Using GNU Fortran

For ccc version 4.8.3

(crosstool-NG linaro-1.13.1-4.8-2013.12 - Linaro GCC 2013.11)

The gfortran team




Published by the Free Software Foundation
51 Franklin Street, Fifth Floor
Boston, MA 02110-1301, USA

Copyright (© 1999-2013 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.3 or any later version published by the
Free Software Foundation; with the Invariant Sections being “Funding Free Software”, the
Front-Cover Texts being (a) (see below), and with the Back-Cover Texts being (b) (see
below). A copy of the license is included in the section entitled “GNU Free Documentation
License”.

(a) The FSF’s Front-Cover Text is:

A GNU Manual

(b) The FSF’s Back-Cover Text is:

You have freedom to copy and modify this GNU Manual, like GNU software. Copies
published by the Free Software Foundation raise funds for GNU development.



Short Contents

1 Introduction .. .....cov i 1

Invoking GNU Fortran
GNU Fortran Command Options . ....................... 7
3 Runtime: Influencing runtime behavior with environment

variables . .. 27

Language Reference

4 Fortran 2003 and 2008 Status .. ..., 33
5  Compiler Characteristics . ..., 37
6  EXtensions. ...........iiiiii e 41
7  Mixed-Language Programming . ........................ 53
8 Intrinsic Procedures . ......... ... ... . 65
9 Intrinsic Modules . ........ ... . . 217
Contributing . . . ..o 221
GNU General Public License. ......... ... ... 225
GNU Free Documentation License ... ...................... 237
Funding Free Software ... ... ... .. .. . . . i 245
Option Index . . ..ot e 247

Keyword Index . ... i 249






Table of Contents

1 Introduction................. ... ... ... ... ..... 1
1.1 About GNU Fortran ......... ..o, 1
1.2 GNU Fortran and GCC ......... i 2
1.3 Preprocessing and conditional compilation...................... 2
1.4 GNU Fortran and G77 ... e 3
1.5 Project Status ... 3
1.6 Standards. . ........c..oiiii 4

1.6.1 Varying Length Character Strings ......................... 4

Part I: Invoking GNU Fortran .................... 5

2 GNU Fortran Command Options ............. 7
2.1 Option SUMMATY . .o vvt ittt ettt et e 7
2.2 Options controlling Fortran dialect .......... ... ... ... ... 8
2.3 Enable and customize preprocessing...............c.ooiiian... 11
2.4 Options to request or suppress errors and warnings............ 14
2.5 Options for debugging your program or GNU Fortran.......... 18
2.6 Options for directory search............. ... ... ... 18
2.7 Influencing the linking step.............oo i 19
2.8 Influencing runtime behavior.......... ... ... ... .. ... ... 19
2.9 Options for code generation conventions....................... 20
2.10 Environment variables affecting gfortran.................... 26

3 Runtime: Influencing runtime behavior with

environment variables................. ... ... 27
3.1 TMPDIR—Directory for scratch files ............................ 27
3.2 GFORTRAN_STDIN_UNIT—Unit number for standard input ...... 27
3.3 GFORTRAN_STDOUT_UNIT-—Unit number for standard output.... 27
3.4 GFORTRAN_STDERR_UNIT—Unit number for standard error...... 27

3.5 GFORTRAN_UNBUFFERED_ALL—Do not buffer I/O on all units.... 27
3.6 GFORTRAN_UNBUFFERED_PRECONNECTED—Do not buffer I/O on
preconnected UNItS. . ..o e 27
3.7 GFORTRAN_SHOW_LOCUS—Show location for runtime errors...... 27
3.8 GFORTRAN_OPTIONAL_PLUS—Print leading + where permitted .. 28
3.9 GFORTRAN_DEFAULT_RECL—Default record length for new files.. 28
3.10 GFORTRAN_LIST_SEPARATOR—Separator for list output........ 28
3.11 GFORTRAN_CONVERT_UNIT—Set endianness for unformatted I/0O
............................................................... 28
3.12 GFORTRAN_ERROR_BACKTRACE—Show backtrace on run-time errors
............................................................... 29

iii



iv The GNU Fortran Compiler

4 Fortran 2003 and 2008 Status................ 33
4.1 Fortran 2003 status ..... .o 33
4.2 Fortran 2008 Status ...t 34
4.3 Technical Specification 29113 Status........................... 36

5 Compiler Characteristics ..................... 37
5.1 KIND Type Parameters.............cooiiiiiiiiiiiiiiiii... 37
5.2 Internal representation of LOGICAL variables................. 37
5.3 Thread-safety of the runtime library.............. ... ... ... ... 38
5.4 Data consistency and durability ............ ... ... L 38

6 Extensions................... ... . ...l 41
6.1 Extensions implemented in GNU Fortran...................... 41

6.1.1 Old-style kind specifications .............. ... 41
6.1.2 Old-style variable initialization .............. ... ... ... .. 41
6.1.3 Extensions to namelist ......... ... ... .. il 42
6.1.4 X format descriptor without count field ................... 43
6.1.5 Commas in FORMAT specifications......................... 43
6.1.6 Missing period in FORMAT specifications................... 43
6.1.7 I/Oitem lists ......oooiii 43
6.1.8 Qexponent-letter........... ... i 43
6.1.9 BOZ literal constants. ......... ..., 43
6.1.10 Real array indices.........ccviiiiiiiiiiiiiiiiiiii... 44
6.1.11 Unary operators ..........ceeeeeeiiiiiiiiiiiiiieeeennnn. 44
6.1.12 Implicitly convert LOGICAL and INTEGER values.......... 44
6.1.13 Hollerith constants support.................cooiiiiiian. 44
6.1.14 Cray pPoINters .. ..ottt 45
6.1.15 CONVERT specifier. ........ooiuuiiiii e 47
6.1.16 OpenMP ... .. 47
6.1.17 Argument list functions %VAL, %REF and %LOC............ 48
6.2 Extensions not implemented in GNU Fortran.................. 49
6.2.1 STRUCTURE and RECORD .. .....cvvuiieiritiiiiiiannnnn. 49
6.2.2 ENCODE and DECODE statements........................... 50
6.2.3 Variable FORMAT €XPreSSions .. ...ccoeeeeennnnniunnnneeen.. 51
6.2.4 Alternate complex function syntax........................ 51

7 Mixed-Language Programming............... 53

7.1 Interoperability with C........ ... ... . i, 53
7.1.1 Intrinsic Types......coouuiimii i 53
7.1.2 Derived Types and struct.............oo .. 53
7.1.3 Interoperable Global Variables............................ 54
7.1.4 Interoperable Subroutines and Functions.................. 54
7.1.5 Working with Pointers ........... ... . ... ... L. 55
7.1.6 Further Interoperability of Fortran with C................ 58

