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Chapter 1: Introduction 1

1

Introduction

This manual documents the use of gfortran, the GNU Fortran compiler. You can find in
this manual how to invoke gfortran, as well as its features and incompatibilities.

The GNU Fortran compiler front end was designed initially as a free replacement for,

or alternative to, the Unix £95 command; gfortran is the command you will use to invoke
the compiler.

1.1 About GNU Fortran

The GNU Fortran compiler supports the Fortran 77, 90 and 95 standards completely, parts
of the Fortran 2003 and Fortran 2008 standards, and several vendor extensions. The devel-
opment goal is to provide the following features:

Read a user’s program, stored in a file and containing instructions written in Fortran
77, Fortran 90, Fortran 95, Fortran 2003 or Fortran 2008. This file contains source
code.

Translate the user’s program into instructions a computer can carry out more quickly
than it takes to translate the instructions in the first place. The result after compilation
of a program is machine code, code designed to be efficiently translated and processed
by a machine such as your computer. Humans usually are not as good writing machine
code as they are at writing Fortran (or C++, Ada, or Java), because it is easy to make
tiny mistakes writing machine code.

Provide the user with information about the reasons why the compiler is unable to
create a binary from the source code. Usually this will be the case if the source code
is flawed. The Fortran 90 standard requires that the compiler can point out mistakes
to the user. An incorrect usage of the language causes an error message.

The compiler will also attempt to diagnose cases where the user’s program contains a
correct usage of the language, but instructs the computer to do something questionable.
This kind of diagnostics message is called a warning message.

Provide optional information about the translation passes from the source code to
machine code. This can help a user of the compiler to find the cause of certain bugs
which may not be obvious in the source code, but may be more easily found at a lower
level compiler output. It also helps developers to find bugs in the compiler itself.

Provide information in the generated machine code that can make it easier to find bugs
in the program (using a debugging tool, called a debugger, such as the GNU Debugger
gdb).

Locate and gather machine code already generated to perform actions requested by
statements in the user’s program. This machine code is organized into modules and is
located and linked to the user program.

The GNU Fortran compiler consists of several components:

A version of the gcc command (which also might be installed as the system’s cc com-
mand) that also understands and accepts Fortran source code. The gcc command is
the driver program for all the languages in the GNU Compiler Collection (GCC); With
gcc, you can compile the source code of any language for which a front end is available
in GCC.
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e The gfortran command itself, which also might be installed as the system’s £95 com-
mand. gfortran is just another driver program, but specifically for the Fortran com-
piler only. The difference with gcc is that gfortran will automatically link the correct
libraries to your program.

e A collection of run-time libraries. These libraries contain the machine code needed
to support capabilities of the Fortran language that are not directly provided by the
machine code generated by the gfortran compilation phase, such as intrinsic functions
and subroutines, and routines for interaction with files and the operating system.

e The Fortran compiler itself, (£951). This is the GNU Fortran parser and code generator,
linked to and interfaced with the GCC backend library. £951 “translates” the source
code to assembler code. You would typically not use this program directly; instead,
the gcc or gfortran driver programs will call it for you.

1.2 GNU Fortran and GCC

GNU Fortran is a part of GCC, the GNU Compiler Collection. GCC consists of a collec-
tion of front ends for various languages, which translate the source code into a language-
independent form called GENERIC. This is then processed by a common middle end which
provides optimization, and then passed to one of a collection of back ends which generate
code for different computer architectures and operating systems.

Functionally, this is implemented with a driver program (gcc) which provides the
command-line interface for the compiler. It calls the relevant compiler front-end program
(e.g., £951 for Fortran) for each file in the source code, and then calls the assembler and
linker as appropriate to produce the compiled output. In a copy of GCC which has been
compiled with Fortran language support enabled, gcc will recognize files with ‘. £’ ‘. for’,
‘.ftn’, ©.£90°, .£95’, ‘.03’ and ‘.f08’ extensions as Fortran source code, and compile it
accordingly. A gfortran driver program is also provided, which is identical to gcc except
that it automatically links the Fortran runtime libraries into the compiled program.

