10.3.3 Matching a Compiled POSIX Regular Expression....... 212

10.3.4 Match Results with Subexpressions..................... 213

10.3.5 Complications in Subexpression Matching 214

10.3.6 POSIX Regexp Matching Cleanup...................... 215

10.4 Shell-Style Word Expansion..................ooiiiiii., 215

10.4.1 The Stages of Word Expansion......................... 216

10.4.2 Calling Wordexpvventt i 216

10.4.3 Flags for Word Expansion......................ooia.. 217

10.4.4 wordexp Example........ i 218

10.4.5 Details of Tilde Expansion, 219

10.4.6 Details of Variable Substitution 219

vii

11 Input/Output Overview.................... 222
11.1 Input/Output Concepts.c.vuvuiririuiinenenenenen... 222
11.1.1 Streams and File Descriptors........................... 222
11.1.2 File Positiono 223
11.2 File Names e 224
11.2.1 Directories.coviuiiiiii e 224
11.2.2 File Name Resolution oo, 225
11.2.3 File Name Errors ..o, 225
11.2.4 Portability of File Names................, 226
12 Input/Output on Streams.................. 227
12,1 Streamsvet ot e 227
12.2 Standard Streams.............ooiiiiiiii 227
12.3 Opening Streamsovuetnin e 228
12.4 CloSing Streamsottt 231
12.5 Streams and Threads i, 232
12.6 Streams in Internationalized Applications 235
12.7 Simple Output by Characters or Lines 237
12.8 Character Input ... 239
12.9 Line-Oriented Input......... .o i, 241
12,10 Unreadingouueieiin et 243
12.10.1 What Unreading Means................cooooiiiiia... 243
12.10.2 Using ungetc To Do Unreading 244
12.11 Block Input/Outputoovvvei i 245
12.12 Formatted Output......o, 246
12.12.1 Formatted Output Basics............. ...t 246
12.12.2 Output Conversion Syntax.............cooeeiiueenn... 247
12.12.3 Table of Output Conversions...................oov.... 248
12.12.4 Integer CONVErSIONSvvuttinreinteenenennnnn. 249
12.12.5 Floating-Point Conversions......................ooo... 251
12.12.6 Other Output Conversionsc.oovvonn... 253
12.12.7 Formatted Output Functions.......................... 254
12.12.8 Dynamically Allocating Formatted Output............ 256
12.12.9 Variable Arguments Output Functions 257
12.12.10 Parsing a Template String 259
12.12.11 Example of Parsing a Template String 261
12.13 Customizing printf i 262
12.13.1 Registering New Conversions..................c..o.... 262
12.13.2 Conversion Specifier Options.......................... 263
12.13.3 Defining the Output Handler.......................... 264
12.13.4 printf Extension Example 265
12.13.5 Predefined printf Handlers.................. 266
12.14 Formatted Input..........co i 267
12.14.1 Formatted Input Basics................ooiiiii 267
12.14.2 Input Conversion Syntax.............coevviieeeina... 268
12.14.3 Table of Input Conversions...............coovevveinn.. 269
12.14.4 Numeric Input Conversionscooiue. .. 271

12.14.5 String Input Conversions...............c.ooiiiio.... 272

viii

12.14.6 Dynamically Allocating String Conversions............ 274
12.14.7 Other Input Conversions.............coovueveiieeann. 274
12.14.8 Formatted Input Functions............................ 275
12.14.9 Variable Arguments Input Functions.................. 275
12.15 End-Of-File and Errors..............ooo .. 276
12.16 Recovering from errors..............ccoviiiiiiiiiiineann.. 277
12.17 Text and Binary Streamso, 278
12.18 File Positioning. ... 279
12.19 Portable File-Position Functions 281
12.20 Stream Buffering 283
12.20.1 Buffering Concepts........covviiiiiiiii i 283
12.20.2 Flushing Buffers......... o i 284
12.20.3 Controlling Which Kind of Buffering 285
12.21 Other Kinds of Streams............ ... i, 287
12.21.1 String Streams. ..ottt 287
12.21.2 Programming Your Own Custom Streams............. 289
12.21.2.1 Custom Streams and Cookies 289
12.21.2.2 Custom Stream Hook Functions.................. 290

12.22 Formatted Messagesoouuiiiiiiiiiiii i 291
12.22.1 Printing Formatted Messages, 291
12.22.2 Adding Severity Classes..........cooviiiieniiieennn.. 293
12.22.3 How to use fmtmsg and addseverity 294
13 Low-Level Input/Output................... 296
13.1 Opening and Closing Files oot 296
13.2 Input and Output Primitives...........ot 299
13.3 Setting the File Position of a Descriptor..................... 303
13.4 Descriptors and Streamsooiiiiiiieiiiiieaan... 306
13.5 Dangers of Mixing Streams and Descriptors................. 307
13.5.1 Linked Channels.........o i 307
13.5.2 Independent Channels........... ... i, 307
13.5.3 Cleaning Streamscooiuiiiiiininiean.. 308
13.6 Fast Scatter-Gather I/O i, 308
13.7 Memory-mapped I/O 309
13.8 Waiting for Input or Output oL, 313
13.9 Synchronizing I/O operationscoooiiii... 316
13.10 Perform I/O Operations in Parallel 317
13.10.1 Asynchronous Read and Write Operations............. 320
13.10.2 Getting the Status of AIO Operations................. 324
13.10.3 Getting into a Consistent State 325
13.10.4 Cancellation of AIO Operations....................... 327
13.10.5 How to optimize the AIO implementation 328
13.11 Control Operations on Files................................ 329
13.12 Duplicating Descriptors. 330
13.13 File Descriptor Flags ... 331
13.14 File Status Flags ... 332
13.14.1 File Access Modesc.oviiiiiiii i 333

13.14.2 Open-time Flags..........oooiiiii i 334

13.14.3 I/0O Operating Modes............coooiuiiiiiiain... 335

13.14.4 Getting and Setting File Status Flags 336
13.15 File Locks . ..o 337
13.16 Interrupt-Driven Input............ ... o it 340
13.17 Generic I/O Control operations............................ 341

14 File System Interface....................... 343
14.1 Working Directoryo, 343
14.2 Accessing Directories ... 345

14.2.1 Format of a Directory Entry, 345

14.2.2 Opening a Directory Stream 346

14.2.3 Reading and Closing a Directory Stream 348

14.2.4 Simple Program to List a Directory 349

14.2.5 Random Access in a Directory Stream.................. 350

14.2.6 Scanning the Content of a Directory.................... 350

14.2.7 Simple Program to List a Directory, Mark IT 351
14.3 Working with Directory Trees.......... ...t 352
144 Hard Links 356
14.5 Symbolic Linkso 357
14.6 Deleting Files. ... 359
14.7 Renaming Files. ... i 360
14.8 Creating Directoriesouvrieeiiite e 362
14.9 File Attributes. ... 362

14.9.1 The meaning of the File Attributes..................... 362

14.9.2 Reading the Attributes of a File........................ 366

14.9.3 Testing the Typeofa File............o ... 367

14.9.4 File OWNEr ..ottt e 369

14.9.5 The Mode Bits for Access Permission................... 370

14.9.6 How Your Access to a File is Decided 372

14.9.7 Assigning File Permissions 372

14.9.8 Testing Permission to Access a File..................... 374

14.9.9 File Timeso e 375

14.9.10 File Size ..ot 377
14.10 Making Special Files............c. i, 380
14.11 Temporary Files. ... 380

15 Pipesand FIFOs............................ 384
15.1 Creating a Pipe..... ..o 384
15.2 Pipe to a Subprocess.oovii i 386
15.3 FIFO Special Files. ... 387

15.4 Atomicity of Pipe I/Oo 388

16 Sockets....... ..., 389

16.1 Socket Conceptsouueiii i 389
16.2 Communication Styles.......... ... i 390
16.3 Socket Addressescouueiiiiiiiii i 391
16.3.1 Address Formats.............ooiiiiiii ... 391
16.3.2 Setting the Address of a Socket 393
16.3.3 Reading the Address of a Socket 393
16.4 Interface Namingooiiiiiiiiiiii .., 394
16.5 The Local Namespace....... ..o, 395
16.5.1 Local Namespace Concepts.covvuuieiiinnnen... 395
16.5.2 Details of Local Namespacecooviiieiina... 395
16.5.3 Example of Local-Namespace Sockets 396
16.6 The Internet Namespaceccooiiiiiiiiiiiiinn... 397
16.6.1 Internet Socket Address Formats....................... 397
16.6.2 Host Addressesc.oviiieeii e 398
16.6.2.1 Internet Host Addresses...................oi... 399
16.6.2.2 Host Address Data Type...........coiviiiia... 400
16.6.2.3 Host Address Functions 401
16.6.2.4 Host Names...........coiiiiiiiiiiiiiiiii .. 402
16.6.3 Internet Ports......... ... 406
16.6.4 The Services Database L. 406
16.6.5 Byte Order Conversion..............c.oooiiiiieeann... 408
16.6.6 Protocols Database 408
16.6.7 Internet Socket Example............................... 410
16.7 Other Namespacesouuueiiit i 411
16.8 Opening and Closing Sockets.cooiiiiiiiiiiii... 411
16.8.1 Creating a Socket o i 411
16.8.2 Closing a Socket ... 412
16.8.3 Socket Pairs....... 412
16.9 Using Sockets with Connections............................. 413
16.9.1 Making a Connectionooiiiiiieiiiia... 413
16.9.2 Listening for Connections, 414
16.9.3 Accepting Connections.c.oovviiiiiiiiaiia... 415
16.9.4 Who is Connected to Me?. 416
16.9.5 Transferring Data......... ..o, 417
16.9.5.1 Sending Datao, 417
16.9.5.2 Receiving Data............ ...l 418
16.9.5.3 Socket Data Options............ ..., 418
16.9.6 Byte Stream Socket Example........................... 419
16.9.7 Byte Stream Connection Server Example............... 420
16.9.8 Out-of-Band Data oL, 422
16.10 Datagram Socket Operations..................cooiiiii... 425
16.10.1 Sending Datagrams.............. ..o, 425
16.10.2 Receiving Datagrams 425
16.10.3 Datagram Socket Example............................ 426
16.10.4 Example of Reading Datagrams....................... 427
16.11 The inetd Daemon......... ..., 428

16.11.1 dnetd SeIVerS.ttt 428

16.11.2 Configuring inetdoviiiiiiiiiiii ... 429

16.12 Socket Optionsot 430
16.12.1 Socket Option Functions..............t 430
16.12.2 Socket-Level Options. ..., 430

16.13 Networks Databaseo i i 432

17 Low-Level Terminal Interface.............. 434

17.1 Identifying Terminals, 434

17.2 T/O QUeUes. . ..ot 434

17.3 Two Styles of Input: Canonical or Not 435

17.4 Terminal Modes ... 436
17.4.1 Terminal Mode Data Types...............c.oooiiit. 436
17.4.2 Terminal Mode Functions.............................. 437
17.4.3 Setting Terminal Modes Properly 438
17.4.4 Input Modes.oouuiiiii e 439
17.4.5 Output Modes ... 441
17.4.6 Control Modes. ... 441
17.4.7 Local Modeso 443
17.4.8 Line Speed. ..o 445
17.4.9 Special Characters.............oooiiiiiiiiiiiii .. 447

17.4.9.1 Characters for Input Editing 447
17.4.9.2 Characters that Cause Signals..................... 449
17.4.9.3 Special Characters for Flow Control............... 450
17.4.9.4 Other Special Characters.......................... 450
17.4.10 Noncanonical Input.......... i 451

17.5 BSD Terminal Modes ..., 452

17.6 Line Control Functions...............ciiiiiiiiii... 453

17.7 Noncanonical Mode Example................. 455

17.8 Pseudo-Terminals...........cooiii i, 456
17.8.1 Allocating Pseudo-Terminals........................... 456
17.8.2 Opening a Pseudo-Terminal Pair....................... 458

18 Syslog..........o 460

18.1 Overview of Syslog. ... 460

18.2 Submitting Syslog Messages.ccoeiiiiiiiiiiiia.. 461
18.2.1 0penlog.ouu i 461
18.2.2 syslog, vsyslog ..o 463
18.2.3 closelog. ..o 465
18.2.4 setlogmask....... ..o 465

18.2.5 Syslog Example. 466

xii

19 Mathematics 467
19.1 Predefined Mathematical Constants......................... 467
19.2 Trigonometric Functionsooi i, 468
19.3 Inverse Trigonometric Functions................ 469
19.4 Exponentiation and Logarithms.................... 471
19.5 Hyperbolic Functions o i, 474
19.6 Special Functions.......... ..o 476
19.7 Known Maximum Errors in Math Functions................. 478
19.8 Pseudo-Random Numbers............ ..., 501

19.8.1 ISO C Random Number Functions 502
19.8.2 BSD Random Number Functions....................... 502
19.8.3 SVID Random Number Function....................... 504
19.9 Is Fast Code or Small Code preferred? 508

20 Arithmetic Functions....................... 510
201 Inbe@ers.ot 510
20.2 Integer Division.........cooiiiiiiiiiiii i 511
20.3 Floating Point Numbers ..., 513
20.4 Floating-Point Number Classification Functions 513
20.5 Errors in Floating-Point Calculations........................ 515

20.5.1 FP Exceptions........ .o, 515
20.5.2 Infinity and NaN....... ... i 517
20.5.3 Examining the FPU status word 518
20.5.4 Error Reporting by Mathematical Functions............ 519
20.6 Rounding Modes. ...t 520
20.7 Floating-Point Control Functions............................ 521
20.8 Arithmetic Functions i 523
20.8.1 Absolute Value. ... 523
20.8.2 Normalization Functions oo 524
20.8.3 Rounding Functions............ol 525
20.8.4 Remainder Functions............... 527
20.8.5 Setting and modifying single bits of FP values.......... 528
20.8.6 Floating-Point Comparison Functions 529
20.8.7 Miscellaneous FP arithmetic functions.................. 530
20.9 Complex NUmMDbersovviie i 531
20.10 Projections, Conjugates, and Decomposing of Complex Numbers
.. 531
20.11 Parsing of Numbers......... o i 532
20.11.1 Parsing of Integers. ..., 532
20.11.2 Parsing of Floats. ..o, 536

20.12 Old-fashioned System V number-to-string functions........ 538

21 Dateand Time.............................. 541
21.1 Time Basics .. .ooviiiii e 541
21.2 Elapsed Time.......couiuuiiiii e 541
21.3 Processor And CPU Time. ..o 543

21.3.1 CPU Time Inquiry ..., 543
21.3.2 Processor Time Inquiry ..., 544
21.4 Calendar Time. 545
21.4.1 Simple Calendar Time ..., 545
21.4.2 High-Resolution Calendar.............................. 546
21.4.3 Broken-down Time.............ccoiiiiiiiiiii ... 548
21.4.4 High Accuracy Clock. ...t 551
21.4.5 Formatting Calendar Time............................. 554
21.4.6 Convert textual time and date information back........ 559
21.4.6.1 Interpret string according to given format 559
21.4.6.2 A More User-friendly Way to Parse Times and Dates
.. 564
21.4.7 Specifying the Time Zone with TZ...................... 566
21.4.8 Functions and Variables for Time Zones................ 568
21.4.9 Time Functions Example............................... 569
21.5 Setting an Alarmo i 570
21,6 SleepIng . ..ottt 572

22 Resource Usage And Limitation........... 574
22.1 Resource USagevuetiiieinmniiiiiiiiiei e 574
22.2 Limiting Resource Usage............oooiiiiiiiiiiiiiii.. 576
22.3 Process CPU Priority And Scheduling....................... 580

22.3.1 Absolute Priority ... 580
22.3.1.1 Using Absolute Priority 581
22.3.2 Realtime Scheduling it 582
22.3.3 Basic Scheduling Functions............................. 583
22.3.4 Traditional Schedulingo .. 586
22.3.4.1 Introduction To Traditional Scheduling............ 586
22.3.4.2 Functions For Traditional Scheduling.............. 587
22.3.5 Limiting execution to certain CPUs.................... 589
22.4 Querying memory available resources........................ 591
22.4.1 Overview about traditional Unix memory handling 591
22.4.2 How to get information about the memory subsystem?.. 591
22.5 Learn about the processors available 593

23 Non-Local Exits............................. 594
23.1 Introduction to Non-Local Exits 594
23.2 Details of Non-Local Exits...............oooiiiiiiiiat. 595
23.3 Non-Local Exits and Signals 596

23.4 Complete Context Control, 597

xiii

xiv

24 Signal Handling 603
24.1 Basic Concepts of Signals ..., 603
24.1.1 Some Kinds of Signalsl 603
24.1.2 Concepts of Signal Generation 603
24.1.3 How Signals Are Delivered 604
24.2 Standard Signals......... ... o 605
24.2.1 Program Error Signals.......... ... i i 605
24.2.2 Termination Signals.............. ... o il 608
24.2.3 Alarm Signals........ ... 609
24.2.4 Asynchronous I/O Signals...................oooo 609
24.2.5 Job Control Signals........ ...l 610
24.2.6 Operation Error Signals............... 611
24.2.7 Miscellaneous Signals it 612
24.2.8 Signal Messages. . ..ottt 613
24.3 Specifying Signal Actions i, 613
24.3.1 Basic Signal Handling......... 613
24.3.2 Advanced Signal Handling 616
24.3.3 Interaction of signal and sigaction................... 617
24.3.4 sigaction Function Example.......................... 617
24.3.5 Flags for sigaction..................oiiiii 618
24.3.6 Initial Signal Actions.......... ...l 619
24.4 Defining Signal Handlers............o .. 619
24.4.1 Signal Handlers that Return 620
24.4.2 Handlers That Terminate the Process 621
24.4.3 Nonlocal Control Transfer in Handlers.................. 621
24.4.4 Signals Arriving While a Handler Runs................. 622
24.4.5 Signals Close Together Merge into One................. 623
24.4.6 Signal Handling and Nonreentrant Functions 625
24.4.7 Atomic Data Access and Signal Handling............... 627
24.4.7.1 Problems with Non-Atomic Access 627
24.4.7.2 Atomic Types....o.veiii i 628
24.4.7.3 Atomic Usage Patterns............................ 628

24.5 Primitives Interrupted by Signals 629
24.6 Generating Signals.......... ... i 630
24.6.1 Signaling Yourself....... i 630
24.6.2 Signaling Another Process............ 631
24.6.3 Permission for using kill.............coiiiiiiiii... 632
24.6.4 Using ki1l for Communication......................... 632
24.7 Blocking Signalso 634
24.7.1 Why Blocking Signals is Useful......................... 634
24.7.2 Signal Sets. ..o 634
24.7.3 Process Signal Mask o i 635
24.7.4 Blocking to Test for Delivery of a Signal................ 636
24.7.5 Blocking Signals for a Handler 637
24.7.6 Checking for Pending Signals............ 638
24.7.7 Remembering a Signal to Act On Later 639
24.8 Waiting for a Signal i i 640

