The C Preprocessor

For ccc version 4.8.3

(crosstool-NG linaro-1.13.1-4.8-2013.12 - Linaro GCC 2013.11)

Richard M. Stallman, Zachary Weinberg

Copyright (©) 1987-2013 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.3 or any later version published by the
Free Software Foundation. A copy of the license is included in the section entitled “GNU
Free Documentation License”.

This manual contains no Invariant Sections. The Front-Cover Texts are (a) (see below),
and the Back-Cover Texts are (b) (see below).

(a) The FSF’s Front-Cover Text is:
A GNU Manual
(b) The FSF’s Back-Cover Text is:

You have freedom to copy and modify this GNU Manual, like GNU software. Copies
published by the Free Software Foundation raise funds for GNU development.

Table of Contents

1 Overview 1
1.1 Character SetS. . ..ot 1
1.2 Initial proCessinguuettre et 2
1.3 ToKenmization e 4
1.4 The preprocessing languagec.ooviiiiniiiiiiiiine... 6

2 Header Files........ 7
2.1 Include Syntax.........ooiuiiii i 8
2.2 Include Operation......... ..o, 8
2.3 Search Path...... 9
2.4 Once-Only Headersouiiiiiiii e 10
2.5 Alternatives to Wrapper #ifndef 10
2.6 Computed Includes ... 11
2.7 Wrapper Headers ... 12
2.8 System Headers.......... ... 13

3 MacCros ... 13
3.1 Object-like Macros. ... 14
3.2 Function-like Macros..........cooiiiii i 15
3.3 Macro Arguments.ui i e 16
3.4 Stringification. 17
3.5 Concatenationc.uiiiiii i 18
3.6 Variadic MacroS.ot e 19
3.7 Predefined MacroS ...t 21

3.7.1 Standard Predefined Macros...............cccovviiia... 21
3.7.2 Common Predefined Macros.................cooiveio... 23
3.7.3 System-specific Predefined Macros........................ 31
3.74 C++ Named Operatorscooveviiiieiiiinennnn... 32
3.8 Undefining and Redefining Macros 32
3.9 Directives Within Macro Arguments........................... 33
3.10 Macro Pitfalls ... 34
3.10.1 Misnestingovviiin e 34
3.10.2 Operator Precedence Problems.......................... 34
3.10.3 Swallowing the Semicolon 35
3.10.4 Duplication of Side Effects 36
3.10.5 Self-Referential Macros...............ooiiiiiiiinnnnn. .. 36
3.10.6 Argument Prescan i i 37

3.10.7 Newlines in Arguments.c.cooiiiiiiiiian.. 38

4 Conditionals 39
4.1 Conditional Uses.........coiiiiiii e 39
4.2 Conditional Syntaxot 40

4.2.1 Tfdef .. oo 40
4.2, I 41
4.2.3 Definedo 42
4.2.4 BElSe. ..o e 42
4.2.5 Elf ..o 42
4.3 Deleted Codeo 43

5 Diagnostics......... ... i 43

6 Line Control................... 44

7 Pragmas................. i, 45

8 Other Directives............................... 47

9 Preprocessor OQutput.......................... 47

10 Traditional Mode............................. 48
10.1 Traditional lexical analysis............ ... i, 48
10.2 Traditional macros. ... 49
10.3 Traditional miscellany........... ... i i 50
10.4 Traditional warnings, 51

11 Implementation Details...................... 51
11.1 Implementation-defined behavior............................. 52
11.2 Implementation limits.......... o i i 53
11.3 Obsolete Features........ ..o 54

11.3. 1 ASSEItIONS .o vttt ettt et 54
11.4 Differences from previous versions..................ooeveon... 55

12 Invocation.................................... 56

13 Environment Variables 66

GNU Free Documentation License............... 68
ADDENDUM: How to use this License for your documents 75

Index of Directives................................ 76

Option Index 76

Concept Index...................................... 78

ii

Chapter 1: Overview 1

1 Overview

The C preprocessor, often known as cpp, is a macro processor that is used automatically by
the C compiler to transform your program before compilation. It is called a macro processor
because it allows you to define macros, which are brief abbreviations for longer constructs.

The C preprocessor is intended to be used only with C, C++, and Objective-C source
code. In the past, it has been abused as a general text processor. It will choke on input
which does not obey C’s lexical rules. For example, apostrophes will be interpreted as the
beginning of character constants, and cause errors. Also, you cannot rely on it preserving
characteristics of the input which are not significant to C-family languages. If a Makefile is
preprocessed, all the hard tabs will be removed, and the Makefile will not work.