Source files with ‘.f’, ‘.for’, ‘.fpp’, ‘.ftn’, *.F’, *.FOR’, ‘*.FPP’, and ‘.FTN’ extensions
are treated as fixed form. Source files with *.£90°, ‘.£95’, *.£f03’, ‘.£08’, ‘.F90’, ‘.F95’,
‘.F03’ and ‘.F08’ extensions are treated as free form. The capitalized versions of either
form are run through preprocessing. Source files with the lower case ‘.fpp’ extension are
also run through preprocessing.

This manual specifically documents the Fortran front end, which handles the program-
ming language’s syntax and semantics. The aspects of GCC which relate to the optimization
passes and the back-end code generation are documented in the GCC manual; see Section
“Introduction” in Using the GNU Compiler Collection (GCC). The two manuals together
provide a complete reference for the GNU Fortran compiler.

1.3 Preprocessing and conditional compilation

Many Fortran compilers including GNU Fortran allow passing the source code through a
C preprocessor (CPP; sometimes also called the Fortran preprocessor, FPP) to allow for
conditional compilation. In the case of GNU Fortran, this is the GNU C Preprocessor
in the traditional mode. On systems with case-preserving file names, the preprocessor is
automatically invoked if the filename extension is ‘.F’, *.FOR’, ‘.FIN’, ‘. fpp’, ‘.FPP’, ‘.F90’,



Chapter 1: Introduction 3

‘.F95’, *.F03’ or ‘.F08’. To manually invoke the preprocessor on any file, use ‘~cpp’, to

disable preprocessing on files where the preprocessor is run automatically, use ‘-nocpp’.

If a preprocessed file includes another file with the Fortran INCLUDE statement, the in-
cluded file is not preprocessed. To preprocess included files, use the equivalent preprocessor
statement #include.

If GNU Fortran invokes the preprocessor, __GFORTRAN__ is defined and __GNUC
_GNUC_MINOR__ and __GNUC_PATCHLEVEL__ can be used to determine the version of the

compiler. See Section “Overview” in The C Preprocessor for details.

- -

While CPP is the de-facto standard for preprocessing Fortran code, Part 3 of the Fortran
95 standard (ISO/IEC 1539-3:1998) defines Conditional Compilation, which is not widely
used and not directly supported by the GNU Fortran compiler. You can use the program
coco to preprocess such files (http://www.daniellnagle.com/coco.html).

1.4 GNU Fortran and G77

The GNU Fortran compiler is the successor to g77, the Fortran 77 front end included in GCC
prior to version 4. It is an entirely new program that has been designed to provide Fortran
95 support and extensibility for future Fortran language standards, as well as providing
backwards compatibility for Fortran 77 and nearly all of the GNU language extensions
supported by g77.

1.5 Project Status

As soon as gfortran can parse all of the statements correctly, it will be in the
“larva” state. When we generate code, the “puppa” state. When gfortran is
done, we’ll see if it will be a beautiful butterfly, or just a big bug....

—Andy Vaught, April 2000
The start of the GNU Fortran 95 project was announced on the GCC homepage in March
18, 2000 (even though Andy had already been working on it for a while, of course).

The GNU Fortran compiler is able to compile nearly all standard-compliant Fortran 95,
Fortran 90, and Fortran 77 programs, including a number of standard and non-standard
extensions, and can be used on real-world programs. In particular, the supported extensions
include OpenMP, Cray-style pointers, and several Fortran 2003 and Fortran 2008 features,
including TR 15581. However, it is still under development and has a few remaining rough
edges.

At present, the GNU Fortran compiler passes the NIST Fortran 77 Test Suite, and
produces acceptable results on the LAPACK Test Suite. It also provides respectable per-
formance on the Polyhedron Fortran compiler benchmarks and the Livermore Fortran Ker-
nels test. It has been used to compile a number of large real-world programs, including the
HIRLAM weather-forecasting code and the Tonto quantum chemistry package; see http://
gcc.gnu.org/wiki/GfortranApps for an extended list.