24.8.1 USING PaUSE . ..ottt 640

24.8.2 Problems with pause.............. ... L 641
24.8.3 Using sigsuspendccouuuiiiiiiiiinniieeennnn.. 641
24.9 Using a Separate Signal Stack........... 642
24.10 BSD Signal Handling i 644
24.10.1 BSD Function to Establish a Handler 645
24.10.2 BSD Functions for Blocking Signals................... 646
25 The Basic Program/System Interface..... 647
25.1 Program Argumentscoiiiiiiiiiiiiiiiii., 647
25.1.1 Program Argument Syntax Conventions................ 648
25.1.2 Parsing Program Arguments 648
25.2 Parsing program options using getopt 649
25.2.1 Using the getopt function 649
25.2.2 Example of Parsing Arguments with getopt............ 650
25.2.3 Parsing Long Options with getopt_long............... 652
25.2.4 Example of Parsing Long Options with getopt_long... 653
25.3 Parsing Program Options with Argp 656
25.3.1 The argp_parse Function..................... 656
25.3.2 Argp Global Variables ...t 656
25.3.3 Specifying Argp Parsers..............coiiiiiiiL. 657
25.3.4 Specifying Options in an Argp Parser 658
25.3.4.1 Flags for Argp Options............cooviiveiiine. .. 659
25.3.5 Argp Parser Functions il 660
25.3.5.1 Special Keys for Argp Parser Functions............ 661
25.3.5.2 Argp Parsing State...........l 663
25.3.5.3 Functions For Use in Argp Parsers................. 664
25.3.6 Combining Multiple Argp Parsers...................... 665
25.3.7 Flags for argp_parse ..ot 666
25.3.8 Customizing Argp Help Output 667
25.3.8.1 Special Keys for Argp Help Filter Functions....... 667
25.3.9 The argp_help Function.................. 668
25.3.10 Flags for the argp_help Function..................... 668
25.3.11 Argp Examples ... 669
25.3.11.1 A Minimal Program Using Argp.................. 669
25.3.11.2 A Program Using Argp with Only Default Options
.. 669
25.3.11.3 A Program Using Argp with User Options........ 671
25.3.11.4 A Program Using Multiple Combined Argp Parsers
.. 673
25.3.12 Argp User Customizationcioo... 677
25.3.12.1 Parsing of Suboptions............... ... 678
25.3.13 Parsing of Suboptions Example 678
25.4 Environment Variables........... i, 680
25.4.1 Environment AcCCESS........oueiirieiiieiiiia.. 680
25.4.2 Standard Environment Variables 682
25.5 Auxiliary Vector....... ... 684
25.5.1 Definition of getauxval............... ... 684

25.6 System Calls. 684

XV

xvi

25.7 Program Termination............ ..., 685
25.7.1 Normal Termination o i .. 686
25.7.2 Exit Status ... 686
25.7.3 Cleanups on Exito i 687
25.7.4 Aborting a Program L. 688
25.7.5 Termination Internals............ 688

26 Processes............... i, 690

26.1 Running a Command ..., 690

26.2 Process Creation Concepts.........cooouiiiiiiiiiiiiinn.. 691

26.3 Process Identification i 691

26.4 Creating a Process. ... 691

26.5 Executinga File....... ... i 693

26.6 Process Completion..........ooiiiiii i, 695

26.7 Process Completion Status. ..., 697

26.8 BSD Process Wait Functions..............o ... 698

26.9 Process Creation Example, 699

27 Job Control 701

27.1 Concepts of Job Control, 701

27.2 Job Control is Optional i i, 702

27.3 Controlling Terminal of a Process........................... 702

27.4 Access to the Controlling Terminal.......................... 702

27.5 Orphaned Process Groups...........c.vviiiiiieiiiinnennnn... 703

27.6 Implementing a Job Control Shell 703
27.6.1 Data Structures for the Shell 704
27.6.2 Initializing the Shell........... L. 705
27.6.3 Launching Jobs........ i 706
27.6.4 Foreground and Background 710
27.6.5 Stopped and Terminated Jobs.......................... 711
27.6.6 Continuing Stopped Jobs........... L. 714
27.6.7 The Missing Pieces. ..., 715

27.7 Functions for Job Control.............. 716
27.7.1 Identifying the Controlling Terminal.................... 716
27.7.2 Process Group Functions................ 716
27.7.3 Functions for Controlling Terminal Access.............. 718

28 System Databases and Name Service Switch

... 720
28.1 NSS BaSiCs vttt 720
28.2 The NSS Configuration File.............o, 721

28.2.1 Services in the NSS configuration File.................. 721
28.2.2 Actions in the NSS configuration....................... 722
28.2.3 Notes on the NSS Configuration File 723
28.3 NSS Module Internals. ... 723
28.3.1 The Naming Scheme of the NSS Modules............... 723

28.3.2 The Interface of the Function in NSS Modules.......... 724

28.4 Extending NSS ... o 726
28.4.1 Adding another Service to NSS......................... 726
28.4.2 Internals of the NSS Module Functions................. 727

29 Usersand Groups...............oooiinnn.. 729

29.1 Userand Group IDs ... 729

29.2 The Persona of a Process ...t 729

29.3 Why Change the Persona of a Process? 730

29.4 How an Application Can Change Persona 730

29.5 Reading the Persona of a Process 731

29.6 Setting the User ID ... i 732

29.7 Setting the Group IDs ... 733

29.8 Enabling and Disabling Setuid Access....................... 735

29.9 Setuid Program Exampleo i 736

29.10 Tips for Writing Setuid Programs.......................... 738

29.11 Identifying Who Logged In............. ... it 739

29.12 The User Accounting Database 739
29.12.1 Manipulating the User Accounting Database 740
29.12.2 XPG User Accounting Database Functions............ 744
29.12.3 Logging Inand Out.............o i, 746

29.13 User Database....... ..o 47
29.13.1 The Data Structure that Describes a User............. 47
29.13.2 Looking Up One User...........cooiviiiiiiniiinon.. 747
29.13.3 Scanning the List of All Users................ 748
29.13.4 Writing a User Entry ..., 749

29.14 Group Database ... 750
29.14.1 The Data Structure for a Group....................... 750
29.14.2 Looking Up One Groupcoovuriieiniieennnn... 750
29.14.3 Scanning the List of All Groups....................... 751

29.15 User and Group Database Example........................ 752

29.16 Netgroup Database........... ..o, 753
29.16.1 Netgroup Data...........ccoiiiiiiiiiiiiii i 753
29.16.2 Looking up one Netgroupoooiiiia. 754
29.16.3 Testing for Netgroup Membership..................... 755

30 System Management 756

30.1 Host Identification......... ... 756

30.2 Platform Type Identification................................ 758

30.3 Controlling and Querying Mounts.............. 759
30.3.1 Mount Information............. L. 760

30.3.1.1 Thefstabfileooiiiiiiiii i, 760
30.3.1.2 Themtabfile.......cooiiiiiiiii .. 762
30.3.1.3 Other (Non-libc) Sources of Mount Information.... 765
30.3.2 Mount, Unmount, Remount 765

30.4 System Parameters i 769

Xvii

31 System Configuration Parameters......... 772
31.1 General Capacity Limits..............ooooiiiiiiii.., 772
31.2 Overall System Options...........cooiiiiiiiiiiiiiiin.. 773
31.3 Which Version of POSIX is Supported 774
31.4 Using sysconft 775

31.4.1 Definition of sysconfl 775

31.4.2 Constants for sysconf Parameters..................... 775

31.4.3 Examples of sysconf i 782
31.5 Minimum Values for General Capacity Limits 783
31.6 Limits on File System Capacityc.ccoiiiiiiii.. 784
31.7 Optional Features in File Support........................... 785
31.8 Minimum Values for File System Limits..................... 786
31.9 Using pathconf....... ... i 787
31.10 Utility Program Capacity Limits........................... 788
31.11 Minimum Values for Utility Limits......................... 789
31.12 String-Valued Parameters.........., 790

32 DES Encryption and Password Handling

... 792

32.1 Legal Problems......... ..o 792

32.2 Reading Passwords ... 793

32.3 Encrypting Passwords i 794

324 DES Encryption........ oo 796

33 Debugging support 799

33.1 Backtraces. 799

34 POSIX Threads............................. 801

34.1 Thread-specific Data..............cooiiiiiiiii i, 801

34.2 Non-POSIX Extensions.........c.coooeiiiiiiiiiiiinne... 801

34.2.1 Setting Process-wide defaults for thread attributes...... 801
Appendix A C Language Facilities in the

Library........... . 802

A.1 Explicitly Checking Internal Consistency..................... 802

A.2 Variadic Functions i 803

A.2.1 Why Variadic Functions are Used....................... 803

A.2.2 How Variadic Functions are Defined and Used........... 804

A.2.2.1 Syntax for Variable Arguments..................... 804

A.2.2.2 Receiving the Argument Values.................... 805

A.2.2.3 How Many Arguments Were Supplied.............. 805

A.2.2.4 Calling Variadic Functions...................... ... 806

A.2.25 Argument Access Macros..............coooiiiia.. 806

A.2.3 Example of a Variadic Function......................... 808

A.3 Null Pointer Constant 808

A4 TImportant Data Typesccovviiiiiiii .. 809

xviii

A.5 Data Type Measurementsooueeeenirieeeninneennnn.. 809
A.5.1 Computing the Width of an Integer Data Type 809
A.5.2 Range of an Integer Type...........ooiiiiiiii .. 810
A.5.3 Floating Type Macrosoouviiiiiiiieiinan.. 811

A.5.3.1 Floating Point Representation Concepts............ 811
A.5.3.2 Floating Point Parameters......................... 813
A.5.3.3 IEEE Floating Point....................... 815
A.5.4 Structure Field Offset Measurement..................... 816

Appendix B Summary of Library Facilities

... 817
Appendix C Installing the GNU C Library
... 920
C.1 Configuring and compiling the GNU C Library............... 920
C.2 Installing the C Library 924
C.3 Recommended Tools for Compilation 925
C.4 Specific advice for GNU/Linux systems 926
C.5 Reporting Bugs ... 926
Appendix D Library Maintenance............ 928
D.1 Adding New Functions it 928
D.1.1 Platform-specific types, macros and functions........... 929
D.2 Porting the GNU C Library ..., 930
D.2.1 Layout of the sysdeps Directory Hierarchy 932
D.2.2 Porting the GNU C Library to Unix Systems 934
Appendix E Platform-specific facilities 935
E.1 PowerPC-specific Facilities............. ..., 935
Appendix F Contributors to the GNU C
Library. 937
Appendix G Free Software Needs Free
Documentation.............................. 941

Appendix H GNU Lesser General Public License
... 943

Appendix 1 GNU Free Documentation License
... 952

xix

TypeIndex 970
Function and Macro Index 972
Variable and Constant Macro Index............ 984

Program and File Index 994

XX

Chapter 1: Introduction 1

1 Introduction

The C language provides no built-in facilities for performing such common operations as
input/output, memory management, string manipulation, and the like. Instead, these fa-
cilities are defined in a standard library, which you compile and link with your programs.

The GNU C Library, described in this document, defines all of the library functions that
are specified by the ISO C standard, as well as additional features specific to POSIX and
other derivatives of the Unix operating system, and extensions specific to GNU systems.

The purpose of this manual is to tell you how to use the facilities of the GNU C Library.
We have mentioned which features belong to which standards to help you identify things
that are potentially non-portable to other systems. But the emphasis in this manual is not
on strict portability.

1.1 Getting Started

This manual is written with the assumption that you are at least somewhat familiar with
the C programming language and basic programming concepts. Specifically, familiarity
with ISO standard C (see Section 1.2.1 [ISO C], page 2), rather than “traditional” pre-ISO
C dialects, is assumed.

The GNU C Library includes several header files, each of which provides definitions and
declarations for a group of related facilities; this information is used by the C compiler
when processing your program. For example, the header file stdio.h declares facilities
for performing input and output, and the header file string.h declares string processing
utilities. The organization of this manual generally follows the same division as the header
files.

If you are reading this manual for the first time, you should read all of the introductory
material and skim the remaining chapters. There are a lot of functions in the GNU C
Library and it’s not realistic to expect that you will be able to remember exactly how to
use each and every one of them. It’s more important to become generally familiar with the
kinds of facilities that the library provides, so that when you are writing your programs you
can recognize when to make use of library functions, and where in this manual you can find
more specific information about them.

1.2 Standards and Portability

This section discusses the various standards and other sources that the GNU C Library is
based upon. These sources include the ISO C and POSIX standards, and the System V
and Berkeley Unix implementations.

The primary focus of this manual is to tell you how to make effective use of the GNU C
Library facilities. But if you are concerned about making your programs compatible with
these standards, or portable to operating systems other than GNU, this can affect how you
use the library. This section gives you an overview of these standards, so that you will know
what they are when they are mentioned in other parts of the manual.

See Appendix B [Summary of Library Facilities], page 817, for an alphabetical list of the
functions and other symbols provided by the library. This list also states which standards
each function or symbol comes from.

Chapter 1: Introduction 2

1.2.1 ISO C

The GNU C Library is compatible with the C standard adopted by the American Na-
tional Standards Institute (ANSI): American National Standard X3.159-1989— “ANSI C”
and later by the International Standardization Organization (ISO): ISO/IEC 9899:1990,
“Programming languages—C”. We here refer to the standard as ISO C since this is the
more general standard in respect of ratification. The header files and library facilities that
make up the GNU C Library are a superset of those specified by the ISO C standard.

If you are concerned about strict adherence to the ISO C standard, you should use the
‘~ansi’ option when you compile your programs with the GNU C compiler. This tells
the compiler to define only ISO standard features from the library header files, unless you
explicitly ask for additional features. See Section 1.3.4 [Feature Test Macros|, page 7, for
information on how to do this.

Being able to restrict the library to include only ISO C features is important because
ISO C puts limitations on what names can be defined by the library implementation, and
the GNU extensions don’t fit these limitations. See Section 1.3.3 [Reserved Names|, page 5,
for more information about these restrictions.

This manual does not attempt to give you complete details on the differences between
ISO C and older dialects. It gives advice on how to write programs to work portably under
multiple C dialects, but does not aim for completeness.

1.2.2 POSIX (The Portable Operating System Interface)

The GNU C Library is also compatible with the ISO POSIX family of standards, known
more formally as the Portable Operating System Interface for Computer Environments
(ISO/IEC 9945). They were also published as ANSI/IEEE Std 1003. POSIX is derived

mostly from various versions of the Unix operating system.

The library facilities specified by the POSIX standards are a superset of those required
by ISO C; POSIX specifies additional features for ISO C functions, as well as specifying
new additional functions. In general, the additional requirements and functionality defined
by the POSIX standards are aimed at providing lower-level support for a particular kind of
operating system environment, rather than general programming language support which
can run in many diverse operating system environments.

The GNU C Library implements all of the functions specified in ISO/IEC 9945-1:1996,
the POSIX System Application Program Interface, commonly referred to as POSIX.1. The
primary extensions to the ISO C facilities specified by this standard include file system
interface primitives (see Chapter 14 [File System Interface], page 343), device-specific ter-
minal control functions (see Chapter 17 [Low-Level Terminal Interface], page 434), and
process control functions (see Chapter 26 [Processes|, page 690).

Some facilities from ISO/IEC 9945-2:1993, the POSIX Shell and Utilities standard
(POSIX.2) are also implemented in the GNU C Library. These include utilities for deal-
ing with regular expressions and other pattern matching facilities (see Chapter 10 [Pattern
Matching], page 202).

1.2.3 Berkeley Unix

The GNU C Library defines facilities from some versions of Unix which are not formally
standardized, specifically from the 4.2 BSD, 4.3 BSD, and 4.4 BSD Unix systems (also

Chapter 1: Introduction 3

known as Berkeley Unix) and from SunOS (a popular 4.2 BSD derivative that includes
some Unix System V functionality). These systems support most of the ISO C and POSIX
facilities, and 4.4 BSD and newer releases of SunOS in fact support them all.

The BSD facilities include symbolic links (see Section 14.5 [Symbolic Links]|, page 357),
the select function (see Section 13.8 [Waiting for Input or Output|, page 313), the BSD
signal functions (see Section 24.10 [BSD Signal Handling], page 644), and sockets (see
Chapter 16 [Sockets], page 389).

1.2.4 SVID (The System V Interface Description)

The System V Interface Description (SVID) is a document describing the AT&T Unix
System V operating system. It is to some extent a superset of the POSIX standard (see
Section 1.2.2 [POSIX (The Portable Operating System Interface)|, page 2).

The GNU C Library defines most of the facilities required by the SVID that are not
also required by the ISO C or POSIX standards, for compatibility with System V Unix and
other Unix systems (such as SunOS) which include these facilities. However, many of the
more obscure and less generally useful facilities required by the SVID are not included. (In
fact, Unix System V itself does not provide them all.)

The supported facilities from System V include the methods for inter-process commu-
nication and shared memory, the hsearch and drand48 families of functions, fmtmsg and
several of the mathematical functions.

1.2.5 XPG (The X/Open Portability Guide)

The X/Open Portability Guide, published by the X/Open Company, Ltd., is a more gen-
eral standard than POSIX. X/Open owns the Unix copyright and the XPG specifies the
requirements for systems which are intended to be a Unix system.

The GNU C Library complies to the X/Open Portability Guide, Issue 4.2, with all exten-
sions common to XSI (X/Open System Interface) compliant systems and also all X/Open
UNIX extensions.

The additions on top of POSIX are mainly derived from functionality available in
System V and BSD systems. Some of the really bad mistakes in System V systems were
corrected, though. Since fulfilling the XPG standard with the Unix extensions is a precon-
dition for getting the Unix brand chances are good that the functionality is available on
commercial systems.

1.3 Using the Library

This section describes some of the practical issues involved in using the GNU C Library.

1.3.1 Header Files

Libraries for use by C programs really consist of two parts: header files that define types and
macros and declare variables and functions; and the actual library or archive that contains
the definitions of the variables and functions.

(Recall that in C, a declaration merely provides information that a function or variable
exists and gives its type. For a function declaration, information about the types of its
arguments might be provided as well. The purpose of declarations is to allow the compiler

Chapter 1: Introduction 4

to correctly process references to the declared variables and functions. A definition, on the
other hand, actually allocates storage for a variable or says what a function does.)

In order to use the facilities in the GNU C Library, you should be sure that your program
source files include the appropriate header files. This is so that the compiler has declarations
of these facilities available and can correctly process references to them. Once your program
has been compiled, the linker resolves these references to the actual definitions provided in
the archive file.

Header files are included into a program source file by the ‘#include’ preprocessor
directive. The C language supports two forms of this directive; the first,

#include "header"

is typically used to include a header file header that you write yourself; this would contain
definitions and declarations describing the interfaces between the different parts of your
particular application. By contrast,

#include <file.h>

is typically used to include a header file file.h that contains definitions and declarations
for a standard library. This file would normally be installed in a standard place by your
system administrator. You should use this second form for the C library header files.

Typically, ‘#include’ directives are placed at the top of the C source file, before any
other code. If you begin your source files with some comments explaining what the code in
the file does (a good idea), put the ‘#include’ directives immediately afterwards, following
the feature test macro definition (see Section 1.3.4 [Feature Test Macros|, page 7).

For more information about the use of header files and ‘#include’ directives, see Section
“Header Files” in The GNU C Preprocessor Manual.

The GNU C Library provides several header files, each of which contains the type and
macro definitions and variable and function declarations for a group of related facilities.
This means that your programs may need to include several header files, depending on
exactly which facilities you are using.

Some library header files include other library header files automatically. However, as a
matter of programming style, you should not rely on this; it is better to explicitly include all
the header files required for the library facilities you are using. The GNU C Library header
files have been written in such a way that it doesn’t matter if a header file is accidentally
included more than once; including a header file a second time has no effect. Likewise, if
your program needs to include multiple header files, the order in which they are included
doesn’t matter.

Compatibility Note: Inclusion of standard header files in any order and any number of
times works in any ISO C implementation. However, this has traditionally not been the
case in many older C implementations.

Strictly speaking, you don’t have to include a header file to use a function it declares;
you could declare the function explicitly yourself, according to the specifications in this
manual. But it is usually better to include the header file because it may define types and
macros that are not otherwise available and because it may define more efficient macro
replacements for some functions. It is also a sure way to have the correct declaration.

Chapter 1: Introduction 5

1.3.2 Macro Definitions of Functions

If we describe something as a function in this manual, it may have a macro definition as
well. This normally has no effect on how your program runs—the macro definition does
the same thing as the function would. In particular, macro equivalents for library functions
evaluate arguments exactly once, in the same way that a function call would. The main
reason for these macro definitions is that sometimes they can produce an inline expansion
that is considerably faster than an actual function call.

Taking the address of a library function works even if it is also defined as a macro. This
is because, in this context, the name of the function isn’t followed by the left parenthesis
that is syntactically necessary to recognize a macro call.

You might occasionally want to avoid using the macro definition of a function—perhaps
to make your program easier to debug. There are two ways you can do this:
e You can avoid a macro definition in a specific use by enclosing the name of the function
in parentheses. This works because the name of the function doesn’t appear in a
syntactic context where it is recognizable as a macro call.

e You can suppress any macro definition for a whole source file by using the ‘#undef’
preprocessor directive, unless otherwise stated explicitly in the description of that fa-
cility.

