The GNU linker

1d

(crosstool-NG linaro-1.13.1-4.8-2013.12 - Linaro GCC 2013.11)
Version 2.24.0

Steve Chamberlain
Ian Lance Taylor

Red Hat Inc

nickc@credhat.com, doc@redhat.com
The GNU linker

Edited by Jeffrey Osier (jeffrey@cygnus.com)

Copyright (©) 1991-2013 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.3 or any later version published by the
Free Software Foundation; with no Invariant Sections, with no Front-Cover Texts, and with
no Back-Cover Texts. A copy of the license is included in the section entitled “GNU Free

Documentation License”.

Table of Contents

1 OVerview ...t 1
2 Invocation.............., 3
2.1 Command Line Options........ ..o 3
2.1.1 Options Specific to 1386 PE Targets 29
2.1.2 Options specific to C6X uClinux targets.................. 36
2.1.3 Options specific to Motorola 68HC11 and 68HC12 targets
.. 36
2.1.4 Options specific to Motorola 68K target 37
2.1.5 Options specific to MIPS targets 37
2.2 Environment Variables......... 37
3 Linker Scripts.............. L. 39
3.1 Basic Linker Script Concepts.........coovviiiiiiiiiinna... 39
3.2 Linker Script Format......... i 40
3.3 Simple Linker Script Example............ol 40
3.4 Simple Linker Script Commandscoiiia.... 41
3.4.1 Setting the Entry Pointo . 41
3.4.2 Commands Dealing with Files........................ ... 41
3.4.3 Commands Dealing with Object File Formats............. 43
3.4.4 Assign alias names to memory regions 43
3.4.5 Other Linker Script Commands........................... 46
3.5 Assigning Values to Symbols L. 47
3.5.1 Simple Assignmentsot 47
3.5.2 HIDDEN 48
3.5.3 PROVIDEo 48
3.5.4 PROVIDE_HIDDENo it 49
3.5.5 Source Code Reference 49
3.6 SECTIONS Commandcooiiiiiiiiiiiiiiieann.. 50
3.6.1 Output Section Description............. ..., 51
3.6.2 Output Section Name i, 51
3.6.3 Output Section Address.............ciiiiiiiiiii... 51
3.6.4 Input Section Description 52
3.6.4.1 Input Section Basics. ..., 52
3.6.4.2 Input Section Wildcard Patterns..................... 54
3.6.4.3 Input Section for Common Symbols.................. 55
3.6.4.4 Input Section and Garbage Collection................ 56
3.6.4.5 Input Section Example, 56
3.6.5 Output Section Data.................oiiiiiiiiii... 56
3.6.6 Output Section Keywords, 57
3.6.7 Output Section Discardingcoooiiiiii.. 58

3.6.8 Output Section Attributes................................ 59

ii

The GNU linker

3.6.8.1 Output Section Type.......cooviiiiiiiiiiii.. 59
3.6.8.2 Output Section LMA, 59
3.6.8.3 Forced Output Alignment 60
3.6.8.4 Forced Input Alignment 61
3.6.8.5 Output Section Constraint........................... 61
3.6.8.6 Output Section Regionccoviiiia.. 61
3.6.8.7 Output Section Phdr................................ 61
3.6.8.8 Output Section Fill.................... 61

3.6.9 Overlay Descriptioncoiiiiiiiiiiiii i, 62
3.7 MEMORY Commandc.ouiiiiiiiiiiiiiin.. 63
3.8 PHDRS Commandoouuiiiiiiiiii i, 65
3.9 VERSION Commandccoiiuiiiiiiieiiiaan... 67
3.10 Expressions in Linker Scripts......... ... o oL 70
3.10.1 Constants. ..ot 70
3.10.2 Symbolic Constants ..., 70
3.10.3 Symbol Names..........ooiuiiiiiiii i 70
3.10.4 Orphan Sectionscoiiiiiiiiiii .. 71
3.10.5 The Location Counter...............oiiiiiiieiiiea... 71
3.10.6 OPerators.vvu 73
3.10.7 Evaluation......... ... o i 73
3.10.8 The Section of an Expression................cooviona... 74
3.10.9 Builtin Functionso o i i 75
3.11 TImplicit Linker Scriptso 79
Machine Dependent Features................. 81
4.1 1dand the H8/300.ot 81
4.2 1d and the Intel 960 Family 81
4.3 1d and the Motorola 68HC11 and 68HC12 families............. 82
4.3.1 Linker Relaxation........... ..o i i, 82
4.3.2 Trampoline Generation................. ..., 82
4.4 14 and the ARM family........ i 83
4.5 1d and HPPA 32-bit ELF Support 85
4.6 1d and the Motorola 68K family.............., 85
4.7 1d and the MIPS family........... i 86
4.8 1dand MMIX ... o 86
4.9 1dand MSP430. 86
4.10 14 and PowerPC 32-bit ELF Support 87
4.11 14 and PowerPC64 64-bit ELF Support...................... 88
4.12 14 and SPU ELF Support..........cooiiiiiiiiiiiiiii... 90
4.13 1d’s Support for Various TI COFF Versions.................. 91
4.14 1d and WIN32 (cygwin/mingw)ooiiiiiia.. 91
4.15 1d and Xtensa Processors............ccooiiiiiiiiiiiiiiii... 98
BFD. ... 101
5.1 How It Works: An Outlineof BFD........................... 101
5.1.1 Information LoSS..........ooiiiiiiiiiii i, 101

5.1.2 The BFD canonical object-file format.................... 102

6 Reporting Bugs 105
6.1 Have You Found a Bug? i 105
6.2 How to Report Bugs..........coo i 105

Appendix A MRI Compatible Script Files .. 109

Appendix B GNU Free Documentation License
... 111

iii

Chapter 1: Overview 1

1 Overview

1d combines a number of object and archive files, relocates their data and ties up symbol
references. Usually the last step in compiling a program is to run 1d.

14 accepts Linker Command Language files written in a superset of AT&T’s Link Editor
Command Language syntax, to provide explicit and total control over the linking process.

This version of 1d uses the general purpose BFD libraries to operate on object files. This
allows 1d to read, combine, and write object files in many different formats—for example,
COFF or a.out. Different formats may be linked together to produce any available kind of
object file. See Chapter 5 [BFD], page 101, for more information.