Having said that, you can often get away with using cpp on things which are not C. Other
Algol-ish programming languages are often safe (Pascal, Ada, etc.) So is assembly, with
caution. ‘-traditional-cpp’ mode preserves more white space, and is otherwise more
permissive. Many of the problems can be avoided by writing C or C++ style comments
instead of native language comments, and keeping macros simple.

Wherever possible, you should use a preprocessor geared to the language you are writing
in. Modern versions of the GNU assembler have macro facilities. Most high level program-
ming languages have their own conditional compilation and inclusion mechanism. If all else
fails, try a true general text processor, such as GNU M4.

C preprocessors vary in some details. This manual discusses the GNU C preprocessor,
which provides a small superset of the features of ISO Standard C. In its default mode,
the GNU C preprocessor does not do a few things required by the standard. These are
features which are rarely, if ever, used, and may cause surprising changes to the meaning
of a program which does not expect them. To get strict ISO Standard C, you should
use the ‘-std=c90’, ‘-std=c99’ or ‘-std=c11’ options, depending on which version of the
standard you want. To get all the mandatory diagnostics, you must also use ‘-pedantic’.
See Chapter 12 [Invocation], page 56.

This manual describes the behavior of the ISO preprocessor. To minimize gratuitous
differences, where the ISO preprocessor’s behavior does not conflict with traditional seman-
tics, the traditional preprocessor should behave the same way. The various differences that
do exist are detailed in the section Chapter 10 [Traditional Mode], page 48.

For clarity, unless noted otherwise, references to ‘CPP’ in this manual refer to GNU CPP.

1.1 Character sets

Source code character set processing in C and related languages is rather complicated. The
C standard discusses two character sets, but there are really at least four.

The files input to CPP might be in any character set at all. CPP’s very first action,
before it even looks for line boundaries, is to convert the file into the character set it uses
for internal processing. That set is what the C standard calls the source character set. It
must be isomorphic with ISO 10646, also known as Unicode. CPP uses the UTF-8 encoding
of Unicode.

The character sets of the input files are specified using the ‘~finput-charset=’ option.

Chapter 1: Overview 2

All preprocessing work (the subject of the rest of this manual) is carried out in the source
character set. If you request textual output from the preprocessor with the ‘-E’ option, it
will be in UTF-8.

After preprocessing is complete, string and character constants are converted again, into
the execution character set. This character set is under control of the user; the default
is UTF-8, matching the source character set. Wide string and character constants have
their own character set, which is not called out specifically in the standard. Again, it is
under control of the user. The default is UTF-16 or UTF-32, whichever fits in the target’s
wchar_t type, in the target machine’s byte order.! Octal and hexadecimal escape sequences
do not undergo conversion; ’\x12’ has the value 0x12 regardless of the currently selected
execution character set. All other escapes are replaced by the character in the source
character set that they represent, then converted to the execution character set, just like
unescaped characters.

Unless the experimental ‘~-fextended-identifiers’ option is used, GCC does not per-
mit the use of characters outside the ASCII range, nor ‘\u’ and ‘\U’ escapes, in identifiers.
Even with that option, characters outside the ASCII range can only be specified with the
“\u’ and ‘\U’ escapes, not used directly in identifiers.

1.2 Initial processing

The preprocessor performs a series of textual transformations on its input. These happen
before all other processing. Conceptually, they happen in a rigid order, and the entire file
is run through each transformation before the next one begins. CPP actually does them
all at once, for performance reasons. These transformations correspond roughly to the first
three “phases of translation” described in the C standard.

1. The input file is read into memory and broken into lines.

Different systems use different conventions to indicate the end of a line. GCC accepts
the ASCII control sequences LF, CR LF and CR as end-of-line markers. These are the
canonical sequences used by Unix, DOS and VMS, and the classic Mac OS (before
OSX) respectively. You may therefore safely copy source code written on any of those
systems to a different one and use it without conversion. (GCC may lose track of
the current line number if a file doesn’t consistently use one convention, as sometimes
happens when it is edited on computers with different conventions that share a network
file system.)

If the last line of any input file lacks an end-of-line marker, the end of the file is
considered to implicitly supply one. The C standard says that this condition provokes
undefined behavior, so GCC will emit a warning message.