For example, suppose the header file stdlib.h declares a function named abs with
extern int abs (int);
and also provides a macro definition for abs. Then, in:
#include <stdlib.h>
int £ (int *i) { return abs (++*i); }
the reference to abs might refer to either a macro or a function. On the other hand, in each
of the following examples the reference is to a function and not a macro.

#include <stdlib.h>
int g (int *i) { return (abs) (++*i); }

#undef abs
int h (int *i) { return abs (++*i); }
Since macro definitions that double for a function behave in exactly the same way as the
actual function version, there is usually no need for any of these methods. In fact, removing
macro definitions usually just makes your program slower.

1.3.3 Reserved Names

The names of all library types, macros, variables and functions that come from the ISO C
standard are reserved unconditionally; your program may not redefine these names. All
other library names are reserved if your program explicitly includes the header file that
defines or declares them. There are several reasons for these restrictions:

e Other people reading your code could get very confused if you were using a function
named exit to do something completely different from what the standard exit function
does, for example. Preventing this situation helps to make your programs easier to
understand and contributes to modularity and maintainability.

e It avoids the possibility of a user accidentally redefining a library function that is called
by other library functions. If redefinition were allowed, those other functions would not
work properly.

Chapter 1: Introduction 6

It allows the compiler to do whatever special optimizations it pleases on calls to these
functions, without the possibility that they may have been redefined by the user. Some
library facilities, such as those for dealing with variadic arguments (see Section A.2
[Variadic Functions], page 803) and non-local exits (see Chapter 23 [Non-Local Exits],
page 594), actually require a considerable amount of cooperation on the part of the C
compiler, and with respect to the implementation, it might be easier for the compiler
to treat these as built-in parts of the language.

In addition to the names documented in this manual, reserved names include all external

identifiers (global functions and variables) that begin with an underscore (‘_’) and all iden-
tifiers regardless of use that begin with either two underscores or an underscore followed by
a capital letter are reserved names. This is so that the library and header files can define
functions, variables, and macros for internal purposes without risk of conflict with names
in user programs.

Some additional classes of identifier names are reserved for future extensions to the C

language or the POSIX.1 environment. While using these names for your own purposes
right now might not cause a problem, they do raise the possibility of conflict with future

ver

sions of the C or POSIX standards, so you should avoid these names.

Names beginning with a capital ‘E’ followed a digit or uppercase letter may be used for
additional error code names. See Chapter 2 [Error Reporting], page 13.

Names that begin with either ‘is’ or ‘to’ followed by a lowercase letter may be used

for additional character testing and conversion functions. See Chapter 4 [Character
Handling], page 65.

Names that begin with ‘LC_’ followed by an uppercase letter may be used for additional
macros specifying locale attributes. See Chapter 7 [Locales and Internationalization],
page 150.

Names of all existing mathematics functions (see Chapter 19 [Mathematics|, page 467)
suffixed with ‘£’ or ‘1’ are reserved for corresponding functions that operate on float
and long double arguments, respectively.

Names that begin with ‘SIG’ followed by an uppercase letter are reserved for additional
signal names. See Section 24.2 [Standard Signals], page 605.

Names that begin with ‘SIG_’ followed by an uppercase letter are reserved for additional
signal actions. See Section 24.3.1 [Basic Signal Handling], page 613.

Names beginning with ‘str’, ‘mem’, or ‘wcs’ followed by a lowercase letter are reserved
for additional string and array functions. See Chapter 5 [String and Array Utilities],
page 73.

Names that end with ‘_t’ are reserved for additional type names.

In addition, some individual header files reserve names beyond those that they actually

define. You only need to worry about these restrictions if your program includes that
particular header file.

The header file dirent.h reserves names prefixed with ‘d_’.
The header file fcntl.h reserves names prefixed with ‘1_", ‘F_’, ‘0_’, and ‘S_’.

The header file grp.h reserves names prefixed with ‘gr_’.

The header file 1imits.h reserves names suffixed with ‘_MAX’.

Chapter 1: Introduction 7

)

e The header file pwd.h reserves names prefixed with ‘pw_".
e The header file signal.h reserves names prefixed with ‘sa_’ and ‘SA_’.
e The header file sys/stat.h reserves names prefixed with ‘st_’ and ‘S_".
e The header file sys/times.h reserves names prefixed with ‘tms_’.

e The header file termios.h reserves names prefixed with ‘c_’, ‘V’, ‘IT’, ‘0’, and ‘TC’; and
names prefixed with ‘B’ followed by a digit.

1.3.4 Feature Test Macros

The exact set of features available when you compile a source file is controlled by which
feature test macros you define.

If you compile your programs using ‘gcc —ansi’, you get only the ISO C library features,
unless you explicitly request additional features by defining one or more of the feature
macros. See Section “GNU CC Command Options” in The GNU CC Manual, for more
information about GCC options.

You should define these macros by using ‘#define’ preprocessor directives at the top of
your source code files. These directives must come before any #include of a system header
file. It is best to make them the very first thing in the file, preceded only by comments. You
could also use the ‘-D’ option to GCC, but it’s better if you make the source files indicate
their own meaning in a self-contained way.

This system exists to allow the library to conform to multiple standards. Although the
different standards are often described as supersets of each other, they are usually incom-
patible because larger standards require functions with names that smaller ones reserve to
the user program. This is not mere pedantry — it has been a problem in practice. For
instance, some non-GNU programs define functions named getline that have nothing to
do with this library’s getline. They would not be compilable if all features were enabled
indiscriminately.

This should not be used to verify that a program conforms to a limited standard. It is
insufficient for this purpose, as it will not protect you from including header files outside
the standard, or relying on semantics undefined within the standard.

_POSIX_SOURCE [Macro]
If you define this macro, then the functionality from the POSIX.1 standard (IEEE
Standard 1003.1) is available, as well as all of the ISO C facilities.

The state of _POSIX_SOURCE is irrelevant if you define the macro _POSIX_C_SOURCE
to a positive integer.

_POSIX_C_SOURCE [Macro]
Define this macro to a positive integer to control which POSIX functionality is made
available. The greater the value of this macro, the more functionality is made avail-
able.

If you define this macro to a value greater than or equal to 1, then the functionality
from the 1990 edition of the POSIX.1 standard (IEEE Standard 1003.1-1990) is made
available.
If you define this macro to a value greater than or equal to 2, then the functionality
from the 1992 edition of the POSIX.2 standard (IEEE Standard 1003.2-1992) is made
available.

Chapter 1: Introduction 8

If you define this macro to a value greater than or equal to 199309L, then the function-
ality from the 1993 edition of the POSIX.1b standard (IEEE Standard 1003.1b-1993)
is made available.

Greater values for _POSIX_C_SOURCE will enable future extensions. The POSIX stan-
dards process will define these values as necessary, and the GNU C Library should sup-
port them some time after they become standardized. The 1996 edition of POSIX.1
(ISO/IEC 9945-1: 1996) states that if you define _POSIX_C_SOURCE to a value greater
than or equal to 199506L, then the functionality from the 1996 edition is made avail-
able.

_BSD_SOURCE [Macro]
If you define this macro, functionality derived from 4.3 BSD Unix is included as well
as the ISO C, POSIX.1, and POSIX.2 material.

Some of the features derived from 4.3 BSD Unix conflict with the corresponding
features specified by the POSIX.1 standard. If this macro is defined, the 4.3 BSD
definitions take precedence over the POSIX definitions.

Due to the nature of some of the conflicts between 4.3 BSD and POSIX.1, you need
to use a special BSD compatibility library when linking programs compiled for BSD
compatibility. This is because some functions must be defined in two different ways,
one of them in the normal C library, and one of them in the compatibility library. If
your program defines _BSD_SOURCE, you must give the option ‘-1bsd-compat’ to the
compiler or linker when linking the program, to tell it to find functions in this special
compatibility library before looking for them in the normal C library.

_SVID_SOURCE [Macro]
If you define this macro, functionality derived from SVID is included as well as the
ISO C, POSIX.1, POSIX.2, and X/Open material.

_XOPEN_SQOURCE [Macro]

_XOPEN_SOURCE_EXTENDED [Macro]
If you define this macro, functionality described in the X/Open Portability Guide is
included. This is a superset of the POSIX.1 and POSIX.2 functionality and in fact
_POSIX_SOURCE and _POSIX_C_SQOURCE are automatically defined.

As the unification of all Unices, functionality only available in BSD and SVID is also
included.

If the macro _XOPEN_SOURCE_EXTENDED is also defined, even more functionality is
available. The extra functions will make all functions available which are necessary
for the X/Open Unix brand.

If the macro _XOPEN_SOURCE has the value 500 this includes all functionality described
so far plus some new definitions from the Single Unix Specification, version 2.

_LARGEFILE_SOURCE [Macro]
If this macro is defined some extra functions are available which rectify a few short-
comings in all previous standards. Specifically, the functions fseeko and ftello are
available. Without these functions the difference between the ISO C interface (fseek,
ftell) and the low-level POSIX interface (1seek) would lead to problems.

This macro was introduced as part of the Large File Support extension (LFS).

Chapter 1: Introduction 9

_LARGEFILE64_SOURCE [Macro]
If you define this macro an additional set of functions is made available which enables
32 bit systems to use files of sizes beyond the usual limit of 2GB. This interface is
not available if the system does not support files that large. On systems where the
natural file size limit is greater than 2GB (i.e., on 64 bit systems) the new functions
are identical to the replaced functions.

The new functionality is made available by a new set of types and functions which
replace the existing ones. The names of these new objects contain 64 to indicate the
intention, e.g., off_t vs. off64_t and fseeko vs. fseekob4.

This macro was introduced as part of the Large File Support extension (LFS). It is
a transition interface for the period when 64 bit offsets are not generally used (see
_FILE_UFFSET_BITS).

_FILE_OFFSET_BITS [Macro]
This macro determines which file system interface shall be used, one replacing the
other. Whereas _LARGEFILE64_SOURCE makes the 64 bit interface available as an
additional interface, _FILE_OFFSET_BITS allows the 64 bit interface to replace the
old interface.

If _FILE_OFFSET_BITS is undefined, or if it is defined to the value 32, nothing changes.
The 32 bit interface is used and types like off_t have a size of 32 bits on 32 bit
systems.

If the macro is defined to the value 64, the large file interface replaces the old inter-
face. ILe., the functions are not made available under different names (as they are
with _LARGEFILE64_SOURCE). Instead the old function names now reference the new
functions, e.g., a call to fseeko now indeed calls fseeko64.

This macro should only be selected if the system provides mechanisms for handling
large files. On 64 bit systems this macro has no effect since the *64 functions are
identical to the normal functions.

This macro was introduced as part of the Large File Support extension (LFS).

_IS0C99_SOURCE [Macro]
Until the revised ISO C standard is widely adopted the new features are not automat-
ically enabled. The GNU C Library nevertheless has a complete implementation of
the new standard and to enable the new features the macro _IS0C99_SOURCE should
be defined.

_GNU_SOURCE [Macro]
If you define this macro, everything is included: ISO C89, ISO C99, POSIX.1,
POSIX.2, BSD, SVID, X/Open, LFS, and GNU extensions. In the cases where
POSIX.1 conflicts with BSD, the POSIX definitions take precedence.

If you want to get the full effect of _GNU_SOURCE but make the BSD definitions take
precedence over the POSIX definitions, use this sequence of definitions:
#define _GNU_SOURCE

#define _BSD_SOURCE
#define _SVID_SOURCE

Chapter 1: Introduction 10

Note that if you do this, you must link your program with the BSD compatibility
library by passing the ‘-~1bsd-compat’ option to the compiler or linker. NB: If you
forget to do this, you may get very strange errors at run time.

_REENTRANT [Macro]

_THREAD_SAFE [Macro]
If you define one of these macros, reentrant versions of several functions get declared.
Some of the functions are specified in POSIX.1c but many others are only available
on a few other systems or are unique to the GNU C Library. The problem is the
delay in the standardization of the thread safe C library interface.

Unlike on some other systems, no special version of the C library must be used for
linking. There is only one version but while compiling this it must have been specified
to compile as thread safe.

We recommend you use _GNU_SOURCE in new programs. If you don’t specify the ‘-ansi’
option to GCC and don’t define any of these macros explicitly, the effect is the same as
defining _POSIX_C_SOURCE to 2 and _POSIX_SOURCE, _SVID_SOURCE, and _BSD_SOURCE to
1.

When you define a feature test macro to request a larger class of features, it is harmless
to define in addition a feature test macro for a subset of those features. For example, if
you define _POSIX_C_SOURCE, then defining _POSIX_SOURCE as well has no effect. Likewise,
if you define _GNU_SOURCE, then defining either _POSIX_SOURCE or _POSIX_C_SOURCE or
_SVID_SOURCE as well has no effect.

Note, however, that the features of _BSD_SOURCE are not a subset of any of the other
feature test macros supported. This is because it defines BSD features that take precedence
over the POSIX features that are requested by the other macros. For this reason, defining
_BSD_SOURCE in addition to the other feature test macros does have an effect: it causes the
BSD features to take priority over the conflicting POSIX features.

1.4 Roadmap to the Manual

Here is an overview of the contents of the remaining chapters of this manual.

e Chapter 2 [Error Reporting], page 13, describes how errors detected by the library are
reported.

e Appendix A [C Language Facilities in the Library], page 802, contains information
about library support for standard parts of the C language, including things like the
sizeof operator and the symbolic constant NULL, how to write functions accepting
variable numbers of arguments, and constants describing the ranges and other proper-
ties of the numerical types. There is also a simple debugging mechanism which allows
you to put assertions in your code, and have diagnostic messages printed if the tests
fail.

e Chapter 3 [Virtual Memory Allocation And Paging|, page 30, describes the GNU C
Library’s facilities for managing and using virtual and real memory, including dynamic
allocation of virtual memory. If you do not know in advance how much memory your
program needs, you can allocate it dynamically instead, and manipulate it via pointers.

e Chapter 4 [Character Handling], page 65, contains information about character classi-
fication functions (such as isspace) and functions for performing case conversion.

Chapter 1: Introduction 11

e Chapter 5 [String and Array Utilities|, page 73, has descriptions of functions for ma-
nipulating strings (null-terminated character arrays) and general byte arrays, including
operations such as copying and comparison.

e Chapter 11 [Input/Output Overview|, page 222, gives an overall look at the input and
output facilities in the library, and contains information about basic concepts such as
file names.

e Chapter 12 [Input/Output on Streams|, page 227, describes I/O operations involving
streams (or FILE * objects). These are the normal C library functions from stdio.h.

e Chapter 13 [Low-Level Input/Output], page 296, contains information about I/O op-
erations on file descriptors. File descriptors are a lower-level mechanism specific to the
Unix family of operating systems.

e Chapter 14 [File System Interface], page 343, has descriptions of operations on entire
files, such as functions for deleting and renaming them and for creating new directories.
This chapter also contains information about how you can access the attributes of a
file, such as its owner and file protection modes.

e Chapter 15 [Pipes and FIFOs|, page 384, contains information about simple inter-
process communication mechanisms. Pipes allow communication between two related
processes (such as between a parent and child), while FIFOs allow communication
between processes sharing a common file system on the same machine.

e Chapter 16 [Sockets|, page 389, describes a more complicated interprocess communi-
cation mechanism that allows processes running on different machines to communicate
over a network. This chapter also contains information about Internet host addressing
and how to use the system network databases.

e Chapter 17 [Low-Level Terminal Interface], page 434, describes how you can change
the attributes of a terminal device. If you want to disable echo of characters typed by
the user, for example, read this chapter.

e Chapter 19 [Mathematics|, page 467, contains information about the math library func-
tions. These include things like random-number generators and remainder functions on
integers as well as the usual trigonometric and exponential functions on floating-point
numbers.

e Chapter 20 [Low-Level Arithmetic Functions], page 510, describes functions for simple
arithmetic, analysis of floating-point values, and reading numbers from strings.

e Chapter 9 [Searching and Sorting], page 192, contains information about functions for
searching and sorting arrays. You can use these functions on any kind of array by
providing an appropriate comparison function.

e Chapter 10 [Pattern Matching], page 202, presents functions for matching regular ex-
pressions and shell file name patterns, and for expanding words as the shell does.

e Chapter 21 [Date and Time], page 541, describes functions for measuring both calendar
time and CPU time, as well as functions for setting alarms and timers.

e Chapter 6 [Character Set Handling], page 109, contains information about manipulating
characters and strings using character sets larger than will fit in the usual char data

type.

Chapter 1: Introduction 12

e Chapter 7 [Locales and Internationalization|, page 150, describes how selecting a par-
ticular country or language affects the behavior of the library. For example, the locale
affects collation sequences for strings and how monetary values are formatted.

e Chapter 23 [Non-Local Exits], page 594, contains descriptions of the setjmp and
longjmp functions. These functions provide a facility for goto-like jumps which can
jump from one function to another.

e Chapter 24 [Signal Handling|, page 603, tells you all about signals—what they are, how
to establish a handler that is called when a particular kind of signal is delivered, and
how to prevent signals from arriving during critical sections of your program.

e Chapter 25 [The Basic Program/System Interface], page 647, tells how your programs
can access their command-line arguments and environment variables.

e Chapter 26 [Processes|, page 690, contains information about how to start new processes
and run programs.

e Chapter 27 [Job Control], page 701, describes functions for manipulating process groups
and the controlling terminal. This material is probably only of interest if you are writing
a shell or other program which handles job control specially.

e Chapter 28 [System Databases and Name Service Switch], page 720, describes the ser-
vices which are available for looking up names in the system databases, how to deter-
mine which service is used for which database, and how these services are implemented
so that contributors can design their own services.

e Section 29.13 [User Database], page 747, and Section 29.14 [Group Database], page 750,
tell you how to access the system user and group databases.

e Chapter 30 [System Management]|, page 756, describes functions for controlling and
getting information about the hardware and software configuration your program is
executing under.

e Chapter 31 [System Configuration Parameters], page 772, tells you how you can get

information about various operating system limits. Most of these parameters are pro-
vided for compatibility with POSIX.

e Appendix B [Summary of Library Facilities], page 817, gives a summary of all the
functions, variables, and macros in the library, with complete data types and function
prototypes, and says what standard or system each is derived from.

e Appendix C [Installing the GNU C Library|, page 920, explains how to build and install
the GNU C Library on your system, and how to report any bugs you might find.

e Appendix D [Library Maintenance|, page 928, explains how to add new functions or
port the library to a new system.

If you already know the name of the facility you are interested in, you can look it up
in Appendix B [Summary of Library Facilities|, page 817. This gives you a summary of its
syntax and a pointer to where you can find a more detailed description. This appendix is
particularly useful if you just want to verify the order and type of arguments to a function,
for example. It also tells you what standard or system each function, variable, or macro is

derived from.

Chapter 2: Error Reporting 13

2 Error Reporting

Many functions in the GNU C Library detect and report error conditions, and sometimes
your programs need to check for these error conditions. For example, when you open an
input file, you should verify that the file was actually opened correctly, and print an error
message or take other appropriate action if the call to the library function failed.

This chapter describes how the error reporting facility works. Your program should
include the header file errno.h to use this facility.

2.1 Checking for Errors

Most library functions return a special value to indicate that they have failed. The special
value is typically -1, a null pointer, or a constant such as EOF that is defined for that
purpose. But this return value tells you only that an error has occurred. To find out what
kind of error it was, you need to look at the error code stored in the variable errno. This
variable is declared in the header file errno.h.

volatile int errno [Variable]
The variable errno contains the system error number. You can change the value of
errno.

Since errno is declared volatile, it might be changed asynchronously by a signal
handler; see Section 24.4 [Defining Signal Handlers|, page 619. However, a properly
written signal handler saves and restores the value of errno, so you generally do not
need to worry about this possibility except when writing signal handlers.

The initial value of errno at program startup is zero. Many library functions are
guaranteed to set it to certain nonzero values when they encounter certain kinds of
errors. These error conditions are listed for each function. These functions do not
change errno when they succeed; thus, the value of errno after a successful call is
not necessarily zero, and you should not use errno to determine whether a call failed.
The proper way to do that is documented for each function. If the call failed, you
can examine errno.