Aside from its flexibility, the ¢NU linker is more helpful than other linkers in providing
diagnostic information. Many linkers abandon execution immediately upon encountering
an error; whenever possible, 1d continues executing, allowing you to identify other errors
(or, in some cases, to get an output file in spite of the error).

Chapter 2: Invocation 3

2 Invocation

The ¢NU linker 1d is meant to cover a broad range of situations, and to be as compatible
as possible with other linkers. As a result, you have many choices to control its behavior.

2.1 Command Line Options

The linker supports a plethora of command-line options, but in actual practice few of them
are used in any particular context. For instance, a frequent use of 14 is to link standard
Unix object files on a standard, supported Unix system. On such a system, to link a file
hello.o:

1d -o output /lib/crt0.o hello.o -lc

This tells 1d to produce a file called output as the result of linking the file /1ib/crt0.0
with hello.o and the library libc.a, which will come from the standard search directories.
(See the discussion of the ‘-1’ option below.)

Some of the command-line options to 1d may be specified at any point in the command
line. However, options which refer to files, such as ‘-1’ or ‘=T’, cause the file to be read at
the point at which the option appears in the command line, relative to the object files and
other file options. Repeating non-file options with a different argument will either have no
further effect, or override prior occurrences (those further to the left on the command line)
of that option. Options which may be meaningfully specified more than once are noted in
the descriptions below.

Non-option arguments are object files or archives which are to be linked together. They
may follow, precede, or be mixed in with command-line options, except that an object file
argument may not be placed between an option and its argument.

Usually the linker is invoked with at least one object file, but you can specify other forms
of binary input files using ‘-1’, ‘-R’, and the script command language. If no binary input
files at all are specified, the linker does not produce any output, and issues the message ‘No
input files’.

If the linker cannot recognize the format of an object file, it will assume that it is a linker
script. A script specified in this way augments the main linker script used for the link
(either the default linker script or the one specified by using ‘-T"). This feature permits the
linker to link against a file which appears to be an object or an archive, but actually merely
defines some symbol values, or uses INPUT or GROUP to load other objects. Specifying a
script in this way merely augments the main linker script, with the extra commands placed
after the main script; use the ‘-T’ option to replace the default linker script entirely, but
note the effect of the INSERT command. See Chapter 3 [Scripts], page 39.

For options whose names are a single letter, option arguments must either follow the op-
tion letter without intervening whitespace, or be given as separate arguments immediately
following the option that requires them.

For options whose names are multiple letters, either one dash or two can precede the option
name; for example, ‘~trace-symbol’ and ‘--trace-symbol’ are equivalent. Note—there is
one exception to this rule. Multiple letter options that start with a lower case 'o’ can only
be preceded by two dashes. This is to reduce confusion with the ‘-0’ option. So for example
‘~omagic’ sets the output file name to ‘magic’ whereas ‘~-omagic’ sets the NMAGIC flag
on the output.

4 The GNU linker

Arguments to multiple-letter options must either be separated from the option name by
an equals sign, or be given as separate arguments immediately following the option that
requires them. For example, ‘--trace-symbol foo’ and ‘--trace-symbol=foo’ are equiv-
alent. Unique abbreviations of the names of multiple-letter options are accepted.

Note—if the linker is being invoked indirectly, via a compiler driver (e.g. ‘gcc’) then all the
linker command line options should be prefixed by ‘-W1,’ (or whatever is appropriate for
the particular compiler driver) like this:

gcc -Wl,--start-group foo.o bar.o -Wl,--end-group
This is important, because otherwise the compiler driver program may silently drop the
linker options, resulting in a bad link. Confusion may also arise when passing options that
require values through a driver, as the use of a space between option and argument acts as
a separator, and causes the driver to pass only the option to the linker and the argument
to the compiler. In this case, it is simplest to use the joined forms of both single- and
multiple-letter options, such as:

gcc foo.o bar.o -W1l,-eENTRY -Wl,-Map=a.map

Here is a table of the generic command line switches accepted by the GNU linker:

Q@file Read command-line options from file. The options read are inserted in place
of the original @file option. If file does not exist, or cannot be read, then the
option will be treated literally, and not removed.

Options in file are separated by whitespace. A whitespace character may be
included in an option by surrounding the entire option in either single or double
quotes. Any character (including a backslash) may be included by prefixing the
character to be included with a backslash. The file may itself contain additional
@file options; any such options will be processed recursively.

-a keyword
This option is supported for HP/UX compatibility. The keyword argument
must be one of the strings ‘archive’, ‘shared’, or ‘default’. ‘-aarchive’ is
functionally equivalent to ‘-Bstatic’, and the other two keywords are func-
tionally equivalent to ‘-Bdynamic’. This option may be used any number of
times.

-—audit AUDITLIB

Adds AUDITLIB to the DT_AUDIT entry of the dynamic section. AUDITLIB
is not checked for existence, nor will it use the DT_SONAME specified in the
library. If specified multiple times DT_AUDIT will contain a colon separated list
of audit interfaces to use. If the linker finds an object with an audit entry while
searching for shared libraries, it will add a corresponding DT_DEPAUDIT entry
in the output file. This option is only meaningful on ELF platforms supporting
the rtld-audit interface.

-A architecture

—-—architecture=architecture
In the current release of 1d, this option is useful only for the Intel 960 family
of architectures. In that 1d configuration, the architecture argument identifies
the particular architecture in the 960 family, enabling some safeguards and
modifying the archive-library search path. See Section 4.2 [1d and the Intel 960
family], page 81, for details.

Chapter 2: Invocation 5)

Future releases of 1d may support similar functionality for other architecture
families.

-b input-format
--format=input-format

1d may be configured to support more than one kind of object file. If your 1d is
configured this way, you can use the ‘~=b’ option to specify the binary format for
input object files that follow this option on the command line. Even when 1d
is configured to support alternative object formats, you don’t usually need to
specify this, as 1d should be configured to expect as a default input format the
most usual format on each machine. input-format is a text string, the name of
a particular format supported by the BFD libraries. (You can list the available
binary formats with ‘objdump -i’.) See Chapter 5 [BFD], page 101.