2. If trigraphs are enabled, they are replaced by their corresponding single characters. By

default GCC ignores trigraphs, but if you request a strictly conforming mode with the
‘~std’ option, or you specify the ‘~trigraphs’ option, then it converts them.
These are nine three-character sequences, all starting with ‘??’, that are defined by
ISO C to stand for single characters. They permit obsolete systems that lack some of
C’s punctuation to use C. For example, ‘?7/’ stands for ‘\’, so >?7/n’ is a character
constant for a newline.

1 UTF-16 does not meet the requirements of the C standard for a wide character set, but the choice of
16-bit wchar_t is enshrined in some system ABIs so we cannot fix this.

Chapter 1: Overview 3

Trigraphs are not popular and many compilers implement them incorrectly.
Portable code should not rely on trigraphs being either converted or ignored. With
‘-Wtrigraphs’ GCC will warn you when a trigraph may change the meaning of your
program if it were converted. See [Wtrigraphs|, page 57.

In a string constant, you can prevent a sequence of question marks from being confused
with a trigraph by inserting a backslash between the question marks, or by separat-
ing the string literal at the trigraph and making use of string literal concatenation.
"(??7\7)" is the string ‘(?77)’, not ‘(?]’. Traditional C compilers do not recognize
these idioms.
The nine trigraphs and their replacements are

Trigraph: ?7(?7) ?7< 77> ?7= 7?7/ 777 7?70 77-

Replacement: [1 { } # \ - -

3. Continued lines are merged into one long line.

A continued line is a line which ends with a backslash, ‘\’. The backslash is removed
and the following line is joined with the current one. No space is inserted, so you may
split a line anywhere, even in the middle of a word. (It is generally more readable to
split lines only at white space.)

The trailing backslash on a continued line is commonly referred to as a backslash-
newline.

If there is white space between a backslash and the end of a line, that is still a continued
line. However, as this is usually the result of an editing mistake, and many compilers
will not accept it as a continued line, GCC will warn you about it.

4. All comments are replaced with single spaces.

There are two kinds of comments. Block comments begin with ‘/*’ and continue until
the next ‘*x/’. Block comments do not nest:

/* this is /* one comment */ text outside comment

Line comments begin with ‘//’ and continue to the end of the current line. Line
comments do not nest either, but it does not matter, because they would end in the
same place anyway.

// thisis // one comment
text outside comment

It is safe to put line comments inside block comments, or vice versa.

/* block comment
// contains line comment
yet more comment
*/ outside comment

// line comment /* contains block comment */

But beware of commenting out one end of a block comment with a line comment.
// l.c. /% block comment begins
oops! this isn’t a comment anymore */

Comments are not recognized within string literals. "/* blah */" is the string constant
‘/* blah */’ not an empty string.

Line comments are not in the 1989 edition of the C standard, but they are recognized
by GCC as an extension. In C++ and in the 1999 edition of the C standard, they are an
official part of the language.

Chapter 1: Overview 4

Since these transformations happen before all other processing, you can split a line
mechanically with backslash-newline anywhere. You can comment out the end of a line.
You can continue a line comment onto the next line with backslash-newline. You can even
split ‘/*’, *x/’, and ‘//’ onto multiple lines with backslash-newline. For example:

/\

*
x/ # /*
*/ defi\
ne FO\
0 10\
20
is equivalent to #define FOO 1020. All these tricks are extremely confusing and should not

be used in code intended to be readable.

There is no way to prevent a backslash at the end of a line from being interpreted as a
backslash-newline. This cannot affect any correct program, however.

1.3 Tokenization

After the textual transformations are finished, the input file is converted into a sequence
of preprocessing tokens. These mostly correspond to the syntactic tokens used by the C
compiler, but there are a few differences. White space separates tokens; it is not itself a
token of any kind. Tokens do not have to be separated by white space, but it is often
necessary to avoid ambiguities.

When faced with a sequence of characters that has more than one possible tokenization,
the preprocessor is greedy. It always makes each token, starting from the left, as big
as possible before moving on to the next token. For instance, a+++++b is interpreted as
a ++ ++ + b, not as a ++ + ++ b, even though the latter tokenization could be part of a valid
C program and the former could not.

Once the input file is broken into tokens, the token boundaries never change, except
when the ‘##’ preprocessing operator is used to paste tokens together. See Section 3.5
[Concatenation], page 18. For example,

#define foo() bar
foo()baz

— bar baz
not

— barbaz

The compiler does not re-tokenize the preprocessor’s output. Each preprocessing token
becomes one compiler token.