Among other things, the GNU Fortran compiler is intended as a replacement for G77.
At this point, nearly all programs that could be compiled with G77 can be compiled with
GNU Fortran, although there are a few minor known regressions.

The primary work remaining to be done on GNU Fortran falls into three categories:
bug fixing (primarily regarding the treatment of invalid code and providing useful error
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messages), improving the compiler optimizations and the performance of compiled code,
and extending the compiler to support future standards—in particular, Fortran 2003 and
Fortran 2008.

1.6 Standards

The GNU Fortran compiler implements ISO/TEC 1539:1997 (Fortran 95). As such, it can
also compile essentially all standard-compliant Fortran 90 and Fortran 77 programs. It also
supports the ISO/IEC TR~15581 enhancements to allocatable arrays.

GNU Fortran also have a partial support for ISO/IEC 1539-1:2004 (Fortran
2003), ISO/IEC 1539-1:2010 (Fortran 2008), the Technical Specification Further
Interoperability of Fortran with C (ISO/IEC TS 29113:2012). Full support of those
standards and future Fortran standards is planned. The current status of the support is
can be found in the Section 4.1 [Fortran 2003 status|, page 33, Section 4.2 [Fortran 2008
status|, page 34 and Section 4.3 [TS 29113 status], page 36 sections of the documentation.

Additionally, the GNU Fortran compilers supports the OpenMP specification (version
3.1, http://openmp.org/wp/openmp-specifications/).

1.6.1 Varying Length Character Strings

The Fortran 95 standard specifies in Part 2 (ISO/IEC 1539-2:2000) varying length character
strings. While GNU Fortran currently does not support such strings directly, there exist
two Fortran implementations for them, which work with GNU Fortran. They can be found
at http://www.fortran.com/iso_varying_string.f95 and at ftp://ftp.nag.co.uk/
sc22wgh5/ISO0_VARYING_STRING/.

Deferred-length character strings of Fortran 2003 supports part of the features of I80_
VARYING_STRING and should be considered as replacement. (Namely, allocatable or pointers
of the type character(len=:).)


http://openmp.org/wp/openmp-specifications/
http://www.fortran.com/iso_varying_string.f95
ftp://ftp.nag.co.uk/sc22wg5/ISO_VARYING_STRING/
ftp://ftp.nag.co.uk/sc22wg5/ISO_VARYING_STRING/
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2 GNU Fortran Command Options

The gfortran command supports all the options supported by the gcc command. Only
options specific to GNU Fortran are documented here.

See Section “GCC Command Options” in Using the GNU Compiler Collection (GCC),
for information on the non-Fortran-specific aspects of the gcc command (and, therefore,
the gfortran command).

All GCC and GNU Fortran options are accepted both by gfortran and by gcc (as well
as any other drivers built at the same time, such as g++), since adding GNU Fortran to the
GCC distribution enables acceptance of GNU Fortran options by all of the relevant drivers.

In some cases, options have positive and negative forms; the negative form of ‘-ffoo’
would be ‘~fno-foo’. This manual documents only one of these two forms, whichever one
is not the default.

2.1 Option summary

Here is a summary of all the options specific to GNU Fortran, grouped by type. Explanations
are in the following sections.

Fortran Language Options
See Section 2.2 [Options controlling Fortran dialect], page 8.

-fall-intrinsics -fbackslash -fcray-pointer -fd-lines-as-code
-fd-lines-as-comments -fdefault-double-8 -fdefault-integer-8
-fdefault-real-8 -fdollar-ok -ffixed-line-length-n
-ffixed-line-length-none -ffree-form -ffree-line-length-n
-ffree-line-length-none -fimplicit-none -finteger-4-integer-8
-fmax-identifier-length -fmodule-private -fno-fixed-form -fno-range-check
-fopenmp -freal-4-real-10 -freal-4-real-16 -freal-4-real-8
-freal-8-real-10 -freal-8-real-16 -freal-8-real-4 -std=std

Preprocessing Options
See Section 2.3 [Enable and customize preprocessing|, page 11.