You may want to use this option if you are linking files with an unusual binary
format. You can also use ‘-b’ to switch formats explicitly (when linking object
files of different formats), by including ‘-b input-format’ before each group of
object files in a particular format.

The default format is taken from the environment variable GNUTARGET. See
Section 2.2 [Environment], page 37. You can also define the input format from
a script, using the command TARGET; see Section 3.4.3 [Format Commands],
page 43.

—-c MRI-commandfile
--mri-script=MRI-commandfile

For compatibility with linkers produced by MRI, 1d accepts script files written
in an alternate, restricted command language, described in Appendix A [MRI
Compatible Script Files], page 109. Introduce MRI script files with the option
‘=¢’; use the ‘=T’ option to run linker scripts written in the general-purpose
1d scripting language. If MRI-cmdfile does not exist, 1d looks for it in the

directories specified by any ‘-L’ options.

These three options are equivalent; multiple forms are supported for compati-
bility with other linkers. They assign space to common symbols even if a relo-
catable output file is specified (with ‘-r’). The script command FORCE_COMMON _
ALLOCATION has the same effect. See Section 3.4.5 [Miscellaneous Commands],
page 46.

—--depaudit AUDITLIB
-P AUDITLIB

Adds AUDITLIB to the DT_DEPAUDIT entry of the dynamic section. AUDITLIB
is not checked for existence, nor will it use the DT_SONAME specified in the
library. If specified multiple times DT_DEPAUDIT will contain a colon separated
list of audit interfaces to use. This option is only meaningful on ELF plat-
forms supporting the rtld-audit interface. The -P option is provided for Solaris
compatibility.

6 The GNU linker

—-e entry

-—entry=entry
Use entry as the explicit symbol for beginning execution of your program, rather
than the default entry point. If there is no symbol named entry, the linker will
try to parse entry as a number, and use that as the entry address (the number
will be interpreted in base 10; you may use a leading ‘0x’ for base 16, or a
leading ‘0’ for base 8). See Section 3.4.1 [Entry Point], page 41, for a discussion
of defaults and other ways of specifying the entry point.

-—exclude-1libs 1ib,1ib,...

Specifies a list of archive libraries from which symbols should not be automat-
ically exported. The library names may be delimited by commas or colons.
Specifying —-—exclude-1libs ALL excludes symbols in all archive libraries from
automatic export. This option is available only for the 1386 PE targeted port of
the linker and for ELF targeted ports. For i386 PE, symbols explicitly listed in
a .def file are still exported, regardless of this option. For ELF targeted ports,
symbols affected by this option will be treated as hidden.

--exclude-modules-for-implib module ,module,. ..

Specifies a list of object files or archive members, from which symbols should
not be automatically exported, but which should be copied wholesale into the
import library being generated during the link. The module names may be
delimited by commas or colons, and must match exactly the filenames used by
1d to open the files; for archive members, this is simply the member name, but
for object files the name listed must include and match precisely any path used
to specify the input file on the linker’s command-line. This option is available
only for the 1386 PE targeted port of the linker. Symbols explicitly listed in a
.def file are still exported, regardless of this option.

-E

—--export-dynamic

--no-export-dynamic
When creating a dynamically linked executable, using the ‘~E’ option or the
‘-—export-dynamic’ option causes the linker to add all symbols to the dynamic
symbol table. The dynamic symbol table is the set of symbols which are visible
from dynamic objects at run time.

¢

If you do not use either of these options (or use the ‘--no-export-dynamic’
option to restore the default behavior), the dynamic symbol table will nor-
mally contain only those symbols which are referenced by some dynamic object
mentioned in the link.

If you use dlopen to load a dynamic object which needs to refer back to the
symbols defined by the program, rather than some other dynamic object, then
you will probably need to use this option when linking the program itself.

You can also use the dynamic list to control what symbols should be added to
the dynamic symbol table if the output format supports it. See the description
of ‘~-dynamic-list’.

Chapter 2: Invocation 7

-EB
-EL

-f name

Note that this option is specific to ELF targeted ports. PE targets support a
similar function to export all symbols from a DLL or EXE; see the description
of ‘~-export-all-symbols’ below.

Link big-endian objects. This affects the default output format.
Link little-endian objects. This affects the default output format.

--auxiliary=name

-F name

When creating an ELF shared object, set the internal DT_AUXILIARY field
to the specified name. This tells the dynamic linker that the symbol table of
the shared object should be used as an auxiliary filter on the symbol table of
the shared object name.

If you later link a program against this filter object, then, when you run the
program, the dynamic linker will see the DT_AUXILIARY field. If the dynamic
linker resolves any symbols from the filter object, it will first check whether there
is a definition in the shared object name. If there is one, it will be used instead of
the definition in the filter object. The shared object name need not exist. Thus
the shared object name may be used to provide an alternative implementation
of certain functions, perhaps for debugging or for machine specific performance.

This option may be specified more than once. The DT_AUXILIARY entries
will be created in the order in which they appear on the command line.

—-—-filter=name

—-fini=name

g

When creating an ELF shared object, set the internal DT_FILTER field to
the specified name. This tells the dynamic linker that the symbol table of the
shared object which is being created should be used as a filter on the symbol
table of the shared object name.

If you later link a program against this filter object, then, when you run the
program, the dynamic linker will see the DT_FILTER field. The dynamic linker
will resolve symbols according to the symbol table of the filter object as usual,
but it will actually link to the definitions found in the shared object name.
Thus the filter object can be used to select a subset of the symbols provided by
the object name.

Some older linkers used the ‘~F’ option throughout a compilation toolchain for
specifying object-file format for both input and output object files. The GNU
linker uses other mechanisms for this purpose: the ‘-b’, ‘-=format’, ‘-—oformat’
options, the TARGET command in linker scripts, and the GNUTARGET environment
variable. The GNU linker will ignore the ‘~F’ option when not creating an ELF
shared object.

When creating an ELF executable or shared object, call NAME when the exe-
cutable or shared object is unloaded, by setting DT_FINI to the address of the
function. By default, the linker uses _fini as the function to call.

Ignored. Provided for compatibility with other tools.