7.2 GNU Fortran Compiler Directives.................ooooiia.. 59

7.3 Non-Fortran Main Program .................... ... . .. 59

7.3.1 _gfortran_set_args — Save command-line arguments... 60



7.3.2 _gfortran_set_options — Set library option flags....... 60
7.3.3 _gfortran_set_convert — Set endian conversion........ 61
7.3.4 _gfortran_set_record_marker — Set length of record

MATKETS . ..ttt 62
7.3.5 _gfortran_set_fpe — Enable floating point exception traps
............................................................ 62

7.3.6 _gfortran_set_max_subrecord_length — Set subrecord
length ... 62
8 Intrinsic Procedures........................... 65
8.1 Introduction to intrinsic procedures ........................... 65
8.2 ABORT — Abort the program ............ ... ..., 65
8.3 ABS — Absolute value.......... ... 66
8.4 ACCESS — Checks file access modes....................ooo... 66
8.5 ACHAR — Character in ASCII collating sequence................ 67
8.6 ACOS — Arccosine function......... ... ... 68
8.7 ACOSH — Inverse hyperbolic cosine function.................... 68
8.8 ADJUSTL — Left adjust a string ...t 69
8.9 ADJUSTR — Right adjust astring.............. ... ............ 69
8.10 AIMAG — Imaginary part of complex number ................. 70
8.11 AINT — Truncate to a whole number......................... 71
8.12 ALARM — Execute a routine after a given delay ............... 71
8.13 ALL — All values in MASK along DIM are true.............. 72
8.14 ALLOCATED — Status of an allocatable entity ................. 73
8.15 AND — Bitwise logical AND ........ ... ... .. i 73
8.16 ANINT — Nearest whole number.............................. 74
8.17 ANY — Any value in MASK along DIM is true ............... 75
8.18 ASIN — Arcsine function............ ..., 76
8.19 ASINH — Inverse hyperbolic sine function..................... 76
8.20 ASSOCIATED — Status of a pointer or pointer/target pair ..... 7
8.21 ATAN — Arctangent function............ ... ... ... ... ... .. 78
8.22 ATAN2 — Arctangent function............... ..o . 79
8.23 ATANH — Inverse hyperbolic tangent function................. 79
8.24 ATOMIC_DEFINE — Setting a variable atomically .............. 80
8.25 ATOMIC_REF — Obtaining the value of a variable atomically .. 80
8.26 BACKTRACE — Show a backtrace............... ...t 81
8.27 BESSEL_JO — Bessel function of the first kind of order O...... 81
8.28 BESSEL_J1 — Bessel function of the first kind of order 1...... 82
8.29 BESSEL_JN — Bessel function of the first kind ................ 82
8.30 BESSEL_YO — Bessel function of the second kind of order 0... 83
8.31 BESSEL_Y1 — Bessel function of the second kind of order 1... 84
8.32 BESSEL_YN — Bessel function of the second kind ............. 84
8.33 BGE — Bitwise greater than or equal to....................... 85
8.34 BGT — Bitwise greater than.......... ... ... ... .. ... .. ..... 85
8.35 BIT_SIZE — Bit size inquiry function ................. ... ... 86
8.36 BLE — Bitwise less thanorequal to.......................... 86
8.37 BLT — Bitwise less than................. .. . i .. 87
8.38 BTEST — Bit test function .......... ... ... . i 87



The GNU Fortran Compiler

8.39 C_ASSOCIATED — Status of a C pointer....................... 87
8.40 C_F_POINTER — Convert C into Fortran pointer.............. 88
8.41 C_F_PROCPOINTER — Convert C into Fortran procedure pointer
............................................................... 89
8.42 C_FUNLOC — Obtain the C address of a procedure............ 89
8.43 C_LOC — Obtain the C address of an object .................. 90
8.44 C_SIZEOF — Size in bytes of an expression ................... 91
8.45 CEILING — Integer ceiling function........................... 91
8.46 CHAR — Character conversion function ....................... 92
8.47 CHDIR — Change working directory ....................... ... 93
8.48 CHMOD — Change access permissions of files................... 93
8.49 CMPLX — Complex conversion function ....................... 94
8.50 COMMAND_ARGUMENT_COUNT — Get number of command line
ATGUINENIES . o oot 95
8.51 COMPILER_OPTIONS — Options passed to the compiler........ 95
8.52 COMPILER_VERSION — Compiler version string................ 96
8.53 COMPLEX — Complex conversion function..................... 96
8.54 CONJG — Complex conjugate function........................ 97
8.55 CO0S — Cosine function. ..., 98
8.56 COSH — Hyperbolic cosine function........................... 98
8.57 COUNT — Count function............oooviiiiiiiiinennnnn... 99
8.58 CPU_TIME — CPU elapsed time in seconds .................. 100
8.59 CSHIFT — Circular shift elements of an array................ 100
8.60 CTIME — Convert a time into a string....................... 101
8.61 DATE_AND_TIME — Date and time subroutine................ 102
8.62 DBLE — Double conversion function......................... 103
8.63 DCMPLX — Double complex conversion function.............. 103
8.64 DIGITS — Significant binary digits function................. 104
8.65 DIM — Positive difference ......... ... ... ... i 104
8.66 DOT_PRODUCT — Dot product function....................... 105
8.67 DPROD — Double product function .......................... 106
8.68 DREAL — Double real part function.......................... 106
8.69 DSHIFTL — Combined left shift ............................. 107
8.70 DSHIFTR — Combined right shift................. ... ..., 107
8.71 DTIME — Execution time subroutine (or function)........... 108
8.72 EOSHIFT — End-off shift elements of an array ............... 109
8.73 EPSILON — Epsilon function .............. .. ... 110
8.74 ERF — Error function............ ..., 110
8.75 ERFC — Error function.......... ... i, 111
8.76 ERFC_SCALED — FError function ............... ... ... ... .. 111
8.77 ETIME — Execution time subroutine (or function) ........... 112
8.78 EXECUTE_COMMAND_LINE — Execute a shell command........ 113
8.79 EXIT — Exit the program with status. ...................... 114
8.80 EXP — Exponential function .............. ... ...l 114
8.81 EXPONENT — Exponent function............................. 115
8.82 EXTENDS_TYPE_OF — Query dynamic type for extension..... 115
8.83 FDATE — Get the current time as a string................... 116