-A-question[=answer] -Aquestion=answer -C -CC -Dmacro[=defn| -H -P
-Umacro -cpp -dD -dI -dM -dN -dU -fworking-directory -imultilib dir
-iprefix file -iquote -isysroot dir -isystem dir -nocpp -nostdinc
-undef

Error and Warning Options
See Section 2.4 [Options to request or suppress errors and warnings|, page 14.

-Waliasing -Wall -Wampersand -Warray-bounds -Wc-binding-type -Wcharacter-
truncation

-Wconversion -Wfunction-elimination -Wimplicit-interface

-Wimplicit-procedure -Wintrinsic-shadow -Wintrinsics-std

-Wline-truncation -Wno-align-commons -Wno-tabs -Wreal-g-constant

-Wsurprising -Wunderflow -Wunused-parameter -Wrealloc-lhs Wrealloc-lhs-all |}

-Wtarget-lifetime -fmax-errors=n -fsyntax-only -pedantic -pedantic-errors

Debugging Options
See Section 2.5 [Options for debugging your program or GNU Fortran|, page 18.

-fbacktrace -fdump-fortran-optimized -fdump-fortran-original
-fdump-parse-tree -ffpe-trap=Ilist
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Directory Options
See Section 2.6 [Options for directory search|, page 18.

-Idir -Jdir -fintrinsic-modules-path dir

Link Options
See Section 2.7 [Options for influencing the linking step], page 19.

)

-static-libgfortran

Runtime Options
See Section 2.8 [Options for influencing runtime behavior], page 19.

-fconvert=conversion -fmax-subrecord-length=length
-frecord-marker=length -fsign-zero

Code Generation Options

See Section 2.9 [Options for code generation conventions], page 20.
-faggressive-function-elimination -fblas-matmul-limit=n
-fbounds-check -fcheck-array-temporaries
-fcheck=<alll|array-temps|bounds|do|mem|pointer|recursion>
-fcoarray=<none|single|1ib> -fexternal-blas -ff2c -ffrontend-optimize
-finit-character=n -finit-integer=n -finit-local-zero
-finit-logical=<true|false> -finit-real=<zero|inf|-inf|nan|snan>
-fmax-array-constructor=n -fmax-stack-var-size=n -fno-align-commons
-fno-automatic -fno-protect-parens -fno-underscoring -fno-whole-file
-fsecond-underscore -fpack-derived -frealloc-lhs -frecursive
-frepack-arrays -fshort-enums -fstack-arrays

2.2 Options controlling Fortran dialect
The following options control the details of the Fortran dialect accepted by the compiler:

—-ffree-form

-ffixed-form
Specify the layout used by the source file. The free form layout was introduced
in Fortran 90. Fixed form was traditionally used in older Fortran programs.
When neither option is specified, the source form is determined by the file
extension.

-fall-intrinsics
This option causes all intrinsic procedures (including the GNU-specific exten-
sions) to be accepted. This can be useful with ‘-std=£95’ to force standard-
compliance but get access to the full range of intrinsics available with gfortran.
As a consequence, ‘-Wintrinsics-std’ will be ignored and no user-defined pro-
cedure with the same name as any intrinsic will be called except when it is
explicitly declared EXTERNAL.

-fd-lines-as-code

-fd-lines-as—-comments
Enable special treatment for lines beginning with d or D in fixed form sources. If
the ‘-fd-lines-as-code’ option is given they are treated as if the first column
contained a blank. If the ‘-fd-lines-as-comments’ option is given, they are
treated as comment lines.
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-fdefault-double-8
Set the DOUBLE PRECISION type to an 8 byte wide type. If ‘-fdefault-real-8’
is given, DOUBLE PRECISION would instead be promoted to 16 bytes if possible,
and ‘-fdefault-double-8’ can be used to prevent this. The kind of real con-
stants like 1.d0 will not be changed by ‘-fdefault-real-8’ though, so also
‘~-fdefault-double-8’ does not affect it.