-G value

The GNU linker

--gpsize=value

-h name

Set the maximum size of objects to be optimized using the GP register to size.
This is only meaningful for object file formats such as MIPS ELF that support
putting large and small objects into different sections. This is ignored for other
object file formats.

—Soname=name

-i

-init=name

When creating an ELF shared object, set the internal DT_SONAME field to the
specified name. When an executable is linked with a shared object which has
a DT_SONAME field, then when the executable is run the dynamic linker will
attempt to load the shared object specified by the DT_SONAME field rather
than the using the file name given to the linker.

Perform an incremental link (same as option ‘-r’).
When creating an ELF executable or shared object, call NAME when the ex-

ecutable or shared object is loaded, by setting DT_INIT to the address of the
function. By default, the linker uses _init as the function to call.

-1 namespec
—--library=namespec

Add the archive or object file specified by namespec to the list of files to link.
This option may be used any number of times. If namespec is of the form
‘:filename’, 1d will search the library path for a file called filename, otherwise
it will search the library path for a file called ‘libnamespec .a’.

On systems which support shared libraries, 1d may also search for files other
than ‘libnamespec .a’. Specifically, on ELF and SunOS systems, 1d will search
a directory for a library called ‘1ibnamespec .so’ before searching for one called
‘libnamespec.a’. (By convention, a .so extension indicates a shared library.)
Note that this behavior does not apply to ‘:filename’, which always specifies
a file called filename.

The linker will search an archive only once, at the location where it is specified
on the command line. If the archive defines a symbol which was undefined in
some object which appeared before the archive on the command line, the linker
will include the appropriate file(s) from the archive. However, an undefined
symbol in an object appearing later on the command line will not cause the
linker to search the archive again.

See the ‘- option for a way to force the linker to search archives multiple
times.

You may list the same archive multiple times on the command line.

This type of archive searching is standard for Unix linkers. However, if you are
using 1d on AIX, note that it is different from the behaviour of the AIX linker.

Chapter 2: Invocation 9

-L searchdir

--library-path=searchdir
Add path searchdir to the list of paths that 1d will search for archive libraries
and 1d control scripts. You may use this option any number of times. The
directories are searched in the order in which they are specified on the command
line. Directories specified on the command line are searched before the default
directories. All ‘-L’ options apply to all ‘-1’ options, regardless of the order
in which the options appear. ‘-L’ options do not affect how 1d searches for a
linker script unless ‘-T’ option is specified.

If searchdir begins with =, then the = will be replaced by the sysroot prefix, a
path specified when the linker is configured.

The default set of paths searched (without being specified with ‘-L’) depends
on which emulation mode 1d is using, and in some cases also on how it was
configured. See Section 2.2 [Environment], page 37.

The paths can also be specified in a link script with the SEARCH_DIR command.

Directories specified this way are searched at the point in which the linker script
appears in the command line.

-m emulation
Emulate the emulation linker. You can list the available emulations with the
‘--verbose’ or ‘-V’ options.
If the ‘-m’ option is not used, the emulation is taken from the LDEMULATION
environment variable, if that is defined.

Otherwise, the default emulation depends upon how the linker was configured.

-M

—--print-map
Print a link map to the standard output. A link map provides information
about the link, including the following:

e Where object files are mapped into memory.
e How common symbols are allocated.

e All archive members included in the link, with a mention of the symbol
which caused the archive member to be brought in.

e The values assigned to symbols.

Note - symbols whose values are computed by an expression which involves
a reference to a previous value of the same symbol may not have correct
result displayed in the link map. This is because the linker discards inter-
mediate results and only retains the final value of an expression. Under
such circumstances the linker will display the final value enclosed by square
brackets. Thus for example a linker script containing:

foo =1
foo = foo * 4
foo = foo + 8

will produce the following output in the link map if the ‘-M’ option is used:

0x00000001 foo = 0Ox1
[0x0000000c] foo = (foo * 0x4)

10

-n
--nmagic

-N
—--omagic

The GNU linker

[0x0000000c] foo = (foo + 0x8)

See Section 3.10 [Expressions|, page 70 for more information about expres-
sions in linker scripts.

Turn off page alignment of sections, and disable linking against shared libraries.
If the output format supports Unix style magic numbers, mark the output as
NMAGIC.

Set the text and data sections to be readable and writable. Also, do not page-
align the data segment, and disable linking against shared libraries. If the
output format supports Unix style magic numbers, mark the output as OMAGIC.
Note: Although a writable text section is allowed for PE-COFF targets, it does
not conform to the format specification published by Microsoft.

—--no-omagic

-0 output

This option negates most of the effects of the ‘-N’ option. It sets the text section
to be read-only, and forces the data segment to be page-aligned. Note - this
option does not enable linking against shared libraries. Use ‘~Bdynamic’ for
this.

—--output=output

-0 level

-q

Use output as the name for the program produced by 1d; if this option is not
specified, the name ‘a.out’ is used by default. The script command OUTPUT
can also specify the output file name.

If level is a numeric values greater than zero 1d optimizes the output. This
might take significantly longer and therefore probably should only be enabled
for the final binary. At the moment this option only affects ELF shared library
generation. Future releases of the linker may make more use of this option. Also
currently there is no difference in the linker’s behaviour for different non-zero
values of this option. Again this may change with future releases.

—-—emit-relocs

Leave relocation sections and contents in fully linked executables. Post link
analysis and optimization tools may need this information in order to perform
correct modifications of executables. This results in larger executables.

This option is currently only supported on ELF platforms.

—--force-dynamic

-r

Force the output file to have dynamic sections. This option is specific to Vx-
Works targets.

—--relocatable

Generate relocatable output—i.e., generate an output file that can in turn serve
as input to 1d. This is often called partial linking. As a side effect, in envi-
ronments that support standard Unix magic numbers, this option also sets the

Chapter 2: Invocation 11

output file’s magic number to OMAGIC. If this option is not specified, an abso-
lute file is produced. When linking C++ programs, this option will not resolve
references to constructors; to do that, use ‘-Ur’.

When an input file does not have the same format as the output file, partial
linking is only supported if that input file does not contain any relocations.
Different output formats can have further restrictions; for example some a. out-
based formats do not support partial linking with input files in other formats
at all.