8.84 FGET — Read a single character in stream mode from stdin.. 117



8.85 FGETC — Read a single character in stream mode............ 117
8.86 FLOOR — Integer floor function.............. ... ... ... 118
8.87 FLUSH — Flush I/O unit(s) ..o, 119
8.88 FNUM — File number function.........................oo... 120
8.89 FPUT — Write a single character in stream mode to stdout... 120
8.90 FPUTC — Write a single character in stream mode........... 121
8.91 FRACTION — Fractional part of the model representation .... 122
8.92 FREE — Frees memory .......covviiniiieeennnnnnnnn. 122
8.93 FSEEK — Low level file positioning subroutine............... 123
8.94 FSTAT — Get filestatus........cooiiiii i, 124
8.95 FTELL — Current stream position........................... 124
8.96 GAMMA — Gamma function.............. ... .. L. 125
8.97 GERROR — Get last system error message.................... 125
8.98 GETARG — Get command line arguments .................... 126
8.99 GET_COMMAND — Get the entire command line............... 127
8.100 GET_COMMAND_ARGUMENT — Get command line arguments. .. 127
8.101 GETCWD — Get current working directory................... 128
8.102 GETENV — Get an environmental variable .................. 129
8.103 GET_ENVIRONMENT_VARIABLE — Get an environmental variable
.............................................................. 129
8.104 GETGID — Group ID function.............................. 130
8.105 GETLOG — Get loginname ......... ..., 131
8.106 GETPID — Process ID function................... ... ...... 131
8.107 GETUID — User ID function................ ..o, 131
8.108 GMTIME — Convert time to GMT info...................... 132
8.109 HOSTNM — Get system host name .......................... 133
8.110 HUGE — Largest number of a kind.......................... 133
8.111 HYPOT — Euclidean distance function ...................... 133
8.112 TACHAR — Code in ASCII collating sequence................ 134
8.113 TIALL — Bitwise AND of array elements.................... 134
8.114 TIAND — Bitwise logical and .......... ... ... ... ... 135
8.115 TIANY — Bitwise OR of array elements...................... 136
8.116 TIARGC — Get the number of command line arguments. .. ... 137
8.117 IBCLR — Clear bit...... .o 137
8.118 IBITS — Bit extraction.............coooiiiiiiiiiiiiii... 138
8.119 IBSET — Set bit.. ..ot 138
8.120 ICHAR — Character-to-integer conversion function.......... 138
8.121 IDATE — Get current local time subroutine (day/month/year)
.............................................................. 139
8.122 IEOR — Bitwise logical exclusive or ........................ 140
8.123 IERRNO — Get the last system error number ............... 140
8.124 IMAGE_INDEX — Function that converts a cosubscript to an
IMage INAeX .. ..ottt 141
8.125 INDEX — Position of a substring within a string............ 141
8.126 INT — Convert to integer type........ccoviviiiieininn..n. 142
8.127 INT2 — Convert to 16-bit integer type..................... 143
8.128 INT8 — Convert to 64-bit integer type ..................... 143
8.129 IOR — Bitwise logical or........... ... o i 143

vii



viii The GNU Fortran Compiler

8.130 IPARITY — Bitwise XOR of array elements................. 144
8.131 IRAND — Integer pseudo-random number................... 145
8.132 IS_IOSTAT_END — Test for end-of-file value ................ 145
8.133 IS_IOSTAT_EOR — Test for end-of-record value............. 146
8.134 ISATTY — Whether a unit is a terminal device.............. 146
8.135 ISHFT — Shift bits ........ ... 147
8.136 ISHFTC — Shift bits circularly ............ ... ... 147
8.137 TISNAN — Test fora NaN..........oooiiiii ... 148
8.138 ITIME — Get current local time subroutine
(hour/minutes/seconds) ......... ... .. 148
8.139 KILL — Send a signal to & process ............cooviuve..n. 149
8.140 KIND — Kind of anentity..............cooiiiiiiiiiiiin 149
8.141 LBOUND — Lower dimension bounds of an array ............ 150
8.142 LCOBOUND — Lower codimension bounds of an array........ 150
8.143 LEADZ — Number of leading zero bits of an integer......... 151
8.144 LEN — Length of a character entity ........................ 151
8.145 LEN_TRIM — Length of a character entity without trailing blank
characters .. ... ... 152
8.146 LGE — Lexical greater than or equal ....................... 152
8.147 LGT — Lexical greater than................. ... ... ... ... 153
8.148 LINK — Create a hard link................ ... ... ......... 153
8.149 LLE — Lexical less than or equal........................... 154
8.150 LLT — Lexical less than............ ... ... ... o iii.. 154
8.151 LNBLNK — Index of the last non-blank character in a string.. 155
8.152 LOC — Returns the address of a variable ................... 156
8.1563 LOG — Natural logarithm function ......................... 156
8.154 LOG10 — Base 10 logarithm function....................... 157
8.155 LOG_GAMMA — Logarithm of the Gamma function........... 157
8.156 LOGICAL — Convert to logical type..................oo.... 158
8.157 LONG — Convert to integer type.........cooveiieiiiani... 158
8.158 LSHIFT — Left shift bits........... ... ..o L. 159
8.159 LSTAT — Get file status. ..., 159
8.160 LTIME — Convert time to local time info................... 160
8.161 MALLOC — Allocate dynamic memory ...................... 160
8.162 MASKL — Left justified mask .............. ... ... ... 161
8.163 MASKR — Right justified mask.............. ... .. . L 162
8.164 MATMUL — matrix multiplication ........................... 162
8.165 MAX — Maximum value of an argument list................. 162
8.166 MAXEXPONENT — Maximum exponent of a real kind......... 163
8.167 MAXLOC — Location of the maximum value within an array.. 163
8.168 MAXVAL — Maximum value of an array ..................... 164
8.169 MCLOCK — Time function .............cooiiiiiiiiin... 165
8.170 MCLOCK8 — Time function (64-bit)......................... 165
8.171 MERGE — Merge variables ..., 166
8.172 MERGE_BITS — Merge of bits under mask .................. 166
8.173 MIN — Minimum value of an argument list................. 167
8.174 MINEXPONENT — Minimum exponent of a real kind ......... 167