-fdefault-integer-8
Set the default integer and logical types to an 8 byte wide type. Do nothing if
this is already the default. This option also affects the kind of integer constants
like 42.

-fdefault-real-8
Set the default real type to an 8 byte wide type. Do nothing if this is already
the default. This option also affects the kind of non-double real constants like
1.0, and does promote the default width of DOUBLE PRECISION to 16 bytes if
possible, unless ~-fdefault-double-8 is given, too.

-fdollar-ok
Allow ‘$’ as a valid non-first character in a symbol name. Symbols that start
with ‘¢’ are rejected since it is unclear which rules to apply to implicit typing as
different vendors implement different rules. Using ‘¢’ in IMPLICIT statements
is also rejected.

-fbackslash

Change the interpretation of backslashes in string literals from a single back-
slash character to “C-style” escape characters. The following combinations are
expanded \a, \b, \f, \n, \r, \t, \v, \\, and \0 to the ASCII characters alert,
backspace, form feed, newline, carriage return, horizontal tab, vertical tab,
backslash, and NUL, respectively. Additionally, \xnn, \unnnn and \Unnnnnnnn
(where each n is a hexadecimal digit) are translated into the Unicode charac-
ters corresponding to the specified code points. All other combinations of a
character preceded by \ are unexpanded.

-fmodule-private
Set the default accessibility of module entities to PRIVATE. Use-associated en-
tities will not be accessible unless they are explicitly declared as PUBLIC.

-ffixed-line-length-n
Set column after which characters are ignored in typical fixed-form lines in the
source file, and through which spaces are assumed (as if padded to that length)
after the ends of short fixed-form lines.

Popular values for n include 72 (the standard and the default), 80 (card im-
age), and 132 (corresponding to “extended-source” options in some popular
compilers). n may also be ‘none’, meaning that the entire line is meaningful
and that continued character constants never have implicit spaces appended to
them to fill out the line. ‘~ffixed-line-length-0’ means the same thing as
‘~ffixed-line-length-none’.
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-ffree-line-length-n
Set column after which characters are ignored in typical free-form lines in the
source file. The default value is 132. n may be ‘none’, meaning that the
entire line is meaningful. ‘-ffree-line-length-0’ means the same thing as
‘~ffree-line-length-none’.

-fmax-identifier-length=n
Specify the maximum allowed identifier length. Typical values are 31 (Fortran
95) and 63 (Fortran 2003 and Fortran 2008).

-fimplicit-none
Specify that no implicit typing is allowed, unless overridden by explicit
IMPLICIT statements. This is the equivalent of adding implicit none to the
start of every procedure.

-finteger—-4-integer-8

Promote all INTEGER(KIND=4) entities to an INTEGER(KIND=8) entities. If
KIND=8 is unavailable, then an error will be issued. This option should be
used with care and may not be suitable for your codes. Areas of possible con-
cern include calls to external procedures, alignment in EQUIVALENCE and/or
COMMON, generic interfaces, BOZ literal constant conversion, and I/O. Inspec-
tion of the intermediate representation of the translated Fortran code, produced
by ‘-fdump-tree-original’, is suggested.

—-fcray-pointer
Enable the Cray pointer extension, which provides C-like pointer functionality.

-fopenmp Enable the OpenMP extensions. This includes OpenMP !$omp directives in
free form and c$omp, *$omp and !$omp directives in fixed form, !'$ conditional
compilation sentinels in free form and c$, *$ and !'$ sentinels in fixed form, and
when linking arranges for the OpenMP runtime library to be linked in. The
option ‘~fopenmp’ implies ‘~frecursive’.

-fno-range-check

Disable range checking on results of simplification of constant expressions during
compilation. For example, GNU Fortran will give an error at compile time when
simplifying a = 1. / 0. With this option, no error will be given and a will be
assigned the value +Infinity. If an expression evaluates to a value outside of
the relevant range of [-HUGE () :HUGE ()], then the expression will be replaced by
-Inf or +Inf as appropriate. Similarly, DATA i/Z’FFFFFFFF’/ will result in an
integer overflow on most systems, but with ‘~fno-range-check’ the value will
“wrap around” and i will be initialized to —1 instead.