This option does the same thing as ‘-i’.

-R filename

--just-symbols=filename
Read symbol names and their addresses from filename, but do not relocate it
or include it in the output. This allows your output file to refer symbolically
to absolute locations of memory defined in other programs. You may use this
option more than once.

For compatibility with other ELF linkers, if the ‘R’ option is followed by a
directory name, rather than a file name, it is treated as the ‘-rpath’ option.

-s
--strip-all
Omit all symbol information from the output file.

-S
--strip-debug
Omit debugger symbol information (but not all symbols) from the output file.

-t
--trace Print the names of the input files as 1d processes them.

-T scriptfile

--script=scriptfile
Use scriptfile as the linker script. This script replaces 1d’s default linker script
(rather than adding to it), so commandfile must specify everything necessary
to describe the output file. See Chapter 3 [Scripts|, page 39. If scriptfile does
not exist in the current directory, 1d looks for it in the directories specified by
any preceding ‘-L’ options. Multiple ‘-T” options accumulate.

-dT scriptfile
--default-script=scriptfile
Use scriptfile as the default linker script. See Chapter 3 [Scripts|, page 39.

This option is similar to the ‘~-script’ option except that processing of the
script is delayed until after the rest of the command line has been processed.
This allows options placed after the ‘--default-script’ option on the com-
mand line to affect the behaviour of the linker script, which can be important
when the linker command line cannot be directly controlled by the user. (eg
because the command line is being constructed by another tool, such as ‘gcc’).

12

-u symbol

The GNU linker

-—undefined=symbol

-Ur

--unique[=

-V
—--version
-V

-X

—-discard-

-X

——-discard-

-y symbol

Force symbol to be entered in the output file as an undefined symbol. Do-
ing this may, for example, trigger linking of additional modules from standard
libraries. ‘-—u’ may be repeated with different option arguments to enter addi-
tional undefined symbols. This option is equivalent to the EXTERN linker script
command.

For anything other than C++ programs, this option is equivalent to ‘-r’: it gen-
erates relocatable output—i.e., an output file that can in turn serve as input to
1d. When linking C++ programs, ‘~Ur’ does resolve references to constructors,
unlike ‘-r’. It does not work to use ‘-Ur’ on files that were themselves linked
with ‘-Ur’; once the constructor table has been built, it cannot be added to.
Use ‘=Ur’ only for the last partial link, and ‘-r’ for the others.

SECTION]

Creates a separate output section for every input section matching SECTION,
or if the optional wildcard SECTION argument is missing, for every orphan
input section. An orphan section is one not specifically mentioned in a linker
script. You may use this option multiple times on the command line; It prevents
the normal merging of input sections with the same name, overriding output
section assignments in a linker script.

Display the version number for 1d. The -V’ option also lists the supported
emulations.

all
Delete all local symbols.

locals

Delete all temporary local symbols. (These symbols start with system-specific
local label prefixes, typically ‘.L’ for ELF systems or ‘L’ for traditional a.out
systems.)

-—trace-symbol=symbol

-Y path

-z keyword

Print the name of each linked file in which symbol appears. This option may
be given any number of times. On many systems it is necessary to prepend an
underscore.

This option is useful when you have an undefined symbol in your link but don’t
know where the reference is coming from.

Add path to the default library search path. This option exists for Solaris
compatibility.

The recognized keywords are:

Chapter 2: Invocation 13

‘combreloc’
Combines multiple reloc sections and sorts them to make dynamic
symbol lookup caching possible.

‘defs’ Disallows undefined symbols in object files. Undefined symbols in
shared libraries are still allowed.

‘execstack’
Marks the object as requiring executable stack.

‘global’ This option is only meaningful when building a shared object. It
makes the symbols defined by this shared object available for sym-
bol resolution of subsequently loaded libraries.

‘initfirst’

This option is only meaningful when building a shared object. It
marks the object so that its runtime initialization will occur before
the runtime initialization of any other objects brought into the
process at the same time. Similarly the runtime finalization of the
object will occur after the runtime finalization of any other objects.

‘interpose’
Marks the object that its symbol table interposes before all symbols
but the primary executable.

‘lazy’ When generating an executable or shared library, mark it to tell the
dynamic linker to defer function call resolution to the point when
the function is called (lazy binding), rather than at load time. Lazy
binding is the default.

‘loadfltr’
Marks the object that its filters be processed immediately at run-
time.

‘muldefs’ Allows multiple definitions.

‘nocombreloc’
Disables multiple reloc sections combining.

‘nocopyreloc’
Disables production of copy relocs.

‘nodefaultlib’
Marks the object that the search for dependencies of this object
will ignore any default library search paths.

‘nodelete’
Marks the object shouldn’t be unloaded at runtime.

‘nodlopen’
Marks the object not available to dlopen.

‘nodump’ Marks the object can not be dumped by dl1dump.

‘noexecstack’
Marks the object as not requiring executable stack.

14

The GNU linker

‘norelro’ Don’t create an ELF PT_GNU_RELRO segment header in the object.

3 ?

now When generating an executable or shared library, mark it to tell the
dynamic linker to resolve all symbols when the program is started,
or when the shared library is linked to using dlopen, instead of
deferring function call resolution to the point when the function is
first called.

‘origin’ Marks the object may contain $ORIGIN.
‘relro’ Create an ELF PT_GNU_RELRO segment header in the object.

‘max-page-size=value’
Set the emulation maximum page size to value.

‘common-page-size=value’
Set the emulation common page size to value.

‘stack-size=value’
Specify a stack size for in an ELF PT_GNU_STACK segment. Spec-
ifying zero will override any default non-zero sized PT_GNU_STACK
segment, creation.

Other keywords are ignored for Solaris compatibility.

-(archives -)
--start-group archives --end-group

The archives should be a list of archive files. They may be either explicit file
names, or ‘=1’ options.

The specified archives are searched repeatedly until no new undefined references
are created. Normally, an archive is searched only once in the order that it is
specified on the command line. If a symbol in that archive is needed to resolve
an undefined symbol referred to by an object in an archive that appears later
on the command line, the linker would not be able to resolve that reference.
By grouping the archives, they all be searched repeatedly until all possible
references are resolved.