Preprocessing tokens fall into five broad classes: identifiers, preprocessing numbers,
string literals, punctuators, and other. An identifier is the same as an identifier in C:
any sequence of letters, digits, or underscores, which begins with a letter or underscore.
Keywords of C have no significance to the preprocessor; they are ordinary identifiers. You
can define a macro whose name is a keyword, for instance. The only identifier which can
be considered a preprocessing keyword is defined. See Section 4.2.3 [Defined|, page 42.

This is mostly true of other languages which use the C preprocessor. However, a few of
the keywords of C++ are significant even in the preprocessor. See Section 3.7.4 [C++ Named
Operators], page 32.

Chapter 1: Overview 5

In the 1999 C standard, identifiers may contain letters which are not part of the “ba-
sic source character set”, at the implementation’s discretion (such as accented Latin let-
ters, Greek letters, or Chinese ideograms). This may be done with an extended character
set, or the ‘\u’ and ‘\U’ escape sequences. The implementation of this feature in GCC
is experimental; such characters are only accepted in the ‘\u’ and ‘\U’ forms and only if
‘~fextended-identifiers’ is used.

As an extension, GCC treats ‘$’ as a letter. This is for compatibility with some systems,
such as VMS, where ‘¢’ is commonly used in system-defined function and object names. ‘$’
is not a letter in strictly conforming mode, or if you specify the ‘-$’ option. See Chapter 12
[Invocation], page 56.

A preprocessing number has a rather bizarre definition. The category includes all the
normal integer and floating point constants one expects of C, but also a number of other
things one might not initially recognize as a number. Formally, preprocessing numbers begin
with an optional period, a required decimal digit, and then continue with any sequence
of letters, digits, underscores, periods, and exponents. Exponents are the two-character
sequences ‘e+’, ‘e=’, ‘E+’, ‘E-’, ‘p+’, ‘p-’, ‘P+’; and ‘P-’. (The exponents that begin with ‘p’
or ‘P’ are new to C99. They are used for hexadecimal floating-point constants.)

The purpose of this unusual definition is to isolate the preprocessor from the full com-
plexity of numeric constants. It does not have to distinguish between lexically valid and
invalid floating-point numbers, which is complicated. The definition also permits you to
split an identifier at any position and get exactly two tokens, which can then be pasted
back together with the ‘## operator.

It’s possible for preprocessing numbers to cause programs to be misinterpreted. For
example, 0xE+12 is a preprocessing number which does not translate to any valid numeric
constant, therefore a syntax error. It does not mean OxE + 12, which is what you might
have intended.

String literals are string constants, character constants, and header file names (the argu-
ment of ‘#include’).? String constants and character constants are straightforward: "..."
or ’...°. In either case embedded quotes should be escaped with a backslash: ’>\’’ is
the character constant for ‘’’. There is no limit on the length of a character constant, but
the value of a character constant that contains more than one character is implementation-
defined. See Chapter 11 [Implementation Details], page 51.

Header file names either look like string constants, "...", or are written with angle
brackets instead, <...>. In either case, backslash is an ordinary character. There is no
way to escape the closing quote or angle bracket. The preprocessor looks for the header file
in different places depending on which form you use. See Section 2.2 [Include Operation],
page 8.

No string literal may extend past the end of a line. Older versions of GCC accepted multi-
line string constants. You may use continued lines instead, or string constant concatenation.
See Section 11.4 [Differences from previous versions|, page 55.

Punctuators are all the usual bits of punctuation which are meaningful to C and C++. All
but three of the punctuation characters in ASCII are C punctuators. The exceptions are ‘@,
‘$’, and ‘“’. In addition, all the two- and three-character operators are punctuators. There

2 The C standard uses the term string literal to refer only to what we are calling string constants.

Chapter 1: Overview 6

are also six digraphs, which the C++ standard calls alternative tokens, which are merely
alternate ways to spell other punctuators. This is a second attempt to work around missing
punctuation in obsolete systems. It has no negative side effects, unlike trigraphs, but does
not cover as much ground. The digraphs and their corresponding normal punctuators are:
Digraph: <h W>o<toi> hr Wi
Punctuator: { 1 [1] # #Hit
Any other single character is considered “other”. It is passed on to the preprocessor’s
output unmolested. The C compiler will almost certainly reject source code containing
“other” tokens. In ASCII, the only other characters are ‘@, ‘$’, ‘“’, and control charac-
ters other than NUL (all bits zero). (Note that ‘$’ is normally considered a letter.) All
characters with the high bit set (numeric range 0x7F-0xFF) are also “other” in the present
implementation. This will change when proper support for international character sets is
added to GCC.