8.175 MINLOC — Location of the minimum value within an array.. 167



8.176 MINVAL — Minimum value of an array ..................... 168
8.177 MOD — Remainder function .............. ... ... ..o i... 169
8.178 MODULO — Modulo function.............. ... ... .. 170
8.179 MOVE_ALLOC — Move allocation from one object to another
.............................................................. 170
8.180 MVBITS — Move bits from one integer to another........... 171
8.181 NEAREST — Nearest representable number.................. 171
8.182 NEW_LINE — New line character................. ... ... ... 172
8.183 NINT — Nearest whole number............................. 172
8.184 NORM2 — Euclidean vector norms .................cooouu... 173
8.185 NOT — Logical negation............ ..., 174
8.186 NULL — Function that returns an disassociated pointer..... 174
8.187 NUM_IMAGES — Function that returns the number of images
.............................................................. 175
8.188 OR — Bitwise logical OR........... ... ..o it 175
8.189 PACK — Pack an array into an array of rank one............ 176
8.190 PARITY — Reduction with exclusive OR.................... 177
8.191 PERROR — Print system error message............c....ouunn. 177
8.192 POPCNT — Number of bits set............ ... it 177
8.193 POPPAR — Parity of the number of bitsset ................. 178
8.194 PRECISION — Decimal precision of a real kind.............. 178
8.195 PRESENT — Determine whether an optional dummy argument is
specified . ... ..o 179
8.196 PRODUCT — Product of array elements...................... 180
8.197 RADIX — Base of a model number.......................... 180
8.198 RAN — Real pseudo-random number........................ 181
8.199 RAND — Real pseudo-random number ...................... 181
8.200 RANDOM_NUMBER — Pseudo-random number................. 182
8.201 RANDOM_SEED — Initialize a pseudo-random number sequence
.............................................................. 182
8.202 RANGE — Decimal exponent range...............ccovuuuo... 184
8.203 RANK — Rank of a data object............ ... ... .. ....... 184
8.204 REAL — Convert toreal type.... ..., 185
8.205 RENAME — Rename afile................ it 185
8.206 REPEAT — Repeated string concatenation .................. 186
8.207 RESHAPE — Function to reshape an array................... 186
8.208 RRSPACING — Reciprocal of the relative spacing............ 187
8.209 RSHIFT — Right shift bits .................o i i, 187
8.210 SAME_TYPE_AS — Query dynamic types for equality ........ 188
8.211 SCALE — Scaleareal value .......... ... ... i, 188
8.212 SCAN — Scan a string for the presence of a set of characters
.............................................................. 189
8.213 SECNDS — Time function ..............oooiiiieeenniinnn. 189
8.214 SECOND — CPU time function....................covi.... 190
8.215 SELECTED_CHAR_KIND — Choose character kind ............ 190
8.216 SELECTED_INT_KIND — Choose integer kind................ 191
8.217 SELECTED_REAL_KIND — Choose real kind.................. 192
8.218 SET_EXPONENT — Set the exponent of the model ........... 193

ix



The GNU Fortran Compiler

8.219 SHAPE — Determine the shape of an array.................. 193
8.220 SHIFTA — Right shift with fill ............................. 194
8.221 SHIFTL — Left shift ......... ... ... .. . ... 194
8.222 SHIFTR — Right shift............. ... . i i 195
8.223 SIGN — Sign copying function ............... .. ... . ... 195
8.224 SIGNAL — Signal handling subroutine (or function)......... 196
8.225 SIN — Sine function............. ..ottt 196
8.226 SINH — Hyperbolic sine function........................... 197
8.227 SIZE — Determine the size of an array..................... 198
8.228 SIZEOF — Size in bytes of an expression ................... 198
8.229 SLEEP — Sleep for the specified number of seconds . ........ 199
8.230 SPACING — Smallest distance between two numbers of a given
15072 1< P 199
8.231 SPREAD — Add a dimension to an array .................... 200
8.232 SQRT — Square-root function ......................oi..n. 200
8.233 SRAND — Reinitialize the random number generator........ 201
8.234 STAT — Get filestatus. ..., 201
8.235 STORAGE_SIZE — Storage size in bits....................... 203
8.236 SUM — Sum of array elements............. ... ... ... 203
8.237 SYMLNK — Create a symbolic link ..................... ..., 204
8.238 SYSTEM — Execute a shell command ....................... 204
8.239 SYSTEM_CLOCK — Time function ...........couvviie... 205
8.240 TAN — Tangent function............... ... ... 205
8.241 TANH — Hyperbolic tangent function....................... 206
8.242 THIS_IMAGE — Function that returns the cosubscript index of
this image . .. ..o 207
8.243 TIME — Time function............... ... . ... 207
8.244 TIME8 — Time function (64-bit) ........ ... ..., 208
8.245 TINY — Smallest positive number of a real kind ............ 208
8.246 TRAILZ — Number of trailing zero bits of an integer........ 209
8.247 TRANSFER — Transfer bit patterns ......................... 209
8.248 TRANSPOSE — Transpose an array of rank two.............. 210
8.249 TRIM — Remove trailing blank characters of a string ....... 210
8.250 TTYNAM — Get the name of a terminal device............... 211
8.251 UBOUND — Upper dimension bounds of an array ............ 211
8.252 UCOBOUND — Upper codimension bounds of an array........ 212
8.253 UMASK — Set the file creation mask ........................ 212
8.254 UNLINK — Remove a file from the file system............... 213
8.255 UNPACK — Unpack an array of rank one into an array ...... 213
8.256 VERIFY — Scan a string for characters not a given set...... 214
8.257 XOR — Bitwise logical exclusive OR ........................ 214
Intrinsic Modules ............................ 217
9.1 ISO_FORTRAN _ENV.. ...ttt et et 217
9.2 IS0 _C_BINDING ....tttietttin ettt ettt ee e iie e 218

9.3 OpenMP Modules OMP_LIB and OMP_LIB_KINDS.............. 220



Contributors to GNU Fortran ............ .. ... o i, 221
Projects ... 222
Proposed Extensions ......... ..o 222
Compiler extensions: .. .......oiuttteni i 222
Environment Options ........ ..o 223
GNU General Public License ................... 225
GNU Free Documentation License ............. 237
ADDENDUM: How to use this License for your documents ........ 244
Funding Free Software........................... 245
Option Index . ..., 247

Keyword Index................................... 249






Chapter 1: Introduction 1

1

Introduction

This manual documents the use of gfortran, the GNU Fortran compiler. You can find in
this manual how to invoke gfortran, as well as its features and incompatibilities.

The GNU Fortran compiler front end was designed initially as a free replacement for,

or alternative to, the Unix £95 command; gfortran is the command you will use to invoke
the compiler.

1.1 About GNU Fortran

The GNU Fortran compiler supports the Fortran 77, 90 and 95 standards completely, parts
of the Fortran 2003 and Fortran 2008 standards, and several vendor extensions. The devel-
opment goal is to provide the following features:

Read a user’s program, stored in a file and containing instructions written in Fortran
77, Fortran 90, Fortran 95, Fortran 2003 or Fortran 2008. This file contains source
code.

Translate the user’s program into instructions a computer can carry out more quickly
than it takes to translate the instructions in the first place. The result after compilation
of a program is machine code, code designed to be efficiently translated and processed
by a machine such as your computer. Humans usually are not as good writing machine
code as they are at writing Fortran (or C++, Ada, or Java), because it is easy to make
tiny mistakes writing machine code.

Provide the user with information about the reasons why the compiler is unable to
create a binary from the source code. Usually this will be the case if the source code
is flawed. The Fortran 90 standard requires that the compiler can point out mistakes
to the user. An incorrect usage of the language causes an error message.

The compiler will also attempt to diagnose cases where the user’s program contains a
correct usage of the language, but instructs the computer to do something questionable.
This kind of diagnostics message is called a warning message.

Provide optional information about the translation passes from the source code to
machine code. This can help a user of the compiler to find the cause of certain bugs
which may not be obvious in the source code, but may be more easily found at a lower
level compiler output. It also helps developers to find bugs in the compiler itself.