Using this option has a significant performance cost. It is best to use it only
when there are unavoidable circular references between two or more archives.

--accept-unknown-input-arch
—--no-accept-unknown-input-arch

Tells the linker to accept input files whose architecture cannot be recognised.
The assumption is that the user knows what they are doing and deliberately
wants to link in these unknown input files. This was the default behaviour of
the linker, before release 2.14. The default behaviour from release 2.14 onwards
is to reject such input files, and so the ‘-—accept-unknown-input-arch’ option
has been added to restore the old behaviour.

——as—needed
—--no-as-needed

This option affects ELF DT_NEEDED tags for dynamic libraries mentioned
on the command line after the ‘--as-needed’ option. Normally the linker will

Chapter 2: Invocation 15

add a DT_NEEDED tag for each dynamic library mentioned on the command
line, regardless of whether the library is actually needed or not. ‘--as-needed’
causes a DT_NEEDED tag to only be emitted for a library that at that point in
the link satisfies a non-weak undefined symbol reference from a regular object
file or, if the library is not found in the DT_NEEDED lists of other libraries,
a non-weak undefined symbol reference from another dynamic library. Object
files or libraries appearing on the command line after the library in question do
not affect whether the library is seen as needed. This is similar to the rules for
extraction of object files from archives. ‘--no-as-needed’ restores the default
behaviour.

—-—add-needed
—--no-add—-needed

These two options have been deprecated because of the similarity of their names
to the ‘-—as-needed’ and ‘--no-as-needed’ options. They have been replaced
by ‘--copy-dt-needed-entries’ and ‘--no-copy-dt-needed-entries’.

-assert keyword

-Bdynamic

_dy-

This option is ignored for SunOS compatibility.

—call_shared

-Bgroup

-Bstatic
-dn

Link against dynamic libraries. This is only meaningful on platforms for which
shared libraries are supported. This option is normally the default on such
platforms. The different variants of this option are for compatibility with vari-
ous systems. You may use this option multiple times on the command line: it
affects library searching for ‘-1’ options which follow it.

Set the DF_1_GROUP flag in the DT_FLAGS_1 entry in the dynamic section. This
causes the runtime linker to handle lookups in this object and its dependencies
to be performed only inside the group. ‘--unresolved-symbols=report-all’
is implied. This option is only meaningful on ELF platforms which support
shared libraries.

-non_shared

-static

-Bsymbolic

Do not link against shared libraries. This is only meaningful on platforms
for which shared libraries are supported. The different variants of this option
are for compatibility with various systems. You may use this option multiple
times on the command line: it affects library searching for ‘-1’ options which
follow it. This option also implies ‘-—unresolved-symbols=report-all’. This
option can be used with ‘-shared’. Doing so means that a shared library is
being created but that all of the library’s external references must be resolved
by pulling in entries from static libraries.

When creating a shared library, bind references to global symbols to the defi-
nition within the shared library, if any. Normally, it is possible for a program

16 The GNU linker

linked against a shared library to override the definition within the shared li-
brary. This option is only meaningful on ELF platforms which support shared
libraries.

-Bsymbolic-functions
When creating a shared library, bind references to global function symbols to
the definition within the shared library, if any. This option is only meaningful
on ELF platforms which support shared libraries.

--dynamic-list=dynamic-list-file
Specify the name of a dynamic list file to the linker. This is typically used when
creating shared libraries to specify a list of global symbols whose references
shouldn’t be bound to the definition within the shared library, or creating dy-
namically linked executables to specify a list of symbols which should be added
to the symbol table in the executable. This option is only meaningful on ELF
platforms which support shared libraries.

The format of the dynamic list is the same as the version node without scope
and node name. See Section 3.9 [VERSION], page 67 for more information.

--dynamic-list-data
Include all global data symbols to the dynamic list.

--dynamic-list-cpp—new
Provide the builtin dynamic list for C++ operator new and delete. It is mainly
useful for building shared libstdc++.

--dynamic-list-cpp-typeinfo
Provide the builtin dynamic list for C++ runtime type identification.

—--check-sections

--no-check-sections
Asks the linker not to check section addresses after they have been assigned to
see if there are any overlaps. Normally the linker will perform this check, and
if it finds any overlaps it will produce suitable error messages. The linker does
know about, and does make allowances for sections in overlays. The default be-
haviour can be restored by using the command line switch ‘--check-sections’.
Section overlap is not usually checked for relocatable links. You can force check-
ing in that case by using the ‘~-check-sections’ option.

--copy-dt-needed-entries

--no-copy-dt-needed-entries
This option affects the treatment of dynamic libraries referred to by
DT_NEEDED tags inside ELF dynamic libraries mentioned on the command
line. Normally the linker won’t add a DT_NEEDED tag to the output binary
for each library mentioned in a DT_NEEDED tag in an input dynamic library.
With ‘--copy-dt-needed-entries’ specified on the command line however
any dynamic libraries that follow it will have their DT_NEEDED entries added.
The default behaviour can be restored with ‘~-no-copy-dt-needed-entries’.
This option also has an effect on the resolution of symbols in dynamic libraries.
With ‘--copy-dt-needed-entries’ dynamic libraries mentioned on the com-
mand line will be recursively searched, following their DT_NEEDED tags to

Chapter 2: Invocation 17

—--cref

other libraries, in order to resolve symbols required by the output binary. With
the default setting however the searching of dynamic libraries that follow it will
stop with the dynamic library itself. No DT_NEEDED links will be traversed

to resolve symbols.

Output a cross reference table. If a linker map file is being generated, the
cross reference table is printed to the map file. Otherwise, it is printed on the
standard output.

The format of the table is intentionally simple, so that it may be easily processed
by a script if necessary. The symbols are printed out, sorted by name. For each
symbol, a list of file names is given. If the symbol is defined, the first file listed
is the location of the definition. If the symbol is defined as a common value
then any files where this happens appear next. Finally any files that reference
the symbol are listed.

—--no-define-common

This option inhibits the assignment of addresses to common symbols. The script
command INHIBIT_COMMON_ALLOCATION has the same effect. See Section 3.4.5
[Miscellaneous Commands|, page 46.