NUL is a special case because of the high probability that its appearance is accidental,
and because it may be invisible to the user (many terminals do not display NUL at all).
Within comments, NULs are silently ignored, just as any other character would be. In
running text, NUL is considered white space. For example, these two directives have the
same meaning.

#define X~@1

#define X 1
(where ‘~@ is ASCII NUL). Within string or character constants, NULs are preserved. In
the latter two cases the preprocessor emits a warning message.

1.4 The preprocessing language

After tokenization, the stream of tokens may simply be passed straight to the compiler’s
parser. However, if it contains any operations in the preprocessing language, it will be
transformed first. This stage corresponds roughly to the standard’s “translation phase 4”
and is what most people think of as the preprocessor’s job.

The preprocessing language consists of directives to be executed and macros to be ex-
panded. Its primary capabilities are:
e Inclusion of header files. These are files of declarations that can be substituted into
your program.
e Macro expansion. You can define macros, which are abbreviations for arbitrary frag-
ments of C code. The preprocessor will replace the macros with their definitions
throughout the program. Some macros are automatically defined for you.

e Conditional compilation. You can include or exclude parts of the program according
to various conditions.

e Line control. If you use a program to combine or rearrange source files into an inter-
mediate file which is then compiled, you can use line control to inform the compiler
where each source line originally came from.

e Diagnostics. You can detect problems at compile time and issue errors or warnings.

There are a few more, less useful, features.

Except for expansion of predefined macros, all these operations are triggered with pre-
processing directives. Preprocessing directives are lines in your program that start with

Chapter 2: Header Files 7

‘#’. Whitespace is allowed before and after the ‘#’. The ‘#’ is followed by an identifier, the
directive name. It specifies the operation to perform. Directives are commonly referred to
as ‘#name’ where name is the directive name. For example, ‘#define’ is the directive that
defines a macro.

The ‘#’ which begins a directive cannot come from a macro expansion. Also, the directive
name is not macro expanded. Thus, if foo is defined as a macro expanding to define, that
does not make ‘#foo’ a valid preprocessing directive.

The set of valid directive names is fixed. Programs cannot define new preprocessing
directives.

Some directives require arguments; these make up the rest of the directive line and
must be separated from the directive name by whitespace. For example, ‘#define’ must be
followed by a macro name and the intended expansion of the macro.

A preprocessing directive cannot cover more than one line. The line may, however, be
continued with backslash-newline, or by a block comment which extends past the end of the
line. In either case, when the directive is processed, the continuations have already been
merged with the first line to make one long line.

2 Header Files

A header file is a file containing C declarations and macro definitions (see Chapter 3
[Macros|, page 13) to be shared between several source files. You request the use of a
header file in your program by including it, with the C preprocessing directive ‘#include’.

Header files serve two purposes.

e System header files declare the interfaces to parts of the operating system. You include
them in your program to supply the definitions and declarations you need to invoke
system calls and libraries.

e Your own header files contain declarations for interfaces between the source files of your
program. Each time you have a group of related declarations and macro definitions all
or most of which are needed in several different source files, it is a good idea to create
a header file for them.

Including a header file produces the same results as copying the header file into each
source file that needs it. Such copying would be time-consuming and error-prone. With a
header file, the related declarations appear in only one place. If they need to be changed,
they can be changed in one place, and programs that include the header file will automat-
ically use the new version when next recompiled. The header file eliminates the labor of
finding and changing all the copies as well as the risk that a failure to find one copy will
result in inconsistencies within a program.

In C, the usual convention is to give header files names that end with ‘.h’. It is most
portable to use only letters, digits, dashes, and underscores in header file names, and at
most one dot.

Chapter 2: Header Files 8

2.1 Include Syntax

Both user and system header files are included using the preprocessing directive ‘#include’.
It has two variants:

#include <file>
This variant is used for system header files. It searches for a file named file in
a standard list of system directories. You can prepend directories to this list
with the ‘~I” option (see Chapter 12 [Invocation], page 56).

#include "file"
This variant is used for header files of your own program. It searches for a file
named file first in the directory containing the current file, then in the quote
directories and then the same directories used for <file>. You can prepend
directories to the list of quote directories with the ‘~iquote’ option.