-freal-4-real-8

-freal-4-real-10

-freal-8-real-4

-freal-8-real-10

-freal-8-real-16
Promote all REAL (KIND=M) entities to REAL(KIND=N) entities. If REAL (KIND=N)
is unavailable, then an error will be issued. All other real kind types are un-
affected by this option. These options should be used with care and may not
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be suitable for your codes. Areas of possible concern include calls to external
procedures, alignment in EQUIVALENCE and/or COMMON, generic interfaces, BOZ
literal constant conversion, and I/0. Inspection of the intermediate representa-
tion of the translated Fortran code, produced by ‘-fdump-tree-original’, is
suggested.

-std=std Specify the standard to which the program is expected to conform, which may
be one of ‘€95’ ‘£2003’, ‘£2008’, ‘gnu’, or ‘legacy’. The default value for std
is ‘gnu’, which specifies a superset of the Fortran 95 standard that includes all
of the extensions supported by GNU Fortran, although warnings will be given
for obsolete extensions not recommended for use in new code. The ‘legacy’
value is equivalent but without the warnings for obsolete extensions, and may
be useful for old non-standard programs. The ‘£95’, ‘£2003’ and ‘£2008’ values
specify strict conformance to the Fortran 95, Fortran 2003 and Fortran 2008
standards, respectively; errors are given for all extensions beyond the relevant
language standard, and warnings are given for the Fortran 77 features that
are permitted but obsolescent in later standards. ‘-std=£2008ts’ allows the
Fortran 2008 standard including the additions of the Technical Specification
(TS) 29113 on Further Interoperability of Fortran with C.

2.3 Enable and customize preprocessing

Preprocessor related options. See section Section 1.3 [Preprocessing and conditional com-
pilation], page 2 for more detailed information on preprocessing in gfortran.

—Ccpp

-nocpp Enable preprocessing. The preprocessor is automatically invoked if the file
extension is ‘.fpp’, ‘.FPP’, *.F’, *.FOR’, ‘*.FIN’, ‘.F90’, *.F95’, ‘.F03’ or ‘.F08’.
Use this option to manually enable preprocessing of any kind of Fortran file.
To disable preprocessing of files with any of the above listed extensions, use the
negative form: ‘-nocpp’.

The preprocessor is run in traditional mode. Any restrictions of the file-
format, especially the limits on line length, apply for preprocessed output
as well, so it might be advisable to use the ‘-ffree-line-length-none’ or
‘~ffixed-line-length-none’ options.

-dM Instead of the normal output, generate a list of >#define’ directives for all the
macros defined during the execution of the preprocessor, including predefined
macros. This gives you a way of finding out what is predefined in your version
of the preprocessor. Assuming you have no file ‘foo.f90’, the command

touch fo0o0.£90; gfortran -cpp -E -dM foo0.£90

will show all the predefined macros.

-dD Like ‘-dM’ except in two respects: it does not include the predefined macros, and
it outputs both the #define directives and the result of preprocessing. Both
kinds of output go to the standard output file.

-dN Like ‘-dD’, but emit only the macro names, not their expansions.

-dU Like ‘dD’ except that only macros that are expanded, or whose definedness is
tested in preprocessor directives, are output; the output is delayed until the use
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or test of the macro; and ’#undef’ directives are also output for macros tested
but undefined at the time.

Output ’#include’ directives in addition to the result of preprocessing.

directory

Enable generation of linemarkers in the preprocessor output that will let the
compiler know the current working directory at the time of preprocessing.
When this option is enabled, the preprocessor will emit, after the initial line-
marker, a second linemarker with the current working directory followed by
two slashes. GCC will use this directory, when it is present in the prepro-
cessed input, as the directory emitted as the current working directory in some
debugging information formats. This option is implicitly enabled if debug-
ging information is enabled, but this can be inhibited with the negated form
‘~fno-working-directory’. If the ‘-P’ flag is present in the command line,
this option has no effect, since no #line directives are emitted whatsoever.