Many library functions can set errno to a nonzero value as a result of calling other
library functions which might fail. You should assume that any library function might
alter errno when the function returns an error.

Portability Note: ISO C specifies errno as a “modifiable lvalue” rather than as a
variable, permitting it to be implemented as a macro. For example, its expansion
might involve a function call, like *__errno_location (). In fact, that is what it is
on GNU/Linux and GNU/Hurd systems. The GNU C Library, on each system, does
whatever is right for the particular system.

There are a few library functions, like sqrt and atan, that return a perfectly legiti-
mate value in case of an error, but also set errno. For these functions, if you want
to check to see whether an error occurred, the recommended method is to set errno
to zero before calling the function, and then check its value afterward.

All the error codes have symbolic names; they are macros defined in errno.h. The
names start with ‘E’ and an upper-case letter or digit; you should consider names of this
form to be reserved names. See Section 1.3.3 [Reserved Names|, page 5.

Chapter 2: Error Reporting 14

The error code values are all positive integers and are all distinct, with one exception:
EWOULDBLOCK and EAGAIN are the same. Since the values are distinct, you can use them
as labels in a switch statement; just don’t use both EWOULDBLOCK and EAGAIN. Your
program should not make any other assumptions about the specific values of these symbolic
constants.

The value of errno doesn’t necessarily have to correspond to any of these macros, since
some library functions might return other error codes of their own for other situations. The
only values that are guaranteed to be meaningful for a particular library function are the
ones that this manual lists for that function.

Except on GNU/Hurd systems, almost any system call can return EFAULT if it is given
an invalid pointer as an argument. Since this could only happen as a result of a bug in your
program, and since it will not happen on GNU/Hurd systems, we have saved space by not
mentioning EFAULT in the descriptions of individual functions.

In some Unix systems, many system calls can also return EFAULT if given as an argument a
pointer into the stack, and the kernel for some obscure reason fails in its attempt to extend
the stack. If this ever happens, you should probably try using statically or dynamically
allocated memory instead of stack memory on that system.

2.2 Error Codes

The error code macros are defined in the header file errno.h. All of them expand into
integer constant values. Some of these error codes can’t occur on GNU systems, but they
can occur using the GNU C Library on other systems.

int EPERM [Macro]
Operation not permitted; only the owner of the file (or other resource) or processes
with special privileges can perform the operation.

int ENOENT [Macro]
No such file or directory. This is a “file doesn’t exist” error for ordinary files that are
referenced in contexts where they are expected to already exist.

int ESRCH [Macro]
No process matches the specified process ID.

int EINTR [Macro]
Interrupted function call; an asynchronous signal occurred and prevented completion
of the call. When this happens, you should try the call again.

You can choose to have functions resume after a signal that is handled, rather than
failing with EINTR; see Section 24.5 [Primitives Interrupted by Signals|, page 629.

int EIO [Macro]
Input/output error; usually used for physical read or write errors.

int ENXIO [Macro]
No such device or address. The system tried to use the device represented by a file
you specified, and it couldn’t find the device. This can mean that the device file was
installed incorrectly, or that the physical device is missing or not correctly attached
to the computer.

Chapter 2: Error Reporting 15

int

int

int

int

int

int

int

int

int

int

int

int

E2BIG [Macro]
Argument list too long; used when the arguments passed to a new program being
executed with one of the exec functions (see Section 26.5 [Executing a File|, page 693)
occupy too much memory space. This condition never arises on GNU/Hurd systems.

ENOEXEC [Macro]
Invalid executable file format. This condition is detected by the exec functions; see
Section 26.5 [Executing a File|, page 693.

EBADF [Macro]
Bad file descriptor; for example, I/O on a descriptor that has been closed or reading
from a descriptor open only for writing (or vice versa).

ECHILD [Macro]
There are no child processes. This error happens on operations that are supposed to
manipulate child processes, when there aren’t any processes to manipulate.

EDEADLK [Macro]
Deadlock avoided; allocating a system resource would have resulted in a deadlock
situation. The system does not guarantee that it will notice all such situations.
This error means you got lucky and the system noticed; it might just hang. See
Section 13.15 [File Locks|, page 337, for an example.

ENOMEM [Macro]
No memory available. The system cannot allocate more virtual memory because its
capacity is full.

EACCES [Macro]
Permission denied; the file permissions do not allow the attempted operation.

EFAULT [Macro]
Bad address; an invalid pointer was detected. On GNU/Hurd systems, this error
never happens; you get a signal instead.

ENOTBLK [Macro]
A file that isn’t a block special file was given in a situation that requires one. For
example, trying to mount an ordinary file as a file system in Unix gives this error.

EBUSY [Macro]
Resource busy; a system resource that can’t be shared is already in use. For example,
if you try to delete a file that is the root of a currently mounted filesystem, you get
this error.

EEXIST [Macro]
File exists; an existing file was specified in a context where it only makes sense to
specify a new file.

EXDEV [Macro]
An attempt to make an improper link across file systems was detected. This happens
not only when you use link (see Section 14.4 [Hard Links], page 356) but also when
you rename a file with rename (see Section 14.7 [Renaming Files|, page 360).

Chapter 2: Error Reporting 16

int

int

int

int

int

int

int

int

int

int

int

int

ENODEV [Macro]
The wrong type of device was given to a function that expects a particular sort of
device.

ENOTDIR [Macro]
A file that isn’t a directory was specified when a directory is required.

EISDIR [Macro]
File is a directory; you cannot open a directory for writing, or create or remove hard
links to it.

EINVAL [Macro]
Invalid argument. This is used to indicate various kinds of problems with passing the
wrong argument to a library function.

EMFILE [Macro]
The current process has too many files open and can’t open any more. Duplicate
descriptors do count toward this limit.

In BSD and GNU, the number of open files is controlled by a resource limit that
can usually be increased. If you get this error, you might want to increase the
RLIMIT_NOFILE limit or make it unlimited; see Section 22.2 [Limiting Resource Us-
agel, page 576.

ENFILE [Macro]
There are too many distinct file openings in the entire system. Note that any number
of linked channels count as just one file opening; see Section 13.5.1 [Linked Channels]
page 307. This error never occurs on GNU/Hurd systems.

9

ENOTTY [Macro]
Inappropriate I/O control operation, such as trying to set terminal modes on an
ordinary file.

ETXTBSY [Macro]
An attempt to execute a file that is currently open for writing, or write to a file that
is currently being executed. Often using a debugger to run a program is considered
having it open for writing and will cause this error. (The name stands for “text file
busy”.) This is not an error on GNU/Hurd systems; the text is copied as necessary.

EFBIG [Macro]
File too big; the size of a file would be larger than allowed by the system.

ENOSPC [Macro]
No space left on device; write operation on a file failed because the disk is full.

ESPIPE [Macro]
Invalid seek operation (such as on a pipe).

EROFS [Macro]
An attempt was made to modify something on a read-only file system.

Chapter 2: Error Reporting 17

int

int

int

int

int

int

int

EMLINK [Macro]
Too many links; the link count of a single file would become too large. rename can
cause this error if the file being renamed already has as many links as it can take (see
Section 14.7 [Renaming Files|, page 360).

EPIPE [Macro]
Broken pipe; there is no process reading from the other end of a pipe. Every library
function that returns this error code also generates a SIGPIPE signal; this signal
terminates the program if not handled or blocked. Thus, your program will never
actually see EPIPE unless it has handled or blocked SIGPIPE.

EDOM [Macro]
Domain error; used by mathematical functions when an argument value does not fall
into the domain over which the function is defined.

ERANGE [Macro]
Range error; used by mathematical functions when the result value is not repre-
sentable because of overflow or underflow.

EAGAIN [Macro]
Resource temporarily unavailable; the call might work if you try again later. The
macro EWOULDBLOCK is another name for EAGAIN; they are always the same in the
GNU C Library.

This error can happen in a few different situations:

e An operation that would block was attempted on an object that has non-blocking
mode selected. Trying the same operation again will block until some exter-
nal condition makes it possible to read, write, or connect (whatever the opera-
tion). You can use select to find out when the operation will be possible; see
Section 13.8 [Waiting for Input or Output], page 313.

Portability Note: In many older Unix systems, this condition was indicated by
EWOULDBLOCK, which was a distinct error code different from EAGAIN. To make
your program portable, you should check for both codes and treat them the same.

e A temporary resource shortage made an operation impossible. fork can return
this error. It indicates that the shortage is expected to pass, so your program
can try the call again later and it may succeed. It is probably a good idea to
delay for a few seconds before trying it again, to allow time for other processes
to release scarce resources. Such shortages are usually fairly serious and affect
the whole system, so usually an interactive program should report the error to
the user and return to its command loop.

EWOULDBLOCK [Macro]
In the GNU C Library, this is another name for EAGAIN (above). The values are
always the same, on every operating system.

C libraries in many older Unix systems have EWOULDBLOCK as a separate error code.

EINPROGRESS [Macro]
An operation that cannot complete immediately was initiated on an object that has
non-blocking mode selected. Some functions that must always block (such as connect;

Chapter 2: Error Reporting 18

int

int

int

int

int

int

int

int

int

int

int

int

see Section 16.9.1 [Making a Connection], page 413) never return EAGAIN. Instead,
they return EINPROGRESS to indicate that the operation has begun and will take some
time. Attempts to manipulate the object before the call completes return EALREADY.
You can use the select function to find out when the pending operation has com-
pleted; see Section 13.8 [Waiting for Input or Output], page 313.

EALREADY [Macro]
An operation is already in progress on an object that has non-blocking mode selected.

ENOTSOCK [Macro]
A file that isn’t a socket was specified when a socket is required.

EMSGSIZE [Macro]
The size of a message sent on a socket was larger than the supported maximum size.

EPROTOTYPE [Macro]
The socket type does not support the requested communications protocol.

ENOPROTOOPT [Macro]
You specified a socket option that doesn’t make sense for the particular protocol being
used by the socket. See Section 16.12 [Socket Options], page 430.

EPROTONOSUPPORT [Macro]
The socket domain does not support the requested communications protocol (perhaps
because the requested protocol is completely invalid). See Section 16.8.1 [Creating a
Socket], page 411.

ESOCKTNOSUPPORT [Macro]
The socket type is not supported.

EOPNOTSUPP [Macro]
The operation you requested is not supported. Some socket functions don’t make sense
for all types of sockets, and others may not be implemented for all communications
protocols. On GNU/Hurd systems, this error can happen for many calls when the
object does not support the particular operation; it is a generic indication that the
server knows nothing to do for that call.

EPFNOSUPPORT [Macro]
The socket communications protocol family you requested is not supported.

EAFNOSUPPORT [Macro]
The address family specified for a socket is not supported; it is inconsistent with the
protocol being used on the socket. See Chapter 16 [Sockets], page 389.

EADDRINUSE [Macro]
The requested socket address is already in use. See Section 16.3 [Socket Addresses],
page 391.

EADDRNQOTAVAIL [Macro]
The requested socket address is not available; for example, you tried to give a socket
a name that doesn’t match the local host name. See Section 16.3 [Socket Addresses],
page 391.

Chapter 2: Error Reporting 19

int

int

int

int

int

int

int

int

int

int

int

int

int

ENETDOWN [Macro]
A socket operation failed because the network was down.

ENETUNREACH [Macro]
A socket operation failed because the subnet containing the remote host was unreach-
able.

ENETRESET [Macro]
A network connection was reset because the remote host crashed.

ECONNABORTED [Macro]
A network connection was aborted locally.

ECONNRESET [Macro]
A network connection was closed for reasons outside the control of the local host,
such as by the remote machine rebooting or an unrecoverable protocol violation.

ENOBUFS [Macro]
The kernel’s buffers for I/O operations are all in use. In GNU, this error is always
synonymous with ENOMEM; you may get one or the other from network operations.

EISCONN [Macro]
You tried to connect a socket that is already connected. See Section 16.9.1 [Making
a Connection|, page 413.

ENOTCONN [Macro]
The socket is not connected to anything. You get this error when you try to trans-
mit data over a socket, without first specifying a destination for the data. For a
connectionless socket (for datagram protocols, such as UDP), you get EDESTADDRREQ
instead.

EDESTADDRREQ [Macro]
No default destination address was set for the socket. You get this error when you try
to transmit data over a connectionless socket, without first specifying a destination
for the data with connect.

ESHUTDOWN [Macro]
The socket has already been shut down.

ETOOMANYREFS [Macro]
777

ETIMEDOUT [Macro]

A socket operation with a specified timeout received no response during the timeout
period.

ECONNREFUSED [Macro]
A remote host refused to allow the network connection (typically because it is not
running the requested service).

Chapter 2: Error Reporting 20

int

int

int

int

int

int

int

int

int

int

int

int

int

ELOOP [Macro]
Too many levels of symbolic links were encountered in looking up a file name. This
often indicates a cycle of symbolic links.

ENAMETOOLONG [Macro]
Filename too long (longer than PATH_MAX; see Section 31.6 [Limits on File System
Capacity], page 784) or host name too long (in gethostname or sethostname; see
Section 30.1 [Host Identification], page 756).

EHOSTDOWN [Macro]
The remote host for a requested network connection is down.

EHOSTUNREACH [Macro]
The remote host for a requested network connection is not reachable.

ENOTEMPTY [Macro]
Directory not empty, where an empty directory was expected. Typically, this error
occurs when you are trying to delete a directory.

EPROCLIM [Macro]
This means that the per-user limit on new process would be exceeded by an attempted
fork. See Section 22.2 [Limiting Resource Usage|, page 576, for details on the RLIMIT_
NPROC limit.

EUSERS [Macro]
The file quota system is confused because there are too many users.

EDQUOT [Macro]
The user’s disk quota was exceeded.

ESTALE [Macro]
Stale file handle. This indicates an internal confusion in the file system which is due
to file system rearrangements on the server host for NFS file systems or corruption
in other file systems. Repairing this condition usually requires unmounting, possibly
repairing and remounting the file system.

EREMOTE [Macro]
An attempt was made to NFS-mount a remote file system with a file name that
already specifies an NFS-mounted file. (This is an error on some operating systems,
but we expect it to work properly on GNU/Hurd systems, making this error code
impossible.)

EBADRPC [Macro]
777

ERPCMISMATCH [Macro]
777

EPROGUNAVAIL [Macro]

77

Chapter 2: Error Reporting 21

int

int

int

int

int

int

int

int

int

int

EPROGMISMATCH [Macro]
777

EPROCUNAVAIL [Macro]
777

ENOLCK [Macro]

No locks available. This is used by the file locking facilities; see Section 13.15 [File
Locks|, page 337. This error is never generated by GNU/Hurd systems, but it can
result from an operation to an NFS server running another operating system.

EFTYPE [Macro]
Inappropriate file type or format. The file was the wrong type for the operation, or
a data file had the wrong format.

On some systems chmod returns this error if you try to set the sticky bit on a non-
directory file; see Section 14.9.7 [Assigning File Permissions|, page 372.

EAUTH [Macro]
777

ENEEDAUTH [Macro]
777

ENOSYS [Macro]

Function not implemented. This indicates that the function called is not implemented
at all, either in the C library itself or in the operating system. When you get this
error, you can be sure that this particular function will always fail with ENOSYS unless
you install a new version of the C library or the operating system.

ENOTSUP [Macro]
Not supported. A function returns this error when certain parameter values are valid,
but the functionality they request is not available. This can mean that the function
does not implement a particular command or option value or flag bit at all. For
functions that operate on some object given in a parameter, such as a file descriptor
or a port, it might instead mean that only that specific object (file descriptor, port,
etc.) is unable to support the other parameters given; different file descriptors might
support different ranges of parameter values.

If the entire function is not available at all in the implementation, it returns ENOSYS
instead.

EILSEQ [Macro]
While decoding a multibyte character the function came along an invalid or an in-
complete sequence of bytes or the given wide character is invalid.

EBACKGROUND [Macro]
On GNU/Hurd systems, servers supporting the term protocol return this error for
certain operations when the caller is not in the foreground process group of the ter-
minal. Users do not usually see this error because functions such as read and write
translate it into a SIGTTIN or SIGTTOU signal. See Chapter 27 [Job Control], page 701,
for information on process groups and these signals.

Chapter 2: Error Reporting 22

int EDIED [Macro]
On GNU/Hurd systems, opening a file returns this error when the file is translated by
a program and the translator program dies while starting up, before it has connected

to the file.
int ED [Macro]
The experienced user will know what is wrong.
int EGREGIOQUS [Macro]
You did what?
int EIEIO [Macro]
Go home and have a glass of warm, dairy-fresh milk.
int EGRATUITOUS [Macro]
This error code has no purpose.
int EBADMSG [Macro]
int EIDRM [Macro]
int EMULTIHOP [Macro]
int ENODATA [Macro]
int ENOLINK [Macro]
int ENOMSG [Macro]
int ENOSR [Macro]
int ENOSTR [Macro]
int EOVERFLOW [Macro]
int EPROTO [Macro]
int ETIME [Macro]
int ECANCELED [Macro]

Operation canceled; an asynchronous operation was canceled before it completed. See
Section 13.10 [Perform I/O Operations in Parallel], page 317. When you call aio_
cancel, the normal result is for the operations affected to complete with this error;
see Section 13.10.4 [Cancellation of AIO Operations|, page 327.

The following error codes are defined by the Linux/i386 kernel. They are not yet docu-
mented.

int ERESTART [Macro]
int ECHRNG [Macro]
int EL2NSYNC [Macro]
int EL3HLT [Macro]
int EL3RST [Macro]
int ELNRNG [Macro]

Chapter 2: Error Reporting

int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int

int

EUNATCH
ENOCSI
EL2HLT
EBADE
EBADR
EXFULL
ENOANQO
EBADRQC
EBADSLT
EDEADLOCK
EBFONT
ENONET
ENOPKG
EADV
ESRMNT
ECOMM
EDOTDOT
ENOTUNIQ
EBADFD
EREMCHG
ELIBACC
ELIBBAD
ELIBSCN
ELIBMAX
ELIBEXEC
ESTRPIPE
EUCLEAN
ENOTNAM
ENAVAIL
EISNAM
EREMOTEIO
ENOMEDIUM
EMEDIUMTYPE

23

Chap

int
int
int
int
int
int
int
int
2.3
The 1

ter 2: Error Reporting 24
ENOKEY [Macro]
EKEYEXPIRED [Macro]
EKEYREVOKED [Macro]
EKEYREJECTED [Macro]
EOWNERDEAD [Macro]
ENOTRECOVERABLE [Macro]
ERFKILL [Macro]
EHWPOISON [Macro]

Error Messages

ibrary has functions and variables designed to make it easy for your program to report

informative error messages in the customary format about the failure of a library call. The
functions strerror and perror give you the standard error message for a given error code;
the variable program_invocation_short_name gives you convenient access to the name of

the p

char

char

void

rogram that encountered the error.

* strerror (int errnum) [Function]
The strerror function maps the error code (see Section 2.1 [Checking for Errors|,
page 13) specified by the errnum argument to a descriptive error message string. The
return value is a pointer to this string.

The value errnum normally comes from the variable errno.

You should not modify the string returned by strerror. Also, if you make subsequent
calls to strerror, the string might be overwritten. (But it’s guaranteed that no
library function ever calls strerror behind your back.)

The function strerror is declared in string.h.

* strerror_r (int errnum, char *buf, size_t n) [Function]
The strerror_r function works like strerror but instead of returning the error
message in a statically allocated buffer shared by all threads in the process, it returns
a private copy for the thread. This might be either some permanent global data or a
message string in the user supplied buffer starting at buf with the length of n bytes.

At most n characters are written (including the NUL byte) so it is up to the user to
select the buffer large enough.

This function should always be used in multi-threaded programs since there is no way
to guarantee the string returned by strerror really belongs to the last call of the
current thread.

This function strerror_r is a GNU extension and it is declared in string.h.

perror (const char *message) [Function]
This function prints an error message to the stream stderr; see Section 12.2 [Standard
Streams|, page 227. The orientation of stderr is not changed.