The argument of ‘#include’, whether delimited with quote marks or angle brackets,
behaves like a string constant in that comments are not recognized, and macro names are
not expanded. Thus, #include <x/*y> specifies inclusion of a system header file named
‘x/*y’.

However, if backslashes occur within file, they are considered ordinary text characters,
not escape characters. None of the character escape sequences appropriate to string con-
stants in C are processed. Thus, #include "x\n\\y" specifies a filename containing three
backslashes. (Some systems interpret ‘\’ as a pathname separator. All of these also interpret
‘/> the same way. It is most portable to use only ‘/’.)

It is an error if there is anything (other than comments) on the line after the file name.

2.2 Include Operation

The ‘#include’ directive works by directing the C preprocessor to scan the specified file as
input before continuing with the rest of the current file. The output from the preprocessor
contains the output already generated, followed by the output resulting from the included
file, followed by the output that comes from the text after the ‘#include’ directive. For
example, if you have a header file ‘header.h’ as follows,

char *test (void);

and a main program called ‘program.c’ that uses the header file, like this,
int x;
#include "header.h"

int
main (void)
{
puts (test ());
}

the compiler will see the same token stream as it would if ‘program.c’ read
int x;
char *test (void);

int

main (void)

{

Chapter 2: Header Files 9

puts (test ());
}

Included files are not limited to declarations and macro definitions; those are merely the
typical uses. Any fragment of a C program can be included from another file. The include
file could even contain the beginning of a statement that is concluded in the containing file,
or the end of a statement that was started in the including file. However, an included file
must consist of complete tokens. Comments and string literals which have not been closed

by the end of an included file are invalid. For error recovery, they are considered to end at
the end of the file.

To avoid confusion, it is best if header files contain only complete syntactic units—
function declarations or definitions, type declarations, etc.

The line following the ‘#include’ directive is always treated as a separate line by the C
preprocessor, even if the included file lacks a final newline.

2.3 Search Path

GCC looks in several different places for headers. On a normal Unix system, if you do not
instruct it otherwise, it will look for headers requested with #include <file> in:

/usr/local/include

libdir/gcc/target/version/include

/usr/target/include

/usr/include

For C++ programs, it will also look in ‘1ibdir/../include/c++/version’, first. In the

above, target is the canonical name of the system GCC was configured to compile code for;
often but not always the same as the canonical name of the system it runs on. version is
the version of GCC in use.

You can add to this list with the ‘-Idir’ command line option. All the directories named
by ‘-1’ are searched, in left-to-right order, before the default directories. The only exception
is when ‘dir’ is already searched by default. In this case, the option is ignored and the
search order for system directories remains unchanged.

Duplicate directories are removed from the quote and bracket search chains before the
two chains are merged to make the final search chain. Thus, it is possible for a directory to
occur twice in the final search chain if it was specified in both the quote and bracket chains.

You can prevent GCC from searching any of the default directories with the ‘-nostdinc’
option. This is useful when you are compiling an operating system kernel or some other
program that does not use the standard C library facilities, or the standard C library itself.
‘-1’ options are not ignored as described above when ‘-nostdinc’ is in effect.

GCC looks for headers requested with #include "file" first in the directory containing
the current file, then in the directories as specified by ‘~iquote’ options, then in the same
places it would have looked for a header requested with angle brackets. For example, if
‘/usr/include/sys/stat.h’ contains #include "types.h", GCC looks for ‘types.h’ first
in ‘/usr/include/sys’, then in its usual search path.

‘#line’ (see Chapter 6 [Line Control|, page 44) does not change GCC’s idea of the
directory containing the current file.

You may put ‘-I-’ at any point in your list of ‘-I’ options. This has two effects. First,
directories appearing before the ‘-I-’ in the list are searched only for headers requested

Chapter 2: Header Files 10

with quote marks. Directories after ‘~I-’ are searched for all headers. Second, the directory
containing the current file is not searched for anything, unless it happens to be one of the
directories named by an ‘-I’ switch. ‘-~I-’is deprecated, ‘-iquote’ should be used instead.

‘-I. -I-’is not the same as no ‘I’ options at all, and does not cause the same behavior
for ‘<>’ includes that ‘"""’ includes get with no special options. ‘-I.’ searches the compiler’s
current working directory for header files. That may or may not be the same as the directory
containing the current file.