—-idirafter dir

Search dir for include files, but do it after all directories specified with ‘-I’
and the standard system directories have been exhausted. dir is treated as a
system include directory. If dir begins with =, then the = will be replaced by
the sysroot prefix; see ‘--sysroot’ and ‘-~isysroot’.

-imultilib dir

Use dir as a subdirectory of the directory containing target-specific C++ headers.

—-iprefix prefix

Specify prefix as the prefix for subsequent ‘-iwithprefix’ options. If the prefix
represents a directory, you should include the final * /.

-isysroot dir

This option is like the ‘--sysroot’ option, but applies only to header files. See
the ‘--sysroot’ option for more information.

-iquote dir

Search dir only for header files requested with #include "file"; they are not
searched for #include <file>, before all directories specified by ‘-I’ and before
the standard system directories. If dir begins with =, then the = will be replaced
by the sysroot prefix; see ‘--sysroot’ and ‘~isysroot’.

-isystem dir

-nostdinc

Search dir for header files, after all directories specified by ‘-I’ but before the
standard system directories. Mark it as a system directory, so that it gets the
same special treatment as is applied to the standard system directories. If dir
begins with =, then the = will be replaced by the sysroot prefix; see ‘--sysroot’
and ‘-isysroot’.

Do not search the standard system directories for header files. Only the direc-
tories you have specified with ‘-I’ options (and the directory of the current file,
if appropriate) are searched.
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—undef

Do not predefine any system-specific or GCC-specific macros. The standard
predefined macros remain defined.

-Apredicate=answer

Make an assertion with the predicate predicate and answer answer. This form
is preferred to the older form -A predicate(answer), which is still supported,
because it does not use shell special characters.

-A-predicate=answer

-C

-CC

-Dname

Cancel an assertion with the predicate predicate and answer answer.

Do not discard comments. All comments are passed through to the output file,
except for comments in processed directives, which are deleted along with the
directive.

You should be prepared for side effects when using ‘-C’; it causes the prepro-
cessor to treat comments as tokens in their own right. For example, comments
appearing at the start of what would be a directive line have the effect of turn-
ing that line into an ordinary source line, since the first token on the line is no
longer a #°.

Warning: this currently handles C-Style comments only. The preprocessor does
not yet recognize Fortran-style comments.

Do not discard comments, including during macro expansion. This is like ‘-C’,
except that comments contained within macros are also passed through to the
output file where the macro is expanded.

In addition to the side-effects of the ‘-C’ option, the ‘-CC’ option causes all
C++-style comments inside a macro to be converted to C-style comments. This
is to prevent later use of that macro from inadvertently commenting out the
remainder of the source line. The ‘-CC’ option is generally used to support lint
cominents.

Warning: this currently handles C- and C++-Style comments only. The prepro-
cessor does not yet recognize Fortran-style comments.

Predefine name as a macro, with definition 1.

-Dname=definition

The contents of definition are tokenized and processed as if they appeared
during translation phase three in a ’#define’ directive. In particular, the
definition will be truncated by embedded newline characters.

If you are invoking the preprocessor from a shell or shell-like program you may
need to use the shell’s quoting syntax to protect characters such as spaces that
have a meaning in the shell syntax.

If you wish to define a function-like macro on the command line, write its
argument list with surrounding parentheses before the equals sign (if any).
Parentheses are meaningful to most shells, so you will need to quote the option.
With sh and csh, -D’name(args...)=definition’ works.

‘-D’ and ‘-U’ options are processed in the order they are given on the command
line. All -imacros file and -include file options are processed after all -D and -U
options.
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-H Print the name of each header file used, in addition to other normal activities.
Each name is indented to show how deep in the ’#include’ stack it is.

-P Inhibit generation of linemarkers in the output from the preprocessor. This
might be useful when running the preprocessor on something that is not C code,
and will be sent to a program which might be co