If you call perror with a message that is either a null pointer or an empty string,
perror just prints the error message corresponding to errno, adding a trailing new-
line.

Chapter 2: Error Reporting 25

If you supply a non-null message argument, then perror prefixes its output with this
string. It adds a colon and a space character to separate the message from the error
string corresponding to errno.

The function perror is declared in stdio.h.

strerror and perror produce the exact same message for any given error code; the
precise text varies from system to system. With the GNU C Library, the messages are
fairly short; there are no multi-line messages or embedded newlines. Each error message
begins with a capital letter and does not include any terminating punctuation.

Compatibility Note: The strerror function was introduced in ISO C89. Many older C
systems do not support this function yet.

Many programs that don’t read input from the terminal are designed to exit if any
system call fails. By convention, the error message from such a program should start with
the program’s name, sans directories. You can find that name in the variable program_
invocation_short_name; the full file name is stored the variable program_invocation_
name.

char * program_invocation_name [Variable]
This variable’s value is the name that was used to invoke the program running in
the current process. It is the same as argv[0]. Note that this is not necessarily a
useful file name; often it contains no directory names. See Section 25.1 [Program
Arguments|, page 647.

char * program_invocation_short_name [Variable]
This variable’s value is the name that was used to invoke the program running in
the current process, with directory names removed. (That is to say, it is the same as
program_invocation_name minus everything up to the last slash, if any.)

The library initialization code sets up both of these variables before calling main.

Portability Note: These two variables are GNU extensions. If you want your program to
work with non-GNU libraries, you must save the value of argv[0] in main, and then strip
off the directory names yourself. We added these extensions to make it possible to write
self-contained error-reporting subroutines that require no explicit cooperation from main.

Here is an example showing how to handle failure to open a file correctly. The function
open_sesame tries to open the named file for reading and returns a stream if successful. The
fopen library function returns a null pointer if it couldn’t open the file for some reason. In
that situation, open_sesame constructs an appropriate error message using the strerror
function, and terminates the program. If we were going to make some other library calls
before passing the error code to strerror, we’d have to save it in a local variable instead,
because those other library functions might overwrite errno in the meantime.

#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

FILE x*
open_sesame (char *name)

{
FILE *stream;

Chapter 2: Error Reporting 26

errno = 0;
stream = fopen (name, "r");
if (stream == NULL)
{
fprintf (stderr, "Ys: Couldn’t open file %s; %s\n",
program_invocation_short_name, name, strerror (errno));
exit (EXIT_FAILURE);
}
else
return stream;

}

Using perror has the advantage that the function is portable and available on all systems
implementing ISO C. But often the text perror generates is not what is wanted and there
is no way to extend or change what perror does. The GNU coding standard, for instance,
requires error messages to be preceded by the program name and programs which read some
input files should provide information about the input file name and the line number in case
an error is encountered while reading the file. For these occasions there are two functions
available which are widely used throughout the GNU project. These functions are declared
in error.h.

void error (int status, int errnum, const char *format, ...) [Function]
The error function can be used to report general problems during program execution.
The format argument is a format string just like those given to the printf family of
functions. The arguments required for the format can follow the format parameter.
Just like perror, error also can report an error code in textual form. But unlike
perror the error value is explicitly passed to the function in the errnum parameter.
This eliminates the problem mentioned above that the error reporting function must
be called immediately after the function causing the error since otherwise errno might
have a different value.

The error prints first the program name. If the application defined a global variable
error_print_progname and points it to a function this function will be called to print
the program name. Otherwise the string from the global variable program_name is
used. The program name is followed by a colon and a space which in turn is followed
by the output produced by the format string. If the errnum parameter is non-zero the
format string output is followed by a colon and a space, followed by the error message
for the error code errnum. In any case is the output terminated with a newline.

The output is directed to the stderr stream. If the stderr wasn’t oriented before
the call it will be narrow-oriented afterwards.

The function will return unless the status parameter has a non-zero value. In this case
the function will call exit with the status value for its parameter and therefore never
return. If error returns the global variable error_message_count is incremented by
one to keep track of the number of errors reported.

void error_at_line (int status, int errnum, const char *fname, [Function]
unsigned int lineno, const char *format, ...)

The error_at_line function is very similar to the error function. The only dif-

ference are the additional parameters fname and lineno. The handling of the other

Chapter 2: Error Reporting 27

parameters is identical to that of error except that between the program name and
the string generated by the format string additional text is inserted.

Directly following the program name a colon, followed by the file name pointer to by
fname, another colon, and a value of lineno is printed.

This additional output of course is meant to be used to locate an error in an input
file (like a programming language source code file etc).

If the global variable error_one_per_line is set to a non-zero value error_at_line
will avoid printing consecutive messages for the same file and line. Repetition which
are not directly following each other are not caught.

Just like error this function only returned if status is zero. Otherwise exit is called
with the non-zero value. If error returns the global variable error_message_count
is incremented by one to keep track of the number of errors reported.

As mentioned above the error and error_at_line functions can be customized by
defining a variable named error_print_progname.

void (*error_print_progname) (void) [Variable]
If the error_print_progname variable is defined to a non-zero value the function
pointed to is called by error or error_at_line. It is expected to print the program
name or do something similarly useful.

The function is expected to be print to the stderr stream and must be able to handle
whatever orientation the stream has.

The variable is global and shared by all threads.

unsigned int error_message_count [Variable]
The error_message_count variable is incremented whenever one of the functions
error or error_at_line returns. The variable is global and shared by all threads.

int error_one_per_line [Variable]
The error_one_per_line variable influences only error_at_line. Normally the
error_at_line function creates output for every invocation. If error_one_per_
line is set to a non-zero value error_at_line keeps track of the last file name and
line number for which an error was reported and avoid directly following messages for
the same file and line. This variable is global and shared by all threads.

A program which read some input file and reports errors in it could look like this:
{
char *line = NULL;
size_t len = 0;
unsigned int lineno = 0;

error_message_count = 0;
while (! feof_unlocked (fp))

{
ssize_t n = getline (&line, &len, fp);
if (n <= 0)
/* End of file or error. */
break;

++lineno;

Chapter 2: Error Reporting 28

/* Process the line. */

if (Detect error in line)
error_at_line (0, errval, filename, lineno,
"some error text %s", some_variable);

}

if (error_message_count != 0)
error (EXIT_FAILURE, O, "/u errors found", error_message_count);
}

error and error_at_line are clearly the functions of choice and enable the programmer
to write applications which follow the GNU coding standard. The GNU C Library addi-
tionally contains functions which are used in BSD for the same purpose. These functions
are declared in err.h. It is generally advised to not use these functions. They are included
only for compatibility.

void warn (const char *format, ...) [Function]
The warn function is roughly equivalent to a call like

error (0, errno, format, the parameters)

except that the global variables error respects and modifies are not used.

void vwarn (const char *format, va_list ap) [Function]
The vwarn function is just like warn except that the parameters for the handling of
the format string format are passed in as an value of type va_list.

void warnx (const char *format, ...) [Function]
The warnx function is roughly equivalent to a call like
error (0, 0, format, the parameters)
except that the global variables error respects and modifies are not used. The dif-
ference to warn is that no error number string is printed.

void vwarnx (const char *format, va_list ap) [Function]
The vwarnx function is just like warnx except that the parameters for the handling
of the format string format are passed in as an value of type va_list.

void err (int status, const char *format, ...) [Function]
The err function is roughly equivalent to a call like
error (status, errno, format, the parameters)
except that the global variables error respects and modifies are not used and that
the program is exited even if status is zero.

void verr (int status, const char *format, va_list ap) [Function]
The verr function is just like err except that the parameters for the handling of the
format string format are passed in as an value of type va_list.

void errx (int status, const char *format, ...) [Function]
The errx function is roughly equivalent to a call like
error (status, 0, format, the parameters)
except that the global variables error respects and modifies are not used and that
the program is exited even if status is zero. The difference to err is that no error
number string is printed.

Chapter 2: Error Reporting 29

void verrx (int status, const char *format, va_list ap) [Function]
The verrx function is just like errx except that the parameters for the handling of
the format string format are passed in as an value of type va_list.

Chapter 3: Virtual Memory Allocation And Paging 30

3 Virtual Memory Allocation And Paging

This chapter describes how processes manage and use memory in a system that uses the
GNU C Library.

The GNU C Library has several functions for dynamically allocating virtual memory in
various ways. They vary in generality and in efficiency. The library also provides functions
for controlling paging and allocation of real memory.

Memory mapped I/0 is not discussed in this chapter. See Section 13.7 [Memory-mapped
I/0], page 309.

3.1 Process Memory Concepts

One of the most basic resources a process has available to it is memory. There are a lot of
different ways systems organize memory, but in a typical one, each process has one linear
virtual address space, with addresses running from zero to some huge maximum. It need
not be contiguous; i.e., not all of these addresses actually can be used to store data.

The virtual memory is divided into pages (4 kilobytes is typical). Backing each page
of virtual memory is a page of real memory (called a frame) or some secondary storage,
usually disk space. The disk space might be swap space or just some ordinary disk file.
Actually, a page of all zeroes sometimes has nothing at all backing it — there’s just a flag
saying it is all zeroes.

The same frame of real memory or backing store can back multiple virtual pages be-
longing to multiple processes. This is normally the case, for example, with virtual memory
occupied by GNU C Library code. The same real memory frame containing the printf
function backs a virtual memory page in each of the existing processes that has a printf
call in its program.

In order for a program to access any part of a virtual page, the page must at that moment
be backed by (“connected t0”) a real frame. But because there is usually a lot more virtual
memory than real memory, the pages must move back and forth between real memory and
backing store regularly, coming into real memory when a process needs to access them and
then retreating to backing store when not needed anymore. This movement is called paging.

When a program attempts to access a page which is not at that moment backed by
real memory, this is known as a page fault. When a page fault occurs, the kernel suspends
the process, places the page into a real page frame (this is called “paging in” or “faulting
in”), then resumes the process so that from the process’ point of view, the page was in
real memory all along. In fact, to the process, all pages always seem to be in real memory.
Except for one thing: the elapsed execution time of an instruction that would normally be
a few nanoseconds is suddenly much, much, longer (because the kernel normally has to do
I/O to complete the page-in). For programs sensitive to that, the functions described in
Section 3.4 [Locking Pages|, page 60 can control it.

Within each virtual address space, a process has to keep track of what is at which
addresses, and that process is called memory allocation. Allocation usually brings to mind
meting out scarce resources, but in the case of virtual memory, that’s not a major goal,
because there is generally much more of it than anyone needs. Memory allocation within a
process is mainly just a matter of making sure that the same byte of memory isn’t used to
store two different things.

Chapter 3: Virtual Memory Allocation And Paging 31

Processes allocate memory in two major ways: by exec and programmatically. Actually,
forking is a third way, but it’s not very interesting. See Section 26.4 [Creating a Process],
page 691.

Exec is the operation of creating a virtual address space for a process, loading its basic
program into it, and executing the program. It is done by the “exec” family of functions
(e.g. execl). The operation takes a program file (an executable), it allocates space to
load all the data in the executable, loads it, and transfers control to it. That data is most
notably the instructions of the program (the text), but also literals and constants in the
program and even some variables: C variables with the static storage class (see Section 3.2.1
[Memory Allocation in C Programs|, page 32).

Once that program begins to execute, it uses programmatic allocation to gain additional
memory. In a C program with the GNU C Library, there are two kinds of programmatic
allocation: automatic and dynamic. See Section 3.2.1 [Memory Allocation in C Programs],
page 32.

Memory-mapped I/0 is another form of dynamic virtual memory allocation. Mapping
memory to a file means declaring that the contents of certain range of a process’ addresses
shall be identical to the contents of a specified regular file. The system makes the virtual
memory initially contain the contents of the file, and if you modify the memory, the system
writes the same modification to the file. Note that due to the magic of virtual memory and
page faults, there is no reason for the system to do I/O to read the file, or allocate real
memory for its contents, until the program accesses the virtual memory. See Section 13.7
[Memory-mapped 1/0], page 309.

Just as it programmatically allocates memory, the program can programmatically deal-
locate (free) it. You can’t free the memory that was allocated by exec. When the program
exits or execs, you might say that all its memory gets freed, but since in both cases the ad-
dress space ceases to exist, the point is really moot. See Section 25.7 [Program Termination],
page 685.

A process’ virtual address space is divided into segments. A segment is a contiguous
range of virtual addresses. Three important segments are:

The text segment contains a program’s instructions and literals and static constants.
It is allocated by exec and stays the same size for the life of the virtual address space.

e The data segment is working storage for the program. It can be preallocated and
preloaded by exec and the process can extend or shrink it by calling functions as
described in See Section 3.3 [Resizing the Data Segment|, page 60. Its lower end is
fixed.

e The stack segment contains a program stack. It grows as the stack grows, but doesn’t
shrink when the stack shrinks.

3.2 Allocating Storage For Program Data

This section covers how ordinary programs manage storage for their data, including the
famous malloc function and some fancier facilities special the GNU C Library and GNU
Compiler.

Chapter 3: Virtual Memory Allocation And Paging 32

3.2.1 Memory Allocation in C Programs

The C language supports two kinds of memory allocation through the variables in C pro-
grams:

e Static allocation is what happens when you declare a static or global variable. Each
static or global variable defines one block of space, of a fixed size. The space is allocated
once, when your program is started (part of the exec operation), and is never freed.

e Automatic allocation happens when you declare an automatic variable, such as a func-
tion argument or a local variable. The space for an automatic variable is allocated
when the compound statement containing the declaration is entered, and is freed when
that compound statement is exited.

In GNU C, the size of the automatic storage can be an expression that varies. In other
C implementations, it must be a constant.

A third important kind of memory allocation, dynamic allocation, is not supported by
C variables but is available via GNU C Library functions.

3.2.1.1 Dynamic Memory Allocation

Dynamic memory allocation is a technique in which programs determine as they are running
where to store some information. You need dynamic allocation when the amount of memory
you need, or how long you continue to need it, depends on factors that are not known before
the program runs.

For example, you may need a block to store a line read from an input file; since there is
no limit to how long a line can be, you must allocate the memory dynamically and make it
dynamically larger as you read more of the line.

Or, you may need a block for each record or each definition in the input data; since
you can’t know in advance how many there will be, you must allocate a new block for each
record or definition as you read it.

When you use dynamic allocation, the allocation of a block of memory is an action that
the program requests explicitly. You call a function or macro when you want to allocate
space, and specify the size with an argument. If you want to free the space, you do so by
calling another function or macro. You can do these things whenever you want, as often as
you want.

Dynamic allocation is not supported by C variables; there is no storage class “dynamic”,
and there can never be a C variable whose value is stored in dynamically allocated space.
The only way to get dynamically allocated memory is via a system call (which is generally
via a GNU C Library function call), and the only way to refer to dynamically allocated
space is through a pointer. Because it is less convenient, and because the actual process of
dynamic allocation requires more computation time, programmers generally use dynamic
allocation only when neither static nor automatic allocation will serve.

For example, if you want to allocate dynamically some space to hold a struct foobar,
you cannot declare a variable of type struct foobar whose contents are the dynamically
allocated space. But you can declare a variable of pointer type struct foobar * and assign
it the address of the space. Then you can use the operators ‘*’ and ‘-=>’ on this pointer
variable to refer to the contents of the space:

{

Chapter 3: Virtual Memory Allocation And Paging 33

struct foobar *ptr
= (struct foobar *) malloc (sizeof (struct foobar));
ptr->name = x;
ptr->next = current_foobar;
current_foobar = ptr;

}

3.2.2 Unconstrained Allocation

The most general dynamic allocation facility is malloc. It allows you to allocate blocks of
memory of any size at any time, make them bigger or smaller at any time, and free the
blocks individually at any time (or never).

3.2.2.1 Basic Memory Allocation

To allocate a block of memory, call malloc. The prototype for this function is in stdlib.h.

void * malloc (size_-t size) [Function]
This function returns a pointer to a newly allocated block size bytes long, or a null
pointer if the block could not be allocated.

The contents of the block are undefined; you must initialize it yourself (or use calloc
instead; see Section 3.2.2.5 [Allocating Cleared Space], page 36). Normally you would cast
the value as a pointer to the kind of object that you want to store in the block. Here
we show an example of doing so, and of initializing the space with zeros using the library
function memset (see Section 5.4 [Copying and Concatenation], page 77):

struct foo *ptr;

ptr = (struct foo *) malloc (sizeof (struct foo));
if (ptr == 0) abort ();
memset (ptr, O, sizeof (struct foo));

You can store the result of malloc into any pointer variable without a cast, because
ISO C automatically converts the type void * to another type of pointer when necessary.
But the cast is necessary in contexts other than assignment operators or if you might want
your code to run in traditional C.

Remember that when allocating space for a string, the argument to malloc must be one
plus the length of the string. This is because a string is terminated with a null character
that doesn’t count in the “length” of the string but does need space. For example:

char *ptr;

ptr = (char *) malloc (length + 1);

9

See Section 5.1 [Representation of Strings|, page 73, for more information about this.

3.2.2.2 Examples of malloc

If no more space is available, malloc returns a null pointer. You should check the value of
every call to malloc. It is useful to write a subroutine that calls malloc and reports an
error if the value is a null pointer, returning only if the value is nonzero. This function is
conventionally called xmalloc. Here it is:

void *
xmalloc (size_t size)

Chapter 3: Virtual Memory Allocation And Paging 34

{
register void *value = malloc (size);
if (value == 0)
fatal ("virtual memory exhausted");
return value;

}
Here is a real example of using malloc (by way of xmalloc). The function savestring
will copy a sequence of characters into a newly allocated null-terminated string:

char *
savestring (const char *ptr, size_t len)
{

register char *value = (char *) xmalloc (len + 1);
value[len] = ’\0’;
return (char *) memcpy (value, ptr, len);

}

The block that malloc gives you is guaranteed to be aligned so that it can hold any
type of data. On GNU systems, the address is always a multiple of eight on most systems,
and a multiple of 16 on 64-bit systems. Ounly rarely is any higher boundary (such as a
page boundary) necessary; for those cases, use memalign, posix_memalign or valloc (see
Section 3.2.2.7 [Allocating Aligned Memory Blocks]|, page 36).

Note that the memory located after the end of the block is likely to be in use for something
else; perhaps a block already allocated by another call to malloc. If you attempt to treat
the block as longer than you asked for it to be, you are liable to destroy the data that
malloc uses to keep track of its blocks, or you may destroy the contents of another block.
If you have already allocated a block and discover you want it to be bigger, use realloc
(see Section 3.2.2.4 [Changing the Size of a Block], page 35).

3.2.2.3 Freeing Memory Allocated with malloc

When you no longer need a block that you got with malloc, use the function free to make
the block available to be allocated again. The prototype for this function is in stdlib.h.

void free (void *ptr) [Function]
The free function deallocates the block of memory pointed at by ptr.

void cfree (void *ptr) [Function]
This function does the same thing as free. It’s provided for backward compatibility
with SunOS; you should use free instead.

Freeing a block alters the contents of the block. Do not expect to find any data (such as
a pointer to the next block in a chain of blocks) in the block after freeing it. Copy whatever
you need out of the block before freeing it! Here is an example of the proper way to free all
the blocks in a chain, and the strings that they point to:

struct chain
{
struct chain *next;
char *name;

}

void
free_chain (struct chain *chain)

{

Chapter 3: Virtual Memory Allocation And Paging 35

while (chain != 0)
{
struct chain *next = chain->next;
free (chain->name);
free (chain);
chain = next;

}

Occasionally, free can actually return memory to the operating system and make the
process smaller. Usually, all it can do is allow a later call to malloc to reuse the space. In
the meantime, the space remains in your program as part of a free-list used internally by
malloc.

There is no point in freeing blocks at the end of a program, because all of the program’s
space is given back to the system when the process terminates.

3.2.2.4 Changing the Size of a Block

Often you do not know for certain how big a block you will ultimately need at the time you
must begin to use the block. For example, the block might be a buffer that you use to hold
a line being read from a file; no matter how long you make the buffer initially, you may
encounter a line that is longer.