The ‘--no-define-common’ option allows decoupling the decision to assign ad-
dresses to Common symbols from the choice of the output file type; otherwise
a non-Relocatable output type forces assigning addresses to Common symbols.
Using ‘--no-define-common’ allows Common symbols that are referenced from
a shared library to be assigned addresses only in the main program. This elim-
inates the unused duplicate space in the shared library, and also prevents any
possible confusion over resolving to the wrong duplicate when there are many
dynamic modules with specialized search paths for runtime symbol resolution.

--defsym=symbol=expression

Create a global symbol in the output file, containing the absolute address given
by expression. You may use this option as many times as necessary to define
multiple symbols in the command line. A limited form of arithmetic is sup-
ported for the expression in this context: you may give a hexadecimal constant
or the name of an existing symbol, or use + and - to add or subtract hexadec-
imal constants or symbols. If you need more elaborate expressions, consider
using the linker command language from a script (see Section 3.5 [Assignment:
Symbol Definitions|, page 47). Note: there should be no white space between
symbol, the equals sign (“="), and expression.

--demangle[=style]
--no-demangle

These options control whether to demangle symbol names in error messages and
other output. When the linker is told to demangle, it tries to present symbol
names in a readable fashion: it strips leading underscores if they are used by
the object file format, and converts C++ mangled symbol names into user read-
able names. Different compilers have different mangling styles. The optional
demangling style argument can be used to choose an appropriate demangling
style for your compiler. The linker will demangle by default unless the envi-

18

-Ifile

The GNU linker

ronment variable ‘COLLECT_NO_DEMANGLE’ is set. These options may be used to
override the default.

--dynamic-linker=file

Set the name of the dynamic linker. This is only meaningful when generating
dynamically linked ELF executables. The default dynamic linker is normally
correct; don’t use this unless you know what you are doing.

--fatal-warnings
--no-fatal-warnings

Treat all warnings as errors. The default behaviour can be restored with the
option ‘--no-fatal-warnings’.

—-—force-exe-suffix

Make sure that an output file has a .exe suffix.

If a successfully built fully linked output file does not have a .exe or .d11 suffix,
this option forces the linker to copy the output file to one of the same name
with a .exe suffix. This option is useful when using unmodified Unix makefiles
on a Microsoft Windows host, since some versions of Windows won’t run an
image unless it ends in a .exe suffix.

--gc-sections
--no-gc-sections

Enable garbage collection of unused input sections. It is ignored on targets
that do not support this option. The default behaviour (of not performing this
garbage collection) can be restored by specifying ‘~-no-gc-sections’ on the
command line.

‘-—gc-sections’ decides which input sections are used by examining symbols
and relocations. The section containing the entry symbol and all sections con-
taining symbols undefined on the command-line will be kept, as will sections
containing symbols referenced by dynamic objects. Note that when building
shared libraries, the linker must assume that any visible symbol is referenced.
Once this initial set of sections has been determined, the linker recursively
marks as used any section referenced by their relocations. See ‘--entry’ and
‘~-undefined’.

This option can be set when doing a partial link (enabled with option ‘-r’).
In this case the root of symbols kept must be explicitly specified either by an
‘—-—entry’ or ‘-—undefined’ option or by a ENTRY command in the linker script.

--print-gc-sections
--no-print-gc-sections

List all sections removed by garbage collection. The listing is printed on stderr.
This option is only effective if garbage collection has been enabled via the
‘~-gc-sections’) option. The default behaviour (of not listing the sections
that are removed) can be restored by specifying ‘-—no-print-gc-sections’ on
the command line.

Chapter 2: Invocation 19

—--print-output-format
Print the name of the default output format (perhaps influenced by other
command-line options). This is the string that would appear in an OUTPUT_
FORMAT linker script command (see Section 3.4.2 [File Commands|, page 41).

--help Print a summary of the command-line options on the standard output and exit.
--target-help

Print a summary of all target specific options on the standard output and exit.
-Map=mapfile

Print a link map to the file mapfile. See the description of the ‘-M’ option,

above.

--no-keep-memory
1d normally optimizes for speed over memory usage by caching the symbol
tables of input files in memory. This option tells 1d to instead optimize for
memory usage, by rereading the symbol tables as necessary. This may be
required if 1d runs out of memory space while linking a large executable.

-—-no-undefined

-z defs Report unresolved symbol references from regular object files. This is done
even if the linker is creating a mnon-symbolic shared library. The switch
‘-—[no-Jallow-shlib-undefined’ controls the behaviour for reporting
unresolved references found in shared libraries being linked in.

--allow-multiple-definition

-z muldefs
Normally when a symbol is defined multiple times, the linker will report a fatal
error. These options allow multiple definitions and the first definition will be
used.

--allow-shlib-undefined

--no-allow-shlib-undefined
Allows or disallows undefined symbols in shared libraries. This switch is similar
to ‘--no-undefined’ except that it determines the behaviour when the unde-
fined symbols are in a shared library rather than a regular object file. It does
not affect how undefined symbols in regular object files are handled.

The default behaviour is to report errors for any undefined symbols referenced
in shared libraries if the linker is being used to create an executable, but to
allow them if the linker is being used to create a shared library.

The reasons for allowing undefined symbol references in shared libraries speci-
fied at link time are that:

e A shared library specified at link time may not be the same as the one
that is available at load time, so the symbol might actually be resolvable
at load time.

e There are some operating systems, eg BeOS and HPPA, where undefined
symbols in shared libraries are normal.

The BeOS kernel for example patches shared libraries at load time to select
whichever function is most appropriate for the current architecture. This is
used, for example, to dynamically select an appropriate memset function.

20 The GNU linker

--no-undefined-version
Normally when a symbol has an undefined version, the linker will ignore it.
This option disallows symbols with undefined version and a fatal error will be
issued instead.

--default-symver
Create and use a default symbol version (the soname) for unversioned exported
symbols.

--default-imported-symver
Create and use a default symbol version (the soname) for unversioned imported
symbols.

--no-warn-mismatch
Normally 1d will give an error if you try to link together input files that are
mismatched for some reason, perhaps because they have been compiled for
different processors or for different endiannesses. This option tells 1d that it
should silently permit such possible errors. This option should only be used
with care, in cases when you have taken some special action that ensures that
the linker errors are inappropriate.