Provide information in the generated machine code that can make it easier to find bugs
in the program (using a debugging tool, called a debugger, such as the GNU Debugger
gdb).

Locate and gather machine code already generated to perform actions requested by
statements in the user’s program. This machine code is organized into modules and is
located and linked to the user program.

The GNU Fortran compiler consists of several components:

A version of the gcc command (which also might be installed as the system’s cc com-
mand) that also understands and accepts Fortran source code. The gcc command is
the driver program for all the languages in the GNU Compiler Collection (GCC); With
gcc, you can compile the source code of any language for which a front end is available
in GCC.



2 The GNU Fortran Compiler

e The gfortran command itself, which also might be installed as the system’s £95 com-
mand. gfortran is just another driver program, but specifically for the Fortran com-
piler only. The difference with gcc is that gfortran will automatically link the correct
libraries to your program.

e A collection of run-time libraries. These libraries contain the machine code needed
to support capabilities of the Fortran language that are not directly provided by the
machine code generated by the gfortran compilation phase, such as intrinsic functions
and subroutines, and routines for interaction with files and the operating system.

e The Fortran compiler itself, (£951). This is the GNU Fortran parser and code generator,
linked to and interfaced with the GCC backend library. £951 “translates” the source
code to assembler code. You would typically not use this program directly; instead,
the gcc or gfortran driver programs will call it for you.

1.2 GNU Fortran and GCC

GNU Fortran is a part of GCC, the GNU Compiler Collection. GCC consists of a collec-
tion of front ends for various languages, which translate the source code into a language-
independent form called GENERIC. This is then processed by a common middle end which
provides optimization, and then passed to one of a collection of back ends which generate
code for different computer architectures and operating systems.

Functionally, this is implemented with a driver program (gcc) which provides the
command-line interface for the compiler. It calls the relevant compiler front-end program
(e.g., £951 for Fortran) for each file in the source code, and then calls the assembler and
linker as appropriate to produce the compiled output. In a copy of GCC which has been
compiled with Fortran language support enabled, gcc will recognize files with ‘. £’ ‘. for’,
‘.ftn’, ©.£90°, .£95’, ‘.03’ and ‘.f08’ extensions as Fortran source code, and compile it
accordingly. A gfortran driver program is also provided, which is identical to gcc except
that it automatically links the Fortran runtime libraries into the compiled program.

Source files with ‘.f’, ‘.for’, ‘.fpp’, ‘.ftn’, *.F’, *.FOR’, ‘*.FPP’, and ‘.FTN’ extensions
are treated as fixed form. Source files with *.£90°, ‘.£95’, *.£f03’, ‘.£08’, ‘.F90’, ‘.F95’,
‘.F03’ and ‘.F08’ extensions are treated as free form. The capitalized versions of either
form are run through preprocessing. Source files with the lower case ‘.fpp’ extension are
also run through preprocessing.

This manual specifically documents the Fortran front end, which handles the program-
ming language’s syntax and semantics. The aspects of GCC which relate to the optimization
passes and the back-end code generation are documented in the GCC manual; see Section
“Introduction” in Using the GNU Compiler Collection (GCC). The two manuals together
provide a complete reference for the GNU Fortran compiler.

1.3 Preprocessing and conditional compilation

Many Fortran compilers including GNU Fortran allow passing the source code through a
C preprocessor (CPP; sometimes also called the Fortran preprocessor, FPP) to allow for
conditional compilation. In the case of GNU Fortran, this is the GNU C Preprocessor
in the traditional mode. On systems with case-preserving file names, the preprocessor is
automatically invoked if the filename extension is ‘.F’, *.FOR’, ‘.FIN’, ‘. fpp’, ‘.FPP’, ‘.F90’,



Chapter 1: Introduction 3

‘.F95’, *.F03’ or ‘.F08’. To manually invoke the preprocessor on any file, use ‘~cpp’, to

disable preprocessing on files where the preprocessor is run automatically, use ‘-nocpp’.

If a preprocessed file includes another file with the Fortran INCLUDE statement, the in-
cluded file is not preprocessed. To preprocess included files, use the equivalent preprocessor
statement #include.

If GNU Fortran invokes the preprocessor, __GFORTRAN__ is defined and __GNUC
_GNUC_MINOR__ and __GNUC_PATCHLEVEL__ can be used to determine the version of the

compiler. See Section “Overview” in The C Preprocessor for details.

- -

While CPP is the de-facto standard for preprocessing Fortran code, Part 3 of the Fortran
95 standard (ISO/IEC 1539-3:1998) defines Conditional Compilation, which is not widely
used and not directly supported by the GNU Fortran compiler. You can use the program
coco to preprocess such files (http://www.daniellnagle.com/coco.html).

1.4 GNU Fortran and G77

The GNU Fortran compiler is the successor to g77, the Fortran 77 front end included in GCC
prior to version 4. It is an entirely new program that has been designed to provide Fortran
95 support and extensibility for future Fortran language standards, as well as providing
backwards compatibility for Fortran 77 and nearly all of the GNU language extensions
supported by g77.

1.5 Project Status

As soon as gfortran can parse all of the statements correctly, it will be in the
“larva” state. When we generate code, the “puppa” state. When gfortran is
done, we’ll see if it will be a beautiful butterfly, or just a big bug....

—Andy Vaught, April 2000
The start of the GNU Fortran 95 project was announced on the GCC homepage in March
18, 2000 (even though Andy had already been working on it for a while, of course).

The GNU Fortran compiler is able to compile nearly all standard-compliant Fortran 95,
Fortran 90, and Fortran 77 programs, including a number of standard and non-standard
extensions, and can be used on real-world programs. In particular, the supported extensions
include OpenMP, Cray-style pointers, and several Fortran 2003 and Fortran 2008 features,
including TR 15581. However, it is still under development and has a few remaining rough
edges.

At present, the GNU Fortran compiler passes the NIST Fortran 77 Test Suite, and
produces acceptable results on the LAPACK Test Suite. It also provides respectable per-
formance on the Polyhedron Fortran compiler benchmarks and the Livermore Fortran Ker-
nels test. It has been used to compile a number of large real-world programs, including the
HIRLAM weather-forecasting code and the Tonto quantum chemistry package; see http://
gcc.gnu.org/wiki/GfortranApps for an extended list.

Among other things, the GNU Fortran compiler is intended as a replacement for G77.
At this point, nearly all programs that could be compiled with G77 can be compiled with
GNU Fortran, although there are a few minor known regressions.