You can make the block longer by calling realloc. This function is declared in stdlib.h.

void * realloc (void *ptr, size_t newsize) [Function]
The realloc function changes the size of the block whose address is ptr to be newsize.

Since the space after the end of the block may be in use, realloc may find it necessary
to copy the block to a new address where more free space is available. The value of
realloc is the new address of the block. If the block needs to be moved, realloc
copies the old contents.

If you pass a null pointer for ptr, realloc behaves just like ‘malloc (newsize)’. This
can be convenient, but beware that older implementations (before ISO C) may not
support this behavior, and will probably crash when realloc is passed a null pointer.

Like malloc, realloc may return a null pointer if no memory space is available to make
the block bigger. When this happens, the original block is untouched; it has not been
modified or relocated.

In most cases it makes no difference what happens to the original block when realloc
fails, because the application program cannot continue when it is out of memory, and the
only thing to do is to give a fatal error message. Often it is convenient to write and use a
subroutine, conventionally called xrealloc, that takes care of the error message as xmalloc
does for malloc:

void =*
xrealloc (void *ptr, size_t size)
{
register void *value = realloc (ptr, size);
if (value == 0)
fatal ("Virtual memory exhausted");
return value;

}

Chapter 3: Virtual Memory Allocation And Paging 36

You can also use realloc to make a block smaller. The reason you would do this is to
avoid tying up a lot of memory space when only a little is needed. In several allocation
implementations, making a block smaller sometimes necessitates copying it, so it can fail if
no other space is available.

If the new size you specify is the same as the old size, realloc is guaranteed to change
nothing and return the same address that you gave.

3.2.2.5 Allocating Cleared Space

The function calloc allocates memory and clears it to zero. It is declared in stdlib.h.

void * calloc (size-t count, size_t eltsize) [Function]
This function allocates a block long enough to contain a vector of count elements,
each of size eltsize. Its contents are cleared to zero before calloc returns.

You could define calloc as follows:
void x*
calloc (size_t count, size_t eltsize)

{
size_t size count * eltsize;
void *value = malloc (size);
if (value !'= 0)
memset (value, 0, size);
return value;

}
But in general, it is not guaranteed that calloc calls malloc internally. Therefore, if an
application provides its own malloc/realloc/free outside the C library, it should always
define calloc, too.

3.2.2.6 Efficiency Considerations for malloc

As opposed to other versions, the malloc in the GNU C Library does not round up block
sizes to powers of two, neither for large nor for small sizes. Neighboring chunks can be
coalesced on a free no matter what their size is. This makes the implementation suitable
for all kinds of allocation patterns without generally incurring high memory waste through
fragmentation.

Very large blocks (much larger than a page) are allocated with mmap (anonymous or via
/dev/zero) by this implementation. This has the great advantage that these chunks are
returned to the system immediately when they are freed. Therefore, it cannot happen that
a large chunk becomes “locked” in between smaller ones and even after calling free wastes
memory. The size threshold for mmap to be used can be adjusted with mallopt. The use of
mmap can also be disabled completely.

3.2.2.7 Allocating Aligned Memory Blocks

The address of a block returned by malloc or realloc in GNU systems is always a multiple
of eight (or sixteen on 64-bit systems). If you need a block whose address is a multiple of
a higher power of two than that, use memalign, posix_memalign, or valloc. memalign is
declared in malloc.h and posix_memalign is declared in stdlib.h.

With the GNU C Library, you can use free to free the blocks that memalign, posix_
memalign, and valloc return. That does not work in BSD, however—BSD does not provide
any way to free such blocks.

Chapter 3: Virtual Memory Allocation And Paging 37

void * memalign (size_t boundary, size_t size) [Function]
The memalign function allocates a block of size bytes whose address is a multiple of
boundary. The boundary must be a power of two! The function memalign works by
allocating a somewhat larger block, and then returning an address within the block
that is on the specified boundary.

int posix_memalign (void **memptr, size_t alignment, size_t size) [Function]
The posix_memalign function is similar to the memalign function in that it returns
a buffer of size bytes aligned to a multiple of alignment. But it adds one requirement
to the parameter alignment: the value must be a power of two multiple of sizeof
(void *).
If the function succeeds in allocation memory a pointer to the allocated memory is
returned in *memptr and the return value is zero. Otherwise the function returns an
error value indicating the problem.

This function was introduced in POSIX 1003.1d.

void * valloc (size_t size) [Function]

Using valloc is like using memalign and passing the page size as the value of the
second argument. It is implemented like this:

void *

valloc (size_t size)

{

return memalign (getpagesize (), size);

}

Section 22.4.2 [How to get information about the memory subsystem?], page 591 for

more information about the memory subsystem.

3.2.2.8 Malloc Tunable Parameters

You can adjust some parameters for dynamic memory allocation with the mallopt function.
This function is the general SVID/XPG interface, defined in malloc.h.

int mallopt (int param, int value) [Function]
When calling mallopt, the param argument specifies the parameter to be set, and
value the new value to be set. Possible choices for param, as defined in malloc.h,
are:

M_MMAP_MAX
The maximum number of chunks to allocate with mmap. Setting this to
zero disables all use of mmap.

M_MMAP_THRESHOLD
All chunks larger than this value are allocated outside the normal heap,
using the mmap system call. This way it is guaranteed that the memory for
these chunks can be returned to the system on free. Note that requests
smaller than this threshold might still be allocated via mmap.

M_PERTURB
If non-zero, memory blocks are filled with values depending on some low
order bits of this parameter when they are allocated (except when al-
located by calloc) and freed. This can be used to debug the use of

Chapter 3: Virtual Memory Allocation And Paging 38

uninitialized or freed heap memory. Note that this option does not guar-
antee that the freed block will have any specific values. It only guarantees
that the content the block had before it was freed will be overwritten.

M_TOP_PAD
This parameter determines the amount of extra memory to obtain from
the system when a call to sbrk is required. It also specifies the number of
bytes to retain when shrinking the heap by calling sbrk with a negative
argument. This provides the necessary hysteresis in heap size such that
excessive amounts of system calls can be avoided.

M_TRIM_THRESHOLD
This is the minimum size (in bytes) of the top-most, releasable chunk
that will cause sbrk to be called with a negative argument in order to
return memory to the system.

3.2.2.9 Heap Consistency Checking

You can ask malloc to check the consistency of dynamic memory by using the mcheck
function. This function is a GNU extension, declared in mcheck.h.

int mcheck (void (*abortfn) (enum mcheck_status status)) [Function]
Calling mcheck tells malloc to perform occasional consistency checks. These will
catch things such as writing past the end of a block that was allocated with malloc.

The abortfn argument is the function to call when an inconsistency is found. If you
supply a null pointer, then mcheck uses a default function which prints a message
and calls abort (see Section 25.7.4 [Aborting a Program|, page 688). The function
you supply is called with one argument, which says what sort of inconsistency was
detected; its type is described below.

It is too late to begin allocation checking once you have allocated anything with
malloc. So mcheck does nothing in that case. The function returns -1 if you call it
too late, and 0 otherwise (when it is successful).

The easiest way to arrange to call mcheck early enough is to use the option ‘~1mcheck’
when you link your program; then you don’t need to modify your program source at
all. Alternatively you might use a debugger to insert a call to mcheck whenever the
program is started, for example these gdb commands will automatically call mcheck
whenever the program starts:

(gdb) break main

Breakpoint 1, main (argc=2, argv=0xbffff964) at whatever.c:10
(gdb) command 1

Type commands for when breakpoint 1 is hit, one per line.

End with a line saying just "end".

>call mcheck(0)

>continue

>end

(gdb) ...

This will however only work if no initialization function of any object involved calls
any of the malloc functions since mcheck must be called before the first such function.

Chapter 3: Virtual Memory Allocation And Paging 39

enum mcheck_status mprobe (void *pointer) [Function]
The mprobe function lets you explicitly check for inconsistencies in a particular allo-
cated block. You must have already called mcheck at the beginning of the program,
to do its occasional checks; calling mprobe requests an additional consistency check
to be done at the time of the call.

The argument pointer must be a pointer returned by malloc or realloc. mprobe
returns a value that says what inconsistency, if any, was found. The values are
described below.

enum mcheck_status [Data Type]
This enumerated type describes what kind of inconsistency was detected in an allo-
cated block, if any. Here are the possible values:

MCHECK_DISABLED
mcheck was not called before the first allocation. No consistency checking
can be done.

MCHECK_OK
No inconsistency detected.

MCHECK_HEAD
The data immediately before the block was modified. This commonly
happens when an array index or pointer is decremented too far.

MCHECK_TAIL
The data immediately after the block was modified. This commonly
happens when an array index or pointer is incremented too far.

MCHECK_FREE
The block was already freed.

Another possibility to check for and guard against bugs in the use of malloc, realloc
and free is to set the environment variable MALLOC_CHECK_. When MALLOC_CHECK_ is set, a
special (less efficient) implementation is used which is designed to be tolerant against simple
errors, such as double calls of free with the same argument, or overruns of a single byte
(off-by-one bugs). Not all such errors can be protected against, however, and memory leaks
can result. If MALLOC_CHECK_ is set to 0, any detected heap corruption is silently ignored;
if set to 1, a diagnostic is printed on stderr; if set to 2, abort is called immediately. This
can be useful because otherwise a crash may happen much later, and the true cause for the
problem is then very hard to track down.

There is one problem with MALLOC_CHECK_: in SUID or SGID binaries it could possibly
be exploited since diverging from the normal programs behavior it now writes something to
the standard error descriptor. Therefore the use of MALLOC_CHECK_ is disabled by default for
SUID and SGID binaries. It can be enabled again by the system administrator by adding
a file /etc/suid-debug (the content is not important it could be empty).

So, what’s the difference between using MALLOC_CHECK_ and linking with ‘-1mcheck’?
MALLOC_CHECK_ is orthogonal with respect to ‘~1lmcheck’. ‘~lmcheck’ has been added for
backward compatibility. Both MALLOC_CHECK_ and ‘-lmcheck’ should uncover the same
bugs - but using MALLOC_CHECK_ you don’t need to recompile your application.

Chapter 3: Virtual Memory Allocation And Paging 40

3.2.2.10 Memory Allocation Hooks

The GNU C Library lets you modify the behavior of malloc, realloc, and free by spec-
ifying appropriate hook functions. You can use these hooks to help you debug programs
that use dynamic memory allocation, for example.

The hook variables are declared in malloc.h.

__malloc_hook [Variable]
The value of this variable is a pointer to the function that malloc uses whenever it
is called. You should define this function to look like malloc; that is, like:

void *function (size_t size, const void *caller)

The value of caller is the return address found on the stack when the malloc function
was called. This value allows you to trace the memory consumption of the program.

__realloc_hook [Variable]
The value of this variable is a pointer to function that realloc uses whenever it is
called. You should define this function to look like realloc; that is, like:

void *function (void *ptr, size_t size, const void *caller)

The value of caller is the return address found on the stack when the realloc function
was called. This value allows you to trace the memory consumption of the program.

__free_hook [Variable]
The value of this variable is a pointer to function that free uses whenever it is called.
You should define this function to look like free; that is, like:

void function (void *ptr, const void *caller)

The value of caller is the return address found on the stack when the free function
was called. This value allows you to trace the memory consumption of the program.

__memalign_hook [Variable]
The value of this variable is a pointer to function that memalign uses whenever it is
called. You should define this function to look like memalign; that is, like:

void *function (size_t alignment, size_t size, const void *caller)

The value of caller is the return address found on the stack when the memalign
function was called. This value allows you to trace the memory consumption of the
program.

You must make sure that the function you install as a hook for one of these functions
does not call that function recursively without restoring the old value of the hook first!
Otherwise, your program will get stuck in an infinite recursion. Before calling the function
recursively, one should make sure to restore all the hooks to their previous value. When
coming back from the recursive call, all the hooks should be resaved since a hook might
modify itself.

__malloc_initialize_hook [Variable]
The value of this variable is a pointer to a function that is called once when the malloc
implementation is initialized. This is a weak variable, so it can be overridden in the
application with a definition like the following:

void (*__

malloc_initialize_hook) (void) = my_init_hook;

Chapter 3: Virtual Memory Allocation And Paging 41

An issue to look out for is the time at which the malloc hook functions can be safely
installed. If the hook functions call the malloc-related functions recursively, it is necessary
that malloc has already properly initialized itself at the time when __malloc_hook etc. is
assigned to. On the other hand, if the hook functions provide a complete malloc implemen-
tation of their own, it is vital that the hooks are assigned to before the very first malloc call
has completed, because otherwise a chunk obtained from the ordinary, un-hooked malloc
may later be handed to __free_hook, for example.

In both cases, the problem can be solved by setting up the hooks from within a user-
defined function pointed to by __malloc_initialize_hook—then the hooks will be set up
safely at the right time.

Here is an example showing how to use __malloc_hook and __free_hook properly. It
installs a function that prints out information every time malloc or free is called. We just
assume here that realloc and memalign are not used in our program.

/* Prototypes for __malloc_hook free_hook */

#include <malloc.h>

) —=

/* Prototypes for our hooks. */

static void my_init_hook (void);

static void *my_malloc_hook (size_t, const void *);
static void my_free_hook (void#*, const void *);

/* Override initializing hook from the C library. */
void (*__malloc_initialize_hook) (void) = my_init_hook;

static void

my_init_hook (void)

{
old_malloc_hook = __malloc_hook;
old_free_hook = __free_hook;
__malloc_hook = my_malloc_hook;
__free_hook = my_free_hook;

static void *
my_malloc_hook (size_t size, const void *caller)
{
void *result;
/* Restore all old hooks */
__malloc_hook = old_malloc_hook;
__free_hook = old_free_hook;
/* Call recursively */
result = malloc (size);
/* Save underlying hooks */
old_malloc_hook = __malloc_hook;
old_free_hook = __free_hook;
/* printf might call malloc, so protect it too. */
printf ("malloc (%u) returns %p\n", (unsigned int) size, result);
/* Restore our own hooks */
__malloc_hook = my_malloc_hook;
__free_hook = my_free_hook;
return result;

static void
my_free_hook (void *ptr, const void *caller)

Chapter 3: Virtual Memory Allocation And Paging 42

/* Restore all old hooks */
__malloc_hook = old_malloc_hook;
__free_hook = old_free_hook;

/* Call recursively */

free (ptr);

/* Save underlying hooks */
old_malloc_hook = __malloc_hook;
old_free_hook = __free_hook;

/* printf might call free, so protect it too. */
printf ("freed pointer %p\n", ptr);

/* Restore our own hooks */

__malloc_hook = my_malloc_hook;
__free_hook = my_free_hook;

}

main ()

{

}

The mcheck function (see Section 3.2.2.9 [Heap Consistency Checking], page 38) works
by installing such hooks.

3.2.2.11 Statistics for Memory Allocation with malloc

You can get information about dynamic memory allocation by calling the mallinfo func-
tion. This function and its associated data type are declared in malloc.h; they are an
extension of the standard SVID/XPG version.

struct mallinfo [Data Type]
This structure type is used to return information about the dynamic memory alloca-
tor. It contains the following members:

int arena This is the total size of memory allocated with sbrk by malloc, in bytes.

int ordblks
This is the number of chunks not in use. (The memory allocator internally
gets chunks of memory from the operating system, and then carves them
up to satisfy individual malloc requests; see Section 3.2.2.6 [Efficiency
Considerations for malloc], page 36.)

int smblks
This field is unused.

int hblks This is the total number of chunks allocated with mmap.

int hblkhd
This is the total size of memory allocated with mmap, in bytes.

int usmblks
This field is unused.

int fsmblks
This field is unused.

Chapter 3: Virtual Memory Allocation And Paging 43

int uordblks
This is the total size of memory occupied by chunks handed out by
malloc.

int fordblks
This is the total size of memory occupied by free (not in use) chunks.

int keepcost
This is the size of the top-most releasable chunk that normally borders
the end of the heap (i.e., the high end of the virtual address space’s data
segment).

struct mallinfo mallinfo (void) [Function]
This function returns information about the current dynamic memory usage in a
structure of type struct mallinfo.

3.2.2.12 Summary of malloc-Related Functions

Here is a summary of the functions that work with malloc:

void *malloc (size_t size)
Allocate a block of size bytes. See Section 3.2.2.1 [Basic Memory Allocation],
page 33.

void free (void *addr)
Free a block previously allocated by malloc. See Section 3.2.2.3 [Freeing Mem-
ory Allocated with malloc|, page 34.

void *realloc (void *addr, size_t size)
Make a block previously allocated by malloc larger or smaller, possibly by
copying it to a new location. See Section 3.2.2.4 [Changing the Size of a Block],
page 35.

void *calloc (size_t count, size_t eltsize)
Allocate a block of count * eltsize bytes using malloc, and set its contents to
zero. See Section 3.2.2.5 [Allocating Cleared Space], page 36.

void *valloc (size_t size)
Allocate a block of size bytes, starting on a page boundary. See Section 3.2.2.7
[Allocating Aligned Memory Blocks], page 36.

void *memalign (size_t size, size_t boundary)
Allocate a block of size bytes, starting on an address that is a multiple of
boundary. See Section 3.2.2.7 [Allocating Aligned Memory Blocks|, page 36.

int mallopt (int param, int value)
Adjust a tunable parameter. See Section 3.2.2.8 [Malloc Tunable Parameters],
page 37.

int mcheck (void (*abortfn) (void))
Tell malloc to perform occasional consistency checks on dynamically allocated
memory, and to call abortfn when an inconsistency is found. See Section 3.2.2.9
[Heap Consistency Checking], page 38.

Chapter 3: Virtual Memory Allocation And Paging 44

malloc_hook) (size_t size, const void *caller)
A pointer to a function that malloc uses whenever it is called.

void * (*

void *(*__realloc_hook) (void *ptr, size_t size, const void *caller)
A pointer to a function that realloc uses whenever it is called.

void (*__free_hook) (void *ptr, const void *caller)
A pointer to a function that free uses whenever it is called.

void (*__memalign_hook) (size_t size, size_t alignment, const void *caller)
A pointer to a function that memalign uses whenever it is called.

struct mallinfo mallinfo (void)
Return information about the current dynamic memory usage. See
Section 3.2.2.11 [Statistics for Memory Allocation with malloc], page 42.

3.2.3 Allocation Debugging

A complicated task when programming with languages which do not use garbage collected
dynamic memory allocation is to find memory leaks. Long running programs must assure
that dynamically allocated objects are freed at the end of their lifetime. If this does not
happen the system runs out of memory, sooner or later.

The malloc implementation in the GNU C Library provides some simple means to detect
such leaks and obtain some information to find the location. To do this the application must
be started in a special mode which is enabled by an environment variable. There are no
speed penalties for the program if the debugging mode is not enabled.

3.2.3.1 How to install the tracing functionality

void mtrace (void) [Function]
When the mtrace function is called it looks for an environment variable named
MALLOC_TRACE. This variable is supposed to contain a valid file name. The user
must have write access. If the file already exists it is truncated. If the environment
variable is not set or it does not name a valid file which can be opened for writing
nothing is done. The behavior of malloc etc. is not changed. For obvious reasons
this also happens if the application is installed with the SUID or SGID bit set.

If the named file is successfully opened, mtrace installs special handlers for the func-
tions malloc, realloc, and free (see Section 3.2.2.10 [Memory Allocation Hooks],
page 40). From then on, all uses of these functions are traced and protocolled into
the file. There is now of course a speed penalty for all calls to the traced functions so
tracing should not be enabled during normal use.

This function is a GNU extension and generally not available on other systems. The
prototype can be found in mcheck.h.

void muntrace (void) [Function]
The muntrace function can be called after mtrace was used to enable tracing the
malloc calls. If no (successful) call of mtrace was made muntrace does nothing.

Otherwise it deinstalls the handlers for malloc, realloc, and free and then closes

the protocol file. No calls are protocolled anymore and the program runs again at full
speed.

Chapter 3: Virtual Memory Allocation And Paging 45

This function is a GNU extension and generally not available on other systems. The
prototype can be found in mcheck.h.