--no-warn-search-mismatch
Normally 14 will give a warning if it finds an incompatible library during a
library search. This option silences the warning.

--no-whole-archive
Turn off the effect of the ‘-——whole-archive’ option for subsequent archive files.

-—-noinhibit-exec
Retain the executable output file whenever it is still usable. Normally, the linker
will not produce an output file if it encounters errors during the link process;
it exits without writing an output file when it issues any error whatsoever.

-nostdlib
Only search library directories explicitly specified on the command line. Library
directories specified in linker scripts (including linker scripts specified on the
command line) are ignored.

--oformat=output-format
1d may be configured to support more than one kind of object file. If your
1d is configured this way, you can use the ‘-—oformat’ option to specify the
binary format for the output object file. Even when 1d is configured to support
alternative object formats, you don’t usually need to specify this, as 1d should
be configured to produce as a default output format the most usual format on
each machine. output-format is a text string, the name of a particular format
supported by the BFD libraries. (You can list the available binary formats
with ‘objdump -i’.) The script command OUTPUT_FORMAT can also specify the
output format, but this option overrides it. See Chapter 5 [BFD], page 101.

-pie

--pic-executable
Create a position independent executable. This is currently only supported
on ELF platforms. Position independent executables are similar to shared li-

Chapter 2: Invocation 21

braries in that they are relocated by the dynamic linker to the virtual address
the OS chooses for them (which can vary between invocations). Like normal
dynamically linked executables they can be executed and symbols defined in
the executable cannot be overridden by shared libraries.

-gmagic This option is ignored for Linux compatibility.
-Qy This option is ignored for SVR4 compatibility.

--relax

--no-relax
An option with machine dependent effects. This option is only supported on a
few targets. See Section 4.1 [1d and the H8/300], page 81. See Section 4.2 [1d
and the Intel 960 family], page 81. See Section 4.15 [1d and Xtensa Processors],
page 98. See Section 4.3 [1d and the 68HC11 and 68HC12], page 82. See
Section 4.10 [1d and PowerPC 32-bit ELF Support], page 87.

¢

On some platforms the ‘--relax’ option performs target specific, global opti-
mizations that become possible when the linker resolves addressing in the pro-
gram, such as relaxing address modes, synthesizing new instructions, selecting
shorter version of current instructions, and combining constant values.

On some platforms these link time global optimizations may make symbolic
debugging of the resulting executable impossible. This is known to be the case
for the Matsushita MN10200 and MN10300 family of processors.

On platforms where this is not supported, ‘--relax’ is accepted, but ignored.

On platforms where ‘--relax’ is accepted the option ‘-—no-relax’ can be used
to disable the feature.

—-—-retain-symbols-file=filename
Retain only the symbols listed in the file filename, discarding all others. file-
name is simply a flat file, with one symbol name per line. This option is espe-
cially useful in environments (such as VxWorks) where a large global symbol
table is accumulated gradually, to conserve run-time memory.

‘-—retain-symbols-file’ does not discard undefined symbols, or symbols
needed for relocations.

You may only specify ‘~-retain-symbols-file’ once in the command line. It
overrides ‘-s’ and ‘-8’

-rpath=dir

Add a directory to the runtime library search path. This is used when linking an
ELF executable with shared objects. All ‘-rpath’ arguments are concatenated
and passed to the runtime linker, which uses them to locate shared objects at
runtime. The ‘-rpath’ option is also used when locating shared objects which
are needed by shared objects explicitly included in the link; see the description
of the ‘-rpath-link’ option. If ‘-rpath’ is not used when linking an ELF
executable, the contents of the environment variable LD_RUN_PATH will be used
if it is defined.

The ‘-rpath’ option may also be used on SunOS. By default, on SunOS, the
linker will form a runtime search patch out of all the ‘-L’ options it is given. If

22

The GNU linker

a ‘-rpath’ option is used, the runtime search path will be formed exclusively

using the ‘-rpath’ options, ignoring the ‘-L’ options. This can be useful when
using gec, which adds many ‘-L’ options which may be on NFS mounted file
systems.

For compatibility with other ELF linkers, if the ‘R’ option is followed by a
directory name, rather than a file name, it is treated as the ‘-rpath’ option.

-rpath-link=dir

When using ELF or SunOS, one shared library may require another. This
happens when an 1d -shared link includes a shared library as one of the input
files.

When the linker encounters such a dependency when doing a non-shared, non-
relocatable link, it will automatically try to locate the required shared library
and include it in the link, if it is not included explicitly. In such a case,
the ‘-rpath-link’ option specifies the first set of directories to search. The
‘-rpath-1link’ option may specify a sequence of directory names either by spec-
ifying a list of names separated by colons, or by appearing multiple times.

This option should be used with caution as it overrides the search path that
may have been hard compiled into a shared library. In such a case it is possible
to use unintentionally a different search path than the runtime linker would do.

The linker uses the following search paths to locate required shared libraries:
1. Any directories specified by ‘-rpath-1link’ options.

2. Any directories specified by ‘-rpath’ options. The difference between
‘-rpath’ and ‘-rpath-link’ is that directories specified by ‘-rpath’ op-
tions are included in the executable and used at runtime, whereas the
‘-rpath-1link’ option is only effective at link time. Searching ‘-rpath’ in
this way is only supported by native linkers and cross linkers which have
been configured with the ‘~-with-sysroot’ option.

¢

3. On an ELF system, for native linkers, if the ‘-rpath’ and ‘-rpath-link’
options were not used, search the contents of the environment variable
LD_RUN_PATH.

4. On SunOS, if the ‘-rpath’ option was not used, search any directories
specified using ‘-L’ options.

5. For a native linker, search the contents of the environment variable LD_
LIBRARY_PATH.

6. For a native ELF linker, the directories in DT_RUNPATH or DT_RPATH of a
shared library are searched for shared libraries needed by it. The DT_RPATH
entries are ignored if DT_RUNPATH entries exist.

7. The default directories, normally ‘/1ib’ and ‘/usr/1lib’.
8. For a native linker on an ELF system, if the file ‘/etc/1d.so.conf’ exists,
the list of directories found in that fi