The primary work remaining to be done on GNU Fortran falls into three categories:
bug fixing (primarily regarding the treatment of invalid code and providing useful error


http://www.daniellnagle.com/coco.html
http://www.fortran-2000.com/ArnaudRecipes/fcvs21_f95.html
http://www.netlib.org/lapack/faq.html#1.21
http://www.polyhedron.com/pb05.html
http://www.llnl.gov/asci_benchmarks/asci/limited/lfk/README.html
http://www.llnl.gov/asci_benchmarks/asci/limited/lfk/README.html
http://mysite.verizon.net/serveall/moene.pdf
http://mysite.verizon.net/serveall/moene.pdf
http://www.theochem.uwa.edu.au/tonto/
http://gcc.gnu.org/wiki/GfortranApps
http://gcc.gnu.org/wiki/GfortranApps

4 The GNU Fortran Compiler

messages), improving the compiler optimizations and the performance of compiled code,
and extending the compiler to support future standards—in particular, Fortran 2003 and
Fortran 2008.

1.6 Standards

The GNU Fortran compiler implements ISO/TEC 1539:1997 (Fortran 95). As such, it can
also compile essentially all standard-compliant Fortran 90 and Fortran 77 programs. It also
supports the ISO/IEC TR~15581 enhancements to allocatable arrays.

GNU Fortran also have a partial support for ISO/IEC 1539-1:2004 (Fortran
2003), ISO/IEC 1539-1:2010 (Fortran 2008), the Technical Specification Further
Interoperability of Fortran with C (ISO/IEC TS 29113:2012). Full support of those
standards and future Fortran standards is planned. The current status of the support is
can be found in the Section 4.1 [Fortran 2003 status|, page 33, Section 4.2 [Fortran 2008
status|, page 34 and Section 4.3 [TS 29113 status], page 36 sections of the documentation.

Additionally, the GNU Fortran compilers supports the OpenMP specification (version
3.1, http://openmp.org/wp/openmp-specifications/).

1.6.1 Varying Length Character Strings

The Fortran 95 standard specifies in Part 2 (ISO/IEC 1539-2:2000) varying length character
strings. While GNU Fortran currently does not support such strings directly, there exist
two Fortran implementations for them, which work with GNU Fortran. They can be found
at http://www.fortran.com/iso_varying_string.f95 and at ftp://ftp.nag.co.uk/
sc22wgh5/ISO0_VARYING_STRING/.

Deferred-length character strings of Fortran 2003 supports part of the features of I80_
VARYING_STRING and should be considered as replacement. (Namely, allocatable or pointers
of the type character(len=:).)


http://openmp.org/wp/openmp-specifications/
http://www.fortran.com/iso_varying_string.f95
ftp://ftp.nag.co.uk/sc22wg5/ISO_VARYING_STRING/
ftp://ftp.nag.co.uk/sc22wg5/ISO_VARYING_STRING/

Chapter 1: Introduction

Part I: Invoking GNU Fortran







Chapter 2: GNU Fortran Command Options 7

2 GNU Fortran Command Options

The gfortran command supports all the options supported by the gcc command. Only
options specific to GNU Fortran are documented here.

See Section “GCC Command Options” in Using the GNU Compiler Collection (GCC),
for information on the non-Fortran-specific aspects of the gcc command (and, therefore,
the gfortran command).

All GCC and GNU Fortran options are accepted both by gfortran and by gcc (as well
as any other drivers built at the same time, such as g++), since adding GNU Fortran to the
GCC distribution enables acceptance of GNU Fortran options by all of the relevant drivers.

In some cases, options have positive and negative forms; the negative form of ‘-ffoo’
would be ‘~fno-foo’. This manual documents only one of these two forms, whichever one
is not the default.

2.1 Option summary

Here is a summary of all the options specific to GNU Fortran, grouped by type. Explanations
are in the following sections.

Fortran Language Options
See Section 2.2 [Options controlling Fortran dialect], page 8.

-fall-intrinsics -fbackslash -fcray-pointer -fd-lines-as-code
-fd-lines-as-comments -fdefault-double-8 -fdefault-integer-8
-fdefault-real-8 -fdollar-ok -ffixed-line-length-n
-ffixed-line-length-none -ffree-form -ffree-line-length-n
-ffree-line-length-none -fimplicit-none -finteger-4-integer-8
-fmax-identifier-length -fmodule-private -fno-fixed-form -fno-range-check
-fopenmp -freal-4-real-10 -freal-4-real-16 -freal-4-real-8
-freal-8-real-10 -freal-8-real-16 -freal-8-real-4 -std=std

Preprocessing Options
See Section 2.3 [Enable and customize preprocessing|, page 11.

-A-question[=answer] -Aquestion=answer -C -CC -Dmacro[=defn| -H -P
-Umacro -cpp -dD -dI -dM -dN -dU -fworking-directory -imultilib dir
-iprefix file -iquote -isysroot dir -isystem dir -nocpp -nostdinc
-undef

Error and Warning Options
See Section 2.4 [Options to request or suppress errors and warnings|, page 14.

-Waliasing -Wall -Wampersand -Warray-bounds -Wc-binding-type -Wcharacter-
truncation

-Wconversion -Wfunction-elimination -Wimplicit-interface

-Wimplicit-procedure -Wintrinsic-shadow -Wintrinsics-std

-Wline-truncation -Wno-align-commons -Wno-tabs -Wreal-g-constant

-Wsurprising -Wunderflow -Wunused-parameter -Wrealloc-lhs Wrealloc-lhs-all |}

-Wtarget-lifetime -fmax-errors=n -fsyntax-only -pedantic -pedantic-errors

Debugging Options
See Section 2.5 [Options for debugging your program or GNU Fortran|, page 18.

-fbacktrace -fdump-fortran-optimized -fdump-fortran-original
-fdump-parse-tree -ffpe-trap=Ilist



8 The GNU Fortran Compiler

Directory Options
See Section 2.6 [Options for directory search|, page 18.

-Idir -Jdir -fintrinsic-modules-path dir

Link Options
See Section 2.7 [Options for influencing the linking step], page 19.

)

-static-libgfortran

Runtime Options
See Section 2.8 [Options for influencing runtime behavior], page 19.

-fconvert=conversion -fmax-subrecord-length=length
-frecord-marker=length -fsign-zero

Code Generation Options

See Section 2.9 [Options for code generation conventions], page 20.
-faggressive-function-elimination -fblas-matmul-limit=n
-fbounds-check -fcheck-array-temporaries
-fcheck=<alll|array-temps|bounds|do|mem|pointer|recursion>
-fcoarray=<none|single|1ib> -fexternal-blas -ff2c -ffrontend-optimize
-finit-character=n -finit-integer=n -finit-local-zero
-finit-logical=<true|false> -finit-real=<zero|inf|-inf|nan|snan>
-fmax-array-constructor=n -fmax-stack-var-size=n -fno-align-commons
-fno-automatic -fno-protect-parens -fno-underscoring -fno-whole-file
-fsecond-underscore -fpack-derived -frealloc-lhs -frecursive
-frepack-arrays -fshort-enums -fstack-arrays

2.2 Options controlling Fortran dialect
The following options control the details of the Fortran dialect accepted by the compiler:

—-ffree-form

-ffixed-form
Specify the layout used by the source file. The free form layout was introduced
in Fortran 90. Fixed form was traditionally used in older Fortran programs.
When neither option is specified, the source form is determined by the file
extension.