3.2.3.2 Example program excerpts

Even though the tracing functionality does not influence the runtime behavior of the pro-
gram it is not a good idea to call mtrace in all programs. Just imagine that you debug
a program using mtrace and all other programs used in the debugging session also trace
their malloc calls. The output file would be the same for all programs and thus is unusable.
Therefore one should call mtrace only if compiled for debugging. A program could therefore
start like this:

#include <mcheck.h>

int
main (int argc, char *argv[])
{
#ifdef DEBUGGING
mtrace ();
#endif
}

This is all what is needed if you want to trace the calls during the whole runtime of the
program. Alternatively you can stop the tracing at any time with a call to muntrace. It
is even possible to restart the tracing again with a new call to mtrace. But this can cause
unreliable results since there may be calls of the functions which are not called. Please
note that not only the application uses the traced functions, also libraries (including the C
library itself) use these functions.

This last point is also why it is no good idea to call muntrace before the program
terminated. The libraries are informed about the termination of the program only after the
program returns from main or calls exit and so cannot free the memory they use before
this time.

So the best thing one can do is to call mtrace as the very first function in the program
and never call muntrace. So the program traces almost all uses of the malloc functions
(except those calls which are executed by constructors of the program or used libraries).

3.2.3.3 Some more or less clever ideas

You know the situation. The program is prepared for debugging and in all debugging
sessions it runs well. But once it is started without debugging the error shows up. A typical
example is a memory leak that becomes visible only when we turn off the debugging. If you
foresee such situations you can still win. Simply use something equivalent to the following
little program:

#include <mcheck.h>
#include <signal.h>

static void
enable (int sig)

Chapter 3: Virtual Memory Allocation And Paging 46

{

mtrace ();
signal (SIGUSR1, enable);
}

static void
disable (int sig)

{
muntrace ();
signal (SIGUSR2, disable);
}
int
main (int argc, char *argv[])
{
signal (SIGUSR1, enable);
signal (SIGUSR2, disable);
}

Le., the user can start the memory debugger any time s/he wants if the program was
started with MALLOC_TRACE set in the environment. The output will of course not show the
allocations which happened before the first signal but if there is a memory leak this will
show up nevertheless.

3.2.3.4 Interpreting the traces

If you take a look at the output it will look similar to this:

= Start
[0x8048209] - 0x8064cc8
[0x8048209] - 0x8064ce0
[0x8048209] - 0x8064cf8

[0x80481eb] + 0x8064c48 0x14

[0x80481eb] + 0x8064c60 0x14

[0x80481eb] + 0x8064c78 0x14

[0x80481eb] + 0x8064c90 0x14
= End

What this all means is not really important since the trace file is not meant to be read
by a human. Therefore no attention is given to readability. Instead there is a program
which comes with the GNU C Library which interprets the traces and outputs a summary
in an user-friendly way. The program is called mtrace (it is in fact a Perl script) and it
takes one or two arguments. In any case the name of the file with the trace output must
be specified. If an optional argument precedes the name of the trace file this must be the
name of the program which generated the trace.

drepper$ mtrace tst-mtrace log

Chapter 3: Virtual Memory Allocation And Paging 47

No memory leaks.

In this case the program tst-mtrace was run and it produced a trace file log. The
message printed by mtrace shows there are no problems with the code, all allocated memory
was freed afterwards.

If we call mtrace on the example trace given above we would get a different outout:

drepper$ mtrace errlog

- 0x08064cc8 Free 2 was
- 0x08064ce0 Free 3 was
- 0x08064cf8 Free 4 was

never alloc’d 0x8048209
never alloc’d 0x8048209
never alloc’d 0x8048209

Memory not freed:

Address Size Caller
0x08064c48 0x14 at 0x80481eb
0x08064c60 0x14 at 0x80481eb
0x08064c78 0x14 at 0x80481eb
0x08064c90 0x14 at 0x80481eb

We have called mtrace with only one argument and so the script has no chance to find
out what is meant with the addresses given in the trace. We can do better:

drepper$ mtrace tst errlog

- 0x08064cc8 Free 2 was never alloc’d /home/drepper/tst.c:39
- 0x08064ce0 Free 3 was never alloc’d /home/drepper/tst.c:39
- 0x08064cf8 Free 4 was never alloc’d /home/drepper/tst.c:39

Memory not freed:

Address Size Caller
0x08064c48 0x14 at /home/drepper/tst.c:33
0x08064c60 0x14 at /home/drepper/tst.c:33
0x08064c78 0x14 at /home/drepper/tst.c:33
0x08064c90 0x14 at /home/drepper/tst.c:33

Suddenly the output makes much more sense and the user can see immediately where
the function calls causing the trouble can be found.

Interpreting this output is not complicated. There are at most two different situations
being detected. First, free was called for pointers which were never returned by one of the
allocation functions. This is usually a very bad problem and what this looks like is shown
in the first three lines of the output. Situations like this are quite rare and if they appear
they show up very drastically: the program normally crashes.

The other situation which is much harder to detect are memory leaks. As you can see in
the output the mtrace function collects all this information and so can say that the program
calls an allocation function from line 33 in the source file /home/drepper/tst-mtrace.c
four times without freeing this memory before the program terminates. Whether this is a
real problem remains to be investigated.

Chapter 3: Virtual Memory Allocation And Paging 48

3.2.4 Obstacks

An obstack is a pool of memory containing a stack of objects. You can create any number of
separate obstacks, and then allocate objects in specified obstacks. Within each obstack, the
last object allocated must always be the first one freed, but distinct obstacks are independent
of each other.

Aside from this one constraint of order of freeing, obstacks are totally general: an obstack
can contain any number of objects of any size. They are implemented with macros, so
allocation is usually very fast as long as the objects are usually small. And the only space
overhead per object is the padding needed to start each object on a suitable boundary.

3.2.4.1 Creating Obstacks

The utilities for manipulating obstacks are declared in the header file obstack.h.

struct obstack [Data Type]
An obstack is represented by a data structure of type struct obstack. This structure
has a small fixed size; it records the status of the obstack and how to find the space in
which objects are allocated. It does not contain any of the objects themselves. You
should not try to access the contents of the structure directly; use only the functions
described in this chapter.

You can declare variables of type struct obstack and use them as obstacks, or you can
allocate obstacks dynamically like any other kind of object. Dynamic allocation of obstacks
allows your program to have a variable number of different stacks. (You can even allocate
an obstack structure in another obstack, but this is rarely useful.)

All the functions that work with obstacks require you to specify which obstack to use.
You do this with a pointer of type struct obstack *. In the following, we often say “an
obstack” when strictly speaking the object at hand is such a pointer.

The objects in the obstack are packed into large blocks called chunks. The struct
obstack structure points to a chain of the chunks currently in use.

The obstack library obtains a new chunk whenever you allocate an object that won’t
fit in the previous chunk. Since the obstack library manages chunks automatically, you
don’t need to pay much attention to them, but you do need to supply a function which the
obstack library should use to get a chunk. Usually you supply a function which uses malloc
directly or indirectly. You must also supply a function to free a chunk. These matters are
described in the following section.

3.2.4.2 Preparing for Using Obstacks

Each source file in which you plan to use the obstack functions must include the header file
obstack.h, like this:

#include <obstack.h>

Also, if the source file uses the macro obstack_init, it must declare or define two
functions or macros that will be called by the obstack library. One, obstack_chunk_alloc,
is used to allocate the chunks of memory into which objects are packed. The other, obstack_
chunk_free, is used to return chunks when the objects in them are freed. These macros
should appear before any use of obstacks in the source file.

Chapter 3: Virtual Memory Allocation And Paging 49

Usually these are defined to use malloc via the intermediary xmalloc (see Section 3.2.2
[Unconstrained Allocation], page 33). This is done with the following pair of macro defini-
tions:

#define obstack_chunk_alloc xmalloc

#define obstack_chunk_free free
Though the memory you get using obstacks really comes from malloc, using obstacks is
faster because malloc is called less often, for larger blocks of memory. See Section 3.2.4.10
[Obstack Chunks], page 55, for full details.

At run time, before the program can use a struct obstack object as an obstack, it must
initialize the obstack by calling obstack_init.

int obstack_init (struct obstack *obstack-ptr) [Function]
Initialize obstack obstack-ptr for allocation of objects. This function calls the ob-
stack’s obstack_chunk_alloc function. If allocation of memory fails, the function
pointed to by obstack_alloc_failed_handler is called. The obstack_init func-
tion always returns 1 (Compatibility notice: Former versions of obstack returned 0 if
allocation failed).

Here are two examples of how to allocate the space for an obstack and initialize it. First,
an obstack that is a static variable:

static struct obstack myobstack;

obstack_init (&myobstack);

Second, an obstack that is itself dynamically allocated:

struct obstack *myobstack_ptr
= (struct obstack *) xmalloc (sizeof (struct obstack));

obstack_init (myobstack_ptr);

obstack_alloc_failed_handler [Variable]
The value of this variable is a pointer to a function that obstack uses when obstack_
chunk_alloc fails to allocate memory. The default action is to print a message and
abort. You should supply a function that either calls exit (see Section 25.7 [Program
Termination], page 685) or longjmp (see Chapter 23 [Non-Local Exits|, page 594) and
doesn’t return.

void my_obstack_alloc_failed (void)

obstack_alloc_failed_handler = &my_obstack_alloc_failed;

3.2.4.3 Allocation in an Obstack

The most direct way to allocate an object in an obstack is with obstack_alloc, which is
invoked almost like malloc.

void * obstack_alloc (struct obstack *obstack-ptr, int size) [Function]
This allocates an uninitialized block of size bytes in an obstack and returns its address.
Here obstack-ptr specifies which obstack to allocate the block in; it is the address of
the struct obstack object which represents the obstack. Each obstack function or
macro requires you to specify an obstack-ptr as the first argument.

Chapter 3: Virtual Memory Allocation And Paging 50

This function calls the obstack’s obstack_chunk_alloc function if it needs to allocate
a new chunk of memory; it calls obstack_alloc_failed_handler if allocation of
memory by obstack_chunk_alloc failed.

For example, here is a function that allocates a copy of a string str in a specific obstack,
which is in the variable string_obstack:

struct obstack string_obstack;

char *
copystring (char *string)

size_t len = strlen (string) + 1;
char *s = (char *) obstack_alloc (&string_obstack, len);
memcpy (s, string, len);
return s;
}
To allocate a block with specified contents, use the function obstack_copy, declared like

this:

void * obstack_copy (struct obstack *obstack-ptr, void *address, [Function]
int size)
This allocates a block and initializes it by copying size bytes of data starting
at address. It calls obstack_alloc_failed_handler if allocation of memory by
obstack_chunk_alloc failed.

void * obstack_copyO (struct obstack *obstack-ptr, void *address, [Function]
int size)
Like obstack_copy, but appends an extra byte containing a null character. This
extra byte is not counted in the argument size.

The obstack_copy0 function is convenient for copying a sequence of characters into an
obstack as a null-terminated string. Here is an example of its use:

char *
obstack_savestring (char *addr, int size)
{

return obstack_copy0 (&myobstack, addr, size);
}
Contrast this with the previous example of savestring using malloc (see Section 3.2.2.1
[Basic Memory Allocation], page 33).

3.2.4.4 Freeing Objects in an Obstack

To free an object allocated in an obstack, use the function obstack_free. Since the obstack
is a stack of objects, freeing one object automatically frees all other objects allocated more
recently in the same obstack.

void obstack_free (struct obstack *obstack-ptr, void *object) [Function]
If object is a null pointer, everything allocated in the obstack is freed. Otherwise,
object must be the address of an object allocated in the obstack. Then object is freed,
along with everything allocated in obstack since object.

Chapter 3: Virtual Memory Allocation And Paging 51

Note that if object is a null pointer, the result is an uninitialized obstack. To free all
memory in an obstack but leave it valid for further allocation, call obstack_free with the
address of the first object allocated on the obstack:

obstack_free (obstack_ptr, first_object_allocated_ptr);

Recall that the objects in an obstack are grouped into chunks. When all the objects in
a chunk become free, the obstack library automatically frees the chunk (see Section 3.2.4.2
[Preparing for Using Obstacks|, page 48). Then other obstacks, or non-obstack allocation,
can reuse the space of the chunk.

3.2.4.5 Obstack Functions and Macros

The interfaces for using obstacks may be defined either as functions or as macros, depending
on the compiler. The obstack facility works with all C compilers, including both ISO C and
traditional C, but there are precautions you must take if you plan to use compilers other
than GNU C.

If you are using an old-fashioned non-ISO C compiler, all the obstack “functions” are
actually defined only as macros. You can call these macros like functions, but you cannot
use them in any other way (for example, you cannot take their address).

Calling the macros requires a special precaution: namely, the first operand (the obstack
pointer) may not contain any side effects, because it may be computed more than once. For
example, if you write this:

obstack_alloc (get_obstack (), 4);

you will find that get_obstack may be called several times. If you use *obstack_list_
ptr++ as the obstack pointer argument, you will get very strange results since the incre-
mentation may occur several times.

In ISO C, each function has both a macro definition and a function definition. The
function definition is used if you take the address of the function without calling it. An
ordinary call uses the macro definition by default, but you can request the function definition
instead by writing the function name in parentheses, as shown here:

char *x;
void *(*funcp) ();
/* Use the macro. */
x = (char *) obstack_alloc (obptr, size);
/* Call the function. */
x = (char *) (obstack_alloc) (obptr, size);
/* Take the address of the function. */
funcp = obstack_alloc;
This is the same situation that exists in ISO C for the standard library functions. See

Section 1.3.2 [Macro Definitions of Functions|, page 5.

Warning: When you do use the macros, you must observe the precaution of avoiding
side effects in the first operand, even in ISO C.

If you use the GNU C compiler, this precaution is not necessary, because various language
extensions in GNU C permit defining the macros so as to compute each argument only once.

3.2.4.6 Growing Objects

Because memory in obstack chunks is used sequentially, it is possible to build up an object
step by step, adding one or more bytes at a time to the end of the object. With this

Chapter 3: Virtual Memory Allocation And Paging 52

technique, you do not need to know how much data you will put in the object until you
come to the end of it. We call this the technique of growing objects. The special functions
for adding data to the growing object are described in this section.

You don’t need to do anything special when you start to grow an object. Using one of
the functions to add data to the object automatically starts it. However, it is necessary to
say explicitly when the object is finished. This is done with the function obstack_finish.

The actual address of the object thus built up is not known until the object is finished.
Until then, it always remains possible that you will add so much data that the object must
be copied into a new chunk.

While the obstack is in use for a growing object, you cannot use it for ordinary allocation
of another object. If you try to do so, the space already added to the growing object will
become part of the other object.

void obstack_blank (struct obstack *obstack-ptr, int size) [Function]
The most basic function for adding to a growing object is obstack_blank, which adds
space without initializing it.

void obstack_grow (struct obstack *obstack-ptr, void *data, int [Function]
size)
To add a block of initialized space, use obstack_grow, which is the growing-object
analogue of obstack_copy. It adds size bytes of data to the growing object, copying
the contents from data.

void obstack_grow0 (struct obstack *obstack-ptr, void *data, int [Function]
size)
This is the growing-object analogue of obstack_copy0. It adds size bytes copied from
data, followed by an additional null character.

void obstack_lgrow (struct obstack *obstack-ptr, char c) [Function]
To add one character at a time, use the function obstack_igrow. It adds a single
byte containing ¢ to the growing object.

void obstack_ptr_grow (struct obstack *obstack-ptr, void *data) [Function]
Adding the value of a pointer one can use the function obstack_ptr_grow. It adds
sizeof (void *) bytes containing the value of data.

void obstack_int_grow (struct obstack *obstack-ptr, int data) [Function]
A single value of type int can be added by using the obstack_int_grow function. It
adds sizeof (int) bytes to the growing object and initializes them with the value
of data.

void * obstack_finish (struct obstack *obstack-ptr) [Function]
When you are finished growing the object, use the function obstack_finish to close
it off and return its final address.

Once you have finished the object, the obstack is available for ordinary allocation or
for growing another object.

This function can return a null pointer under the same conditions as obstack_alloc
(see Section 3.2.4.3 [Allocation in an Obstack], page 49).

Chapter 3: Virtual Memory Allocation And Paging 53

When you build an object by growing it, you will probably need to know afterward
how long it became. You need not keep track of this as you grow the object, because you
can find out the length from the obstack just before finishing the object with the function
obstack_object_size, declared as follows:

int obstack_object_size (struct obstack *obstack-ptr) [Function]
This function returns the current size of the growing object, in bytes. Remember to
call this function before finishing the object. After it is finished, obstack_object_
size will return zero.

If you have started growing an object and wish to cancel it, you should finish it and then
free it, like this:

obstack_free (obstack_ptr, obstack_finish (obstack_ptr));
This has no effect if no object was growing.

You can use obstack_blank with a negative size argument to make the current object
smaller. Just don’t try to shrink it beyond zero length—there’s no telling what will happen
if you do that.

3.2.4.7 Extra Fast Growing Objects

The usual functions for growing objects incur overhead for checking whether there is room
for the new growth in the current chunk. If you are frequently constructing objects in small
steps of growth, this overhead can be significant.

You can reduce the overhead by using special “fast growth” functions that grow the
object without checking. In order to have a robust program, you must do the checking
yourself. If you do this checking in the simplest way each time you are about to add data to
the object, you have not saved anything, because that is what the ordinary growth functions
do. But if you can arrange to check less often, or check more efficiently, then you make the
program faster.

The function obstack_room returns the amount of room available in the current chunk.
It is declared as follows:

int obstack_room (struct obstack *obstack-ptr) [Function]
This returns the number of bytes that can be added safely to the current growing
object (or to an object about to be started) in obstack obstack using the fast growth
functions.

While you know there is room, you can use these fast growth functions for adding data
to a growing object:

void obstack_1lgrow_fast (struct obstack *obstack-ptr, char c) [Function]
The function obstack_lgrow_fast adds one byte containing the character ¢ to the
growing object in obstack obstack-ptr.

void obstack_ptr_grow_fast (struct obstack *obstack-ptr, void [Function]
*data)
The function obstack_ptr_grow_fast adds sizeof (void *) bytes containing the
value of data to the growing object in obstack obstack-ptr.

Chapter 3: Virtual Memory Allocation And Paging 54

void obstack_int_grow_fast (struct obstack *obstack-ptr, int [Function]
data)
The function obstack_int_grow_fast adds sizeof (int) bytes containing the value
of data to the growing object in obstack obstack-ptr.

void obstack_blank_fast (struct obstack *obstack-ptr, int size) [Function]
The function obstack_blank_fast adds size bytes to the growing object in obstack
obstack-ptr without initializing them.

When you check for space using obstack_room and there is not enough room for what
you want to add, the fast growth functions are not safe. In this case, simply use the
corresponding ordinary growth function instead. Very soon this will copy the object to a
new chunk; then there will be lots of room available again.

So, each time you use an ordinary growth function, check afterward for sufficient space
using obstack_room. Once the object is copied to a new chunk, there will be plenty of
space again, so the program will start using the fast growth functions again.

Here is an example:

void
add_string (struct obstack *obstack, const char *ptr, int len)
{
while (len > 0)
{
int room = obstack_room (obstack);
if (room == 0)
{
/* Not enough room. Add one character slowly,
which may copy to a new chunk and make room. */
obstack_lgrow (obstack, *ptr++);
len--;

else
{
if (room > len)
room = len;
/* Add fast as much as we have room for. */
len -= room;
while (room-- > 0)
obstack_lgrow_fast (obstack, *ptr++);

}

3.2.4.8 Status of an Obstack

Here are functions that provide information on the current status of allocation in an obstack.
You can use them to learn about an object while still growing it.

void * obstack_base (struct obstack *obstack-ptr) [Function]
This function returns the tentative address of the beginning of the currently growing
object in obstack-ptr. If you finish the object immediately, it will have that address.
If you make it larger first, it may outgrow the current chunk—then its address will
change!