-fall-intrinsics
This option causes all intrinsic procedures (including the GNU-specific exten-
sions) to be accepted. This can be useful with ‘-std=£95’ to force standard-
compliance but get access to the full range of intrinsics available with gfortran.
As a consequence, ‘-Wintrinsics-std’ will be ignored and no user-defined pro-
cedure with the same name as any intrinsic will be called except when it is
explicitly declared EXTERNAL.

-fd-lines-as-code

-fd-lines-as—-comments
Enable special treatment for lines beginning with d or D in fixed form sources. If
the ‘-fd-lines-as-code’ option is given they are treated as if the first column
contained a blank. If the ‘-fd-lines-as-comments’ option is given, they are
treated as comment lines.



Chapter 2: GNU Fortran Command Options 9

-fdefault-double-8
Set the DOUBLE PRECISION type to an 8 byte wide type. If ‘-fdefault-real-8’
is given, DOUBLE PRECISION would instead be promoted to 16 bytes if possible,
and ‘-fdefault-double-8’ can be used to prevent this. The kind of real con-
stants like 1.d0 will not be changed by ‘-fdefault-real-8’ though, so also
‘~-fdefault-double-8’ does not affect it.

-fdefault-integer-8
Set the default integer and logical types to an 8 byte wide type. Do nothing if
this is already the default. This option also affects the kind of integer constants
like 42.

-fdefault-real-8
Set the default real type to an 8 byte wide type. Do nothing if this is already
the default. This option also affects the kind of non-double real constants like
1.0, and does promote the default width of DOUBLE PRECISION to 16 bytes if
possible, unless ~-fdefault-double-8 is given, too.

-fdollar-ok
Allow ‘$’ as a valid non-first character in a symbol name. Symbols that start
with ‘¢’ are rejected since it is unclear which rules to apply to implicit typing as
different vendors implement different rules. Using ‘¢’ in IMPLICIT statements
is also rejected.

-fbackslash

Change the interpretation of backslashes in string literals from a single back-
slash character to “C-style” escape characters. The following combinations are
expanded \a, \b, \f, \n, \r, \t, \v, \\, and \0 to the ASCII characters alert,
backspace, form feed, newline, carriage return, horizontal tab, vertical tab,
backslash, and NUL, respectively. Additionally, \xnn, \unnnn and \Unnnnnnnn
(where each n is a hexadecimal digit) are translated into the Unicode charac-
ters corresponding to the specified code points. All other combinations of a
character preceded by \ are unexpanded.

-fmodule-private
Set the default accessibility of module entities to PRIVATE. Use-associated en-
tities will not be accessible unless they are explicitly declared as PUBLIC.

-ffixed-line-length-n
Set column after which characters are ignored in typical fixed-form lines in the
source file, and through which spaces are assumed (as if padded to that length)
after the ends of short fixed-form lines.

Popular values for n include 72 (the standard and the default), 80 (card im-
age), and 132 (corresponding to “extended-source” options in some popular
compilers). n may also be ‘none’, meaning that the entire line is meaningful
and that continued character constants never have implicit spaces appended to
them to fill out the line. ‘~ffixed-line-length-0’ means the same thing as
‘~ffixed-line-length-none’.



10 The GNU Fortran Compiler

-ffree-line-length-n
Set column after which characters are ignored in typical free-form lines in the
source file. The default value is 132. n may be ‘none’, meaning that the
entire line is meaningful. ‘-ffree-line-length-0’ means the same thing as
‘~ffree-line-length-none’.

-fmax-identifier-length=n
Specify the maximum allowed identifier length. Typical values are 31 (Fortran
95) and 63 (Fortran 2003 and Fortran 2008).

-fimplicit-none
Specify that no implicit typing is allowed, unless overridden by explicit
IMPLICIT statements. This is the equivalent of adding implicit none to the
start of every procedure.

-finteger—-4-integer-8

Promote all INTEGER(KIND=4) entities to an INTEGER(KIND=8) entities. If
KIND=8 is unavailable, then an error will be issued. This option should be
used with care and may not be suitable for your codes. Areas of possible con-
cern include calls to external procedures, alignment in EQUIVALENCE and/or
COMMON, generic interfaces, BOZ literal constant conversion, and I/O. Inspec-
tion of the intermediate representation of the translated Fortran code, produced
by ‘-fdump-tree-original’, is suggested.

—-fcray-pointer
Enable the Cray pointer extension, which provides C-like pointer functionality.

-fopenmp Enable the OpenMP extensions. This includes OpenMP !$omp directives in
free form and c$omp, *$omp and !$omp directives in fixed form, !'$ conditional
compilation sentinels in free form and c$, *$ and !'$ sentinels in fixed form, and
when linking arranges for the OpenMP runtime library to be linked in. The
option ‘~fopenmp’ implies ‘~frecursive’.

-fno-range-check

Disable range checking on results of simplification of constant expressions during
compilation. For example, GNU Fortran will give an error at compile time when
simplifying a = 1. / 0. With this option, no error will be given and a will be
assigned the value +Infinity. If an expression evaluates to a value outside of
the relevant range of [-HUGE () :HUGE ()], then the expression will be replaced by
-Inf or +Inf as appropriate. Similarly, DATA i/Z’FFFFFFFF’/ will result in an
integer overflow on most systems, but with ‘~fno-range-check’ the value will
“wrap around” and i will be initialized to —1 instead.

-freal-4-real-8

-freal-4-real-10

-freal-8-real-4

-freal-8-real-10

-freal-8-real-16
Promote all REAL (KIND=M) entities to REAL(KIND=N) entities. If REAL (KIND=N)
is unavailable, then an error will be issued. All other real kind types are un-
affected by this option. These options should be used with care and may not



Chapter 2: GNU Fortran Command Options 11

be suitable for your codes. Areas of possible concern include calls to external
procedures, alignment in EQUIVALENCE and/or COMMON, generic interfaces, BOZ
literal constant conversion, and I/0. Inspection of the intermediate representa-
tion of the translated Fortran code, produced by ‘-fdump-tree-original’, is
suggested.