Chapter 3: Virtual Memory Allocation And Paging 55

If no object is growing, this value says where the next object you allocate will start
(once again assuming it fits in the current chunk).

void * obstack_next_free (struct obstack *obstack-ptr) [Function]
This function returns the address of the first free byte in the current chunk of obstack
obstack-ptr. This is the end of the currently growing object. If no object is growing,
obstack_next_free returns the same value as obstack_base.

int obstack_object_size (struct obstack *obstack-ptr) [Function]
This function returns the size in bytes of the currently growing object. This is equiv-
alent to

obstack_next_free (obstack-ptr) - obstack_base (obstack-ptr)

3.2.4.9 Alignment of Data in Obstacks

Each obstack has an alignment boundary; each object allocated in the obstack automatically
starts on an address that is a multiple of the specified boundary. By default, this boundary
is aligned so that the object can hold any type of data.

To access an obstack’s alignment boundary, use the macro obstack_alignment_mask,
whose function prototype looks like this:

int obstack_alignment_mask (struct obstack *obstack-ptr) [Macro]
The value is a bit mask; a bit that is 1 indicates that the corresponding bit in the
address of an object should be 0. The mask value should be one less than a power of
2; the effect is that all object addresses are multiples of that power of 2. The default
value of the mask is a value that allows aligned objects to hold any type of data: for
example, if its value is 3, any type of data can be stored at locations whose addresses
are multiples of 4. A mask value of 0 means an object can start on any multiple of 1
(that is, no alignment is required).

The expansion of the macro obstack_alignment_mask is an lvalue, so you can alter
the mask by assignment. For example, this statement:
obstack_alignment_mask (obstack_ptr) = 0;

has the effect of turning off alignment processing in the specified obstack.

Note that a change in alignment mask does not take effect until after the next time an
object is allocated or finished in the obstack. If you are not growing an object, you can
make the new alignment mask take effect immediately by calling obstack_finish. This
will finish a zero-length object and then do proper alignment for the next object.

3.2.4.10 Obstack Chunks

Obstacks work by allocating space for themselves in large chunks, and then parceling out
space in the chunks to satisfy your requests. Chunks are normally 4096 bytes long unless
you specify a different chunk size. The chunk size includes 8 bytes of overhead that are
not actually used for storing objects. Regardless of the specified size, longer chunks will be
allocated when necessary for long objects.

The obstack library allocates chunks by calling the function obstack_chunk_alloc,
which you must define. When a chunk is no longer needed because you have freed all the

Chapter 3: Virtual Memory Allocation And Paging 56

objects in it, the obstack library frees the chunk by calling obstack_chunk_free, which
you must also define.

These two must be defined (as macros) or declared (as functions) in each source file that
uses obstack_init (see Section 3.2.4.1 [Creating Obstacks], page 48). Most often they are
defined as macros like this:

#define obstack_chunk_alloc malloc
#define obstack_chunk_free free

Note that these are simple macros (no arguments). Macro definitions with arguments
will not work! It is necessary that obstack_chunk_alloc or obstack_chunk_free, alone,
expand into a function name if it is not itself a function name.

If you allocate chunks with malloc, the chunk size should be a power of 2. The default
chunk size, 4096, was chosen because it is long enough to satisfy many typical requests on
the obstack yet short enough not to waste too much memory in the portion of the last chunk
not yet used.

int obstack_chunk_size (struct obstack *obstack-ptr) [Macro]
This returns the chunk size of the given obstack.

Since this macro expands to an lvalue, you can specify a new chunk size by assigning
it a new value. Doing so does not affect the chunks already allocated, but will change the
size of chunks allocated for that particular obstack in the future. It is unlikely to be useful
to make the chunk size smaller, but making it larger might improve efficiency if you are
allocating many objects whose size is comparable to the chunk size. Here is how to do so
cleanly:

if (obstack_chunk_size (obstack_ptr) < new-chunk-size)
obstack_chunk_size (obstack_ptr) = new-chunk-size;

3.2.4.11 Summary of Obstack Functions

Here is a summary of all the functions associated with obstacks. Each takes the address of
an obstack (struct obstack *) as its first argument.

void obstack_init (struct obstack *obstack-ptr)
Initialize use of an obstack. See Section 3.2.4.1 [Creating Obstacks], page 48.

void *obstack_alloc (struct obstack *obstack-ptr, int size)
Allocate an object of size uninitialized bytes. See Section 3.2.4.3 [Allocation in
an Obstack], page 49.

void *obstack_copy (struct obstack *obstack-ptr, void *address, int size)
Allocate an object of size bytes, with contents copied from address. See
Section 3.2.4.3 [Allocation in an Obstack], page 49.

void *obstack_copy0O (struct obstack *obstack-ptr, void *address, int size)
Allocate an object of size+l bytes, with size of them copied from address,
followed by a null character at the end. See Section 3.2.4.3 [Allocation in an
Obstack], page 49.

void obstack_free (struct obstack *obstack-ptr, void *object)
Free object (and everything allocated in the specified obstack more recently
than object). See Section 3.2.4.4 [Freeing Objects in an Obstack], page 50.

Chapter 3: Virtual Memory Allocation And Paging 57

void obstack_blank (struct obstack *obstack-ptr, int size)
Add size uninitialized bytes to a growing object. See Section 3.2.4.6 [Growing
Objects|, page 51.

void obstack_grow (struct obstack *obstack-ptr, void *address, int size)
Add size bytes, copied from address, to a growing object. See Section 3.2.4.6
[Growing Objects], page 51.

void obstack_growO (struct obstack *obstack-ptr, void *address, int size)
Add size bytes, copied from address, to a growing object, and then add another
byte containing a null character. See Section 3.2.4.6 [Growing Objects|, page 51.

void obstack_lgrow (struct obstack *obstack-ptr, char data-char)
Add one byte containing data-char to a growing object. See Section 3.2.4.6
[Growing Objects], page 51.

void *obstack_finish (struct obstack *obstack-ptr)
Finalize the object that is growing and return its permanent address. See
Section 3.2.4.6 [Growing Objects|, page 51.

int obstack_object_size (struct obstack *obstack-ptr)
Get the current size of the currently growing object. See Section 3.2.4.6 [Grow-
ing Objects], page 51.

void obstack_blank_fast (struct obstack *obstack-ptr, int size)
Add size uninitialized bytes to a growing object without checking that there is
enough room. See Section 3.2.4.7 [Extra Fast Growing Objects|, page 53.

void obstack_lgrow_fast (struct obstack *obstack-ptr, char data-char)
Add one byte containing data-char to a growing object without checking
that there is enough room. See Section 3.2.4.7 [Extra Fast Growing Objects],
page H3.

int obstack_room (struct obstack *obstack-ptr)
Get the amount of room now available for growing the current object. See
Section 3.2.4.7 [Extra Fast Growing Objects], page 53.

int obstack_alignment_mask (struct obstack *obstack-ptr)
The mask used for aligning the beginning of an object. This is an lvalue. See
Section 3.2.4.9 [Alignment of Data in Obstacks], page 55.

int obstack_chunk_size (struct obstack *obstack-ptr)
The size for allocating chunks. This is an lvalue. See Section 3.2.4.10 [Obstack
Chunks], page 55.

void *obstack_base (struct obstack *obstack-ptr)
Tentative starting address of the currently growing object. See Section 3.2.4.8
[Status of an Obstack], page 54.

void *obstack_next_free (struct obstack *obstack-ptr)
Address just after the end of the currently growing object. See Section 3.2.4.8
[Status of an Obstack], page 54.

Chapter 3: Virtual Memory Allocation And Paging 58

3.2.5 Automatic Storage with Variable Size

The function alloca supports a kind of half-dynamic allocation in which blocks are allocated
dynamically but freed automatically.

Allocating a block with alloca is an explicit action; you can allocate as many blocks as
you wish, and compute the size at run time. But all the blocks are freed when you exit the
function that alloca was called from, just as if they were automatic variables declared in
that function. There is no way to free the space explicitly.

The prototype for alloca is in stdlib.h. This function is a BSD extension.

void * alloca (size_-t size) [Function]
The return value of alloca is the address of a block of size bytes of memory, allocated
in the stack frame of the calling function.

Do not use alloca inside the arguments of a function call—you will get unpredictable
results, because the stack space for the alloca would appear on the stack in the middle
of the space for the function arguments. An example of what to avoid is foo (x, alloca
@, .

3.2.5.1 alloca Example

As an example of the use of alloca, here is a function that opens a file name made from
concatenating two argument strings, and returns a file descriptor or minus one signifying
failure:
int
open2 (char *strl, char *str2, int flags, int mode)
{
char *name = (char *) alloca (strlem (strl) + strlen (str2) + 1);
stpcpy (stpcpy (name, strl), str2);
return open (name, flags, mode);

}

Here is how you would get the same results with malloc and free:

int

open2 (char *strl, char *str2, int flags, int mode)

{
char *name = (char *) malloc (strlem (strl) + strlen (str2) + 1);
int desc;
if (name == 0)

fatal ("virtual memory exceeded");
stpcpy (stpcpy (name, strl), str2);
desc = open (name, flags, mode);
free (name);
return desc;
}
As you can see, it is simpler with alloca. But alloca has other, more important

advantages, and some disadvantages.

3.2.5.2 Advantages of alloca

Here are the reasons why alloca may be preferable to malloc:

e Using alloca wastes very little space and is very fast. (It is open-coded by the GNU
C compiler.)

Chapter 3: Virtual Memory Allocation And Paging 59

e Since alloca does not have separate pools for different sizes of block, space used
for any size block can be reused for any other size. alloca does not cause memory
fragmentation.

e Nonlocal exits done with longjmp (see Chapter 23 [Non-Local Exits], page 594) au-
tomatically free the space allocated with alloca when they exit through the function
that called alloca. This is the most important reason to use alloca.

To illustrate this, suppose you have a function open_or_report_error which returns
a descriptor, like open, if it succeeds, but does not return to its caller if it fails. If
the file cannot be opened, it prints an error message and jumps out to the command
level of your program using longjmp. Let’s change open2 (see Section 3.2.5.1 [alloca
Example], page 58) to use this subroutine:

int

open2 (char *strl, char *str2, int flags, int mode)

{
char *name = (char *) alloca (strlen (strl) + strlemn (str2) + 1);
stpcpy (stpcpy (name, strl), str2);
return open_or_report_error (name, flags, mode);
}
Because of the way alloca works, the memory it allocates is freed even when an error

occurs, with no special effort required.

By contrast, the previous definition of open2 (which uses malloc and free) would
develop a memory leak if it were changed in this way. Even if you are willing to make
more changes to fix it, there is no easy way to do so.

3.2.5.3 Disadvantages of alloca

These are the disadvantages of alloca in comparison with malloc:

e If you try to allocate more memory than the machine can provide, you don’t get a
clean error message. Instead you get a fatal signal like the one you would get from
an infinite recursion; probably a segmentation violation (see Section 24.2.1 [Program
Error Signals|, page 605).

e Some non-GNU systems fail to support alloca, so it is less portable. However, a slower
emulation of alloca written in C is available for use on systems with this deficiency.

3.2.5.4 GNU C Variable-Size Arrays

In GNU C, you can replace most uses of alloca with an array of variable size. Here is how
open2 would look then:

int open2 (char *strl, char *str2, int flags, int mode)
{

char name[strlen (strl) + strlemn (str2) + 1];

stpcpy (stpcpy (name, strl), str2);

return open (name, flags, mode);

}
But alloca is not always equivalent to a variable-sized array, for several reasons:

e A variable size array’s space is freed at the end of the scope of the name of the array.
The space allocated with alloca remains until the end of the function.

e It is possible to use alloca within a loop, allocating an additional block on each
iteration. This is impossible with variable-sized arrays.

Chapter 3: Virtual Memory Allocation And Paging 60

NB: If you mix use of alloca and variable-sized arrays within one function, exiting a
scope in which a variable-sized array was declared frees all blocks allocated with alloca
during the execution of that scope.

3.3 Resizing the Data Segment
The symbols in this section are declared in unistd.h.

You will not normally use the functions in this section, because the functions described
in Section 3.2 [Allocating Storage For Program Datal, page 31 are easier to use. Those are
interfaces to a GNU C Library memory allocator that uses the functions below itself. The
functions below are simple interfaces to system calls.

int brk (void *addr) [Function]
brk sets the high end of the calling process’ data segment to addr.

The address of the end of a segment is defined to be the address of the last byte in
the segment plus 1.

The function has no effect if addr is lower than the low end of the data segment.
(This is considered success, by the way).

The function fails if it would cause the data segment to overlap another segment or
exceed the process’ data storage limit (see Section 22.2 [Limiting Resource Usage],
page 576).

The function is named for a common historical case where data storage and the stack
are in the same segment. Data storage allocation grows upward from the bottom of
the segment while the stack grows downward toward it from the top of the segment
and the curtain between them is called the break.

The return value is zero on success. On failure, the return value is -1 and errno is
set accordingly. The following errno values are specific to this function:

ENOMEM The request would cause the data segment to overlap another segment or
exceed the process’ data storage limit.

void *sbrk (ptrdiff-t delta) [Function]
This function is the same as brk except that you specify the new end of the data
segment as an offset delta from the current end and on success the return value is the
address of the resulting end of the data segment instead of zero.

This means you can use ‘sbrk(0)’ to find out what the current end of the data
segment is.

3.4 Locking Pages

You can tell the system to associate a particular virtual memory page with a real page
frame and keep it that way — i.e., cause the page to be paged in if it isn’t already and
mark it so it will never be paged out and consequently will never cause a page fault. This
is called locking a page.

The functions in this chapter lock and unlock the calling process’ pages.

Chapter 3: Virtual Memory Allocation And Paging 61

3.4.1 Why Lock Pages

Because page faults cause paged out pages to be paged in transparently, a process rarely
needs to be concerned about locking pages. However, there are two reasons people some-
times are:

e Speed. A page fault is transparent only insofar as the process is not sensitive to how
long it takes to do a simple memory access. Time-critical processes, especially realtime
processes, may not be able to wait or may not be able to tolerate variance in execution
speed.

A process that needs to lock pages for this reason probably also needs priority among
other processes for use of the CPU. See Section 22.3 [Process CPU Priority And
Scheduling], page 580.

In some cases, the programmer knows better than the system’s demand paging allocator
which pages should remain in real memory to optimize system performance. In this
case, locking pages can help.

e Privacy. If you keep secrets in virtual memory and that virtual memory gets paged
out, that increases the chance that the secrets will get out. If a password gets written
out to disk swap space, for example, it might still be there long after virtual and real
memory have been wiped clean.

Be aware that when you lock a page, that’s one fewer page frame that can be used to
back other virtual memory (by the same or other processes), which can mean more page
faults, which means the system runs more slowly. In fact, if you lock enough memory, some
programs may not be able to run at all for lack of real memory.

3.4.2 Locked Memory Details

A memory lock is associated with a virtual page, not a real frame. The paging rule is: If a
frame backs at least one locked page, don’t page it out.

Memory locks do not stack. I.e., you can’t lock a particular page twice so that it has to
be unlocked twice before it is truly unlocked. It is either locked or it isn’t.

A memory lock persists until the process that owns the memory explicitly unlocks it.
(But process termination and exec cause the virtual memory to cease to exist, which you
might say means it isn’t locked any more).

Memory locks are not inherited by child processes. (But note that on a modern Unix
system, immediately after a fork, the parent’s and the child’s virtual address space are
backed by the same real page frames, so the child enjoys the parent’s locks). See Section 26.4
[Creating a Process], page 691.

Because of its ability to impact other processes, only the superuser can lock a page. Any
process can unlock its own page.

The system sets limits on the amount of memory a process can have locked and the
amount of real memory it can have dedicated to it. See Section 22.2 [Limiting Resource
Usage], page 576.

In Linux, locked pages aren’t as locked as you might think. Two virtual pages that are
not shared memory can nonetheless be backed by the same real frame. The kernel does this
in the name of efficiency when it knows both virtual pages contain identical data, and does
it even if one or both of the virtual pages are locked.

Chapter 3: Virtual Memory Allocation And Paging 62

But when a process modifies one of those pages, the kernel must get it a separate frame
and fill it with the page’s data. This is known as a copy-on-write page fault. It takes a
small amount of time and in a pathological case, getting that frame may require 1/0.

To make sure this doesn’t happen to your program, don’t just lock the pages. Write
to them as well, unless you know you won’t write to them ever. And to make sure you
have pre-allocated frames for your stack, enter a scope that declares a C automatic variable
larger than the maximum stack size you will need, set it to something, then return from its
scope.

3.4.3 Functions To Lock And Unlock Pages

The symbols in this section are declared in sys/mman.h. These functions are defined by
POSIX.1b, but their availability depends on your kernel. If your kernel doesn’t allow these
functions, they exist but always fail. They are available with a Linux kernel.

Portability Note: POSIX.1b requires that when the mlock and munlock functions are
available, the file unistd.h define the macro _POSIX_MEMLOCK_RANGE and the file 1imits.h
define the macro PAGESIZE to be the size of a memory page in bytes. It requires that when
the mlockall and munlockall functions are available, the unistd.h file define the macro
_POSIX_MEMLOCK. The GNU C Library conforms to this requirement.

int mlock (const void *addr, size_t len) [Function]
mlock locks a range of the calling process’ virtual pages.

The range of memory starts at address addr and is len bytes long. Actually, since you
must lock whole pages, it is the range of pages that include any part of the specified
range.

When the function returns successfully, each of those pages is backed by (connected
to) a real frame (is resident) and is marked to stay that way. This means the function
may cause page-ins and have to wait for them.

When the function fails, it does not affect the lock status of any pages.

The return value is zero if the function succeeds. Otherwise, it is -1 and errno is set
accordingly. errno values specific to this function are:

ENOMEM
e At least some of the specified address range does not exist in the
calling process’ virtual address space.
e The locking would cause the process to exceed its locked page limit.
EPERM The calling process is not superuser.

EINVAL len is not positive.

ENOSYS The kernel does not provide mlock capability.

You can lock all a process’ memory with mlockall. You unlock memory with munlock
or munlockall.

To avoid all page faults in a C program, you have to use mlockall, because some of
the memory a program uses is hidden from the C code, e.g. the stack and automatic
variables, and you wouldn’t know what address to tell mlock.

Chapter 3: Virtual Memory Allocation And Paging 63

int munlock (const void *addr, size_t len) [Function]
munlock unlocks a range of the calling process’ virtual pages.

munlock is the inverse of mlock and functions completely analogously to mlock, except
that there is no EPERM failure.

int mlockall (int flags) [Function]
mlockall locks all the pages in a process’ virtual memory address space, and/or any
that are added to it in the future. This includes the pages of the code, data and
stack segment, as well as shared libraries, user space kernel data, shared memory, and
memory mapped files.

flags is a string of single bit flags represented by the following macros. They tell
mlockall which of its functions you want. All other bits must be zero.

MCL_CURRENT
Lock all pages which currently exist in the calling process’ virtual address
space.

MCL_FUTURE
Set a mode such that any pages added to the process’ virtual address
space in the future will be locked from birth. This mode does not affect
future address spaces owned by the same process so exec, which replaces
a process’ address space, wipes out MCL_FUTURE. See Section 26.5 [Exe-
cuting a File], page 693.

When the function returns successfully, and you specified MCL_CURRENT, all of the
process’ pages are backed by (connected to) real frames (they are resident) and are
marked to stay that way. This means the function may cause page-ins and have to
wait for them.

When the process is in MCL_FUTURE mode because it successfully executed this func-
tion and specified MCL_CURRENT, any system call by the process that requires space
be added to its virtual address space fails with errno = ENOMEM if locking the addi-
tional space would cause the process to exceed its locked page limit. In the case that
the address space addition that can’t be accommodated is stack expansion, the stack
expansion fails and the kernel sends a SIGSEGV signal to the process.

When the function fails, it does not affect the lock status of any pages or the future
locking mode.

The return value is zero if the function succeeds. Otherwise, it is -1 and errno is set
accordingly. errno values specific to this function are:

ENOMEM
e At least some of the specified address range does not exist in the
calling process’ virtual address space.
e The locking would cause the process to exceed its locked page limit.
EPERM The calling process is not superuser.

EINVAL Undefined bits in flags are not zero.
ENOSYS The kernel does