-std=std Specify the standard to which the program is expected to conform, which may
be one of ‘€95’ ‘£2003’, ‘£2008’, ‘gnu’, or ‘legacy’. The default value for std
is ‘gnu’, which specifies a superset of the Fortran 95 standard that includes all
of the extensions supported by GNU Fortran, although warnings will be given
for obsolete extensions not recommended for use in new code. The ‘legacy’
value is equivalent but without the warnings for obsolete extensions, and may
be useful for old non-standard programs. The ‘£95’, ‘£2003’ and ‘£2008’ values
specify strict conformance to the Fortran 95, Fortran 2003 and Fortran 2008
standards, respectively; errors are given for all extensions beyond the relevant
language standard, and warnings are given for the Fortran 77 features that
are permitted but obsolescent in later standards. ‘-std=£2008ts’ allows the
Fortran 2008 standard including the additions of the Technical Specification
(TS) 29113 on Further Interoperability of Fortran with C.

2.3 Enable and customize preprocessing

Preprocessor related options. See section Section 1.3 [Preprocessing and conditional com-
pilation], page 2 for more detailed information on preprocessing in gfortran.

—Ccpp

-nocpp Enable preprocessing. The preprocessor is automatically invoked if the file
extension is ‘.fpp’, ‘.FPP’, *.F’, *.FOR’, ‘*.FIN’, ‘.F90’, *.F95’, ‘.F03’ or ‘.F08’.
Use this option to manually enable preprocessing of any kind of Fortran file.
To disable preprocessing of files with any of the above listed extensions, use the
negative form: ‘-nocpp’.

The preprocessor is run in traditional mode. Any restrictions of the file-
format, especially the limits on line length, apply for preprocessed output
as well, so it might be advisable to use the ‘-ffree-line-length-none’ or
‘~ffixed-line-length-none’ options.

-dM Instead of the normal output, generate a list of >#define’ directives for all the
macros defined during the execution of the preprocessor, including predefined
macros. This gives you a way of finding out what is predefined in your version
of the preprocessor. Assuming you have no file ‘foo.f90’, the command

touch fo0o0.£90; gfortran -cpp -E -dM foo0.£90

will show all the predefined macros.

-dD Like ‘-dM’ except in two respects: it does not include the predefined macros, and
it outputs both the #define directives and the result of preprocessing. Both
kinds of output go to the standard output file.

-dN Like ‘-dD’, but emit only the macro names, not their expansions.

-dU Like ‘dD’ except that only macros that are expanded, or whose definedness is
tested in preprocessor directives, are output; the output is delayed until the use



12

-dI

-fworking-

The GNU Fortran Compiler

or test of the macro; and ’#undef’ directives are also output for macros tested
but undefined at the time.

Output ’#include’ directives in addition to the result of preprocessing.

directory

Enable generation of linemarkers in the preprocessor output that will let the
compiler know the current working directory at the time of preprocessing.
When this option is enabled, the preprocessor will emit, after the initial line-
marker, a second linemarker with the current working directory followed by
two slashes. GCC will use this directory, when it is present in the prepro-
cessed input, as the directory emitted as the current working directory in some
debugging information formats. This option is implicitly enabled if debug-
ging information is enabled, but this can be inhibited with the negated form
‘~fno-working-directory’. If the ‘-P’ flag is present in the command line,
this option has no effect, since no #line directives are emitted whatsoever.

—-idirafter dir

Search dir for include files, but do it after all directories specified with ‘-I’
and the standard system directories have been exhausted. dir is treated as a
system include directory. If dir begins with =, then the = will be replaced by
the sysroot prefix; see ‘--sysroot’ and ‘-~isysroot’.

-imultilib dir

Use dir as a subdirectory of the directory containing target-specific C++ headers.

—-iprefix prefix

Specify prefix as the prefix for subsequent ‘-iwithprefix’ options. If the prefix
represents a directory, you should include the final * /.

-isysroot dir

This option is like the ‘--sysroot’ option, but applies only to header files. See
the ‘--sysroot’ option for more information.

-iquote dir

Search dir only for header files requested with #include "file"; they are not
searched for #include <file>, before all directories specified by ‘-I’ and before
the standard system directories. If dir begins with =, then the = will be replaced
by the sysroot prefix; see ‘--sysroot’ and ‘~isysroot’.

-isystem dir

-nostdinc

Search dir for header files, after all directories specified by ‘-I’ but before the
standard system directories. Mark it as a system directory, so that it gets the
same special treatment as is applied to the standard system directories. If dir
begins with =, then the = will be replaced by the sysroot prefix; see ‘--sysroot’
and ‘-isysroot’.

Do not search the standard system directories for header files. Only the direc-
tories you have specified with ‘-I’ options (and the directory of the current file,
if appropriate) are searched.



Chapter 2: GNU Fortran Command Options 13

—undef

Do not predefine any system-specific or GCC-specific macros. The standard
predefined macros remain defined.

-Apredicate=answer

Make an assertion with the predicate predicate and answer answer. This form
is preferred to the older form -A predicate(answer), which is still supported,
because it does not use shell special characters.

-A-predicate=answer

-C

-CC

-Dname

Cancel an assertion with the predicate predicate and answer answer.

Do not discard comments. All comments are passed through to the output file,
except for comments in processed directives, which are deleted along with the
directive.

You should be prepared for side effects when using ‘-C’; it causes the prepro-
cessor to treat comments as tokens in their own right. For example, comments
appearing at the start of what would be a directive line have the effect of turn-
ing that line into an ordinary source line, since the first token on the line is no
longer a #°.

Warning: this currently handles C-Style comments only. The preprocessor does
not yet recognize Fortran-style comments.

Do not discard comments, including during macro expansion. This is like ‘-C’,
except that comments contained within macros are also passed through to the
output file where the macro is expanded.

In addition to the side-effects of the ‘-C’ option, the ‘-CC’ option causes all
C++-style comments inside a macro to be converted to C-style comments. This
is to prevent later use of that macro from inadvertently commenting out the
remainder of the source line. The ‘-CC’ option is generally used to support lint
cominents.

Warning: this currently handles C- and C++-Style comments only. The prepro-
cessor does not yet recognize Fortran-style comments.

Predefine name as a macro, with definition 1.

-Dname=definition

The contents of definition are tokenized and processed as if they appeared
during translation phase three in a ’#define’ directive. In particular, the
definition will be truncated by embedded newline characters.

If you are invoking the preprocessor from a shell or shell-like program you may
need to use the shell’s quoting syntax to protect characters such as spaces that
have a meaning in the shell syntax.

If you wish to define a function-like macro on the command line, write its
argument list with surrounding parentheses before the equals sign (if any).
Parentheses are meaningful to most shells, so you will need to quote the option.
With sh and csh, -D’name(args...)=definition’ works.

‘-D’ and ‘-U’ options are processed in the order they are given on the command
line. All -imacros file and -include file options are processed after all -D and -U
options.



14 The GNU Fortran Compiler

-H Print the name of each header file used, in addition to other normal activities.
Each name is indented to show how deep in the ’#include’ stack it is.

-P Inhibit generation of linemarkers in the output from the preprocessor. This
might be useful when running the preprocessor on something that is not C code,
and will be sent to a program which might be co