If you need to look for headers in a directory named ‘-’, write ‘=I./-".

There are several more ways to adjust the header search path. They are generally less
useful. See Chapter 12 [Invocation], page 56.

2.4 Once-Only Headers

If a header file happens to be included twice, the compiler will process its contents twice.
This is very likely to cause an error, e.g. when the compiler sees the same structure definition
twice. Even if it does not, it will certainly waste time.

The standard way to prevent this is to enclose the entire real contents of the file in a
conditional, like this:

/* File foo. x*/
#ifndef FILE_FOO_SEEN
#define FILE_FOO_SEEN

the entire file

#endif /* !FILE_FOO_SEEN */

This construct is commonly known as a wrapper #ifndef. When the header is included
again, the conditional will be false, because FILE_FOO_SEEN is defined. The preprocessor
will skip over the entire contents of the file, and the compiler will not see it twice.

CPP optimizes even further. It remembers when a header file has a wrapper ‘#ifndef’.
If a subsequent ‘#include’ specifies that header, and the macro in the ‘#ifndef’ is still
defined, it does not bother to rescan the file at all.

You can put comments outside the wrapper. They will not interfere with this optimiza-
tion.

The macro FILE_FOO_SEEN is called the controlling macro or guard macro. In a user
header file, the macro name should not begin with ‘_’. In a system header file, it should
begin with ‘__’ to avoid conflicts with user programs. In any kind of header file, the macro
name should contain the name of the file and some additional text, to avoid conflicts with
other header files.

2.5 Alternatives to Wrapper #ifndef

CPP supports two more ways of indicating that a header file should be read only once.
Neither one is as portable as a wrapper ‘#ifndef’ and we recommend you do not use them
in new programs, with the caveat that ‘#import’ is standard practice in Objective-C.

CPP supports a variant of ‘#include’ called ‘#import’ which includes a file, but does
so at most once. If you use ‘#import’ instead of ‘#include’, then you don’t need the

Chapter 2: Header Files 11

conditionals inside the header file to prevent multiple inclusion of the contents. ‘#import’
is standard in Objective-C, but is considered a deprecated extension in C and C++.

‘#import’ is not a well designed feature. It requires the users of a header file to know
that it should only be included once. It is much better for the header file’s implementor to
write the file so that users don’t need to know this. Using a wrapper ‘#ifndef’ accomplishes
this goal.

In the present implementation, a single use of ‘#import’ will prevent the file from ever
being read again, by either ‘#import’ or ‘#include’. You should not rely on this; do not
use both ‘#import’ and ‘#include’ to refer to the same header file.

Another way to prevent a header file from being included more than once is with the
‘#pragma once’ directive. If ‘#pragma once’ is seen when scanning a header file, that file
will never be read again, no matter what.

‘#pragma once’ does not have the problems that ‘#import’ does, but it is not recognized
by all preprocessors, so you cannot rely on it in a portable program.

2.6 Computed Includes

Sometimes it is necessary to select one of several different header files to be included into
your program. They might specify configuration parameters to be used on different sorts
of operating systems, for instance. You could do this with a series of conditionals,

#if SYSTEM_1

include "system_1.h"
#elif SYSTEM_2

include "system_2.h"
#elif SYSTEM_3

#endif
That rapidly becomes tedious. Instead, the preprocessor offers the ability to use a macro
for the header name. This is called a computed include. Instead of writing a header name

as the direct argument of ‘#include’, you simply put a macro name there instead:
#define SYSTEM_H "system_1.h"

#include SYSTEM_H

SYSTEM_H will be expanded, and the preprocessor will look for ‘system_1.h’ as if the
‘#include’ had been written that way originally. SYSTEM_H could be defined by your Make-
file with a ‘-D’ option.

You must be careful when you define the macro. ‘#define’ saves tokens, not text.
The preprocessor has no way of knowing that the macro will be used as the argument of
‘#include’, so it generates ordinary tokens, not a header name. This is unlikely to cause
problems if you use double-quote includes, which are close enough to string constants. If
you use angle brackets, however, you may have trouble.

The syntax of a computed include is actually a bit more general than the above. If
the first non-whitespace character after ‘#include’ is not ‘"’ or ‘<’, then the entire line is
macro-expanded like running text would be.

If the line expands to a single string constant, the contents of that string constant are the
file to be included. CPP does not re-examine the string for embedded quotes, but neither
does it process backslash escapes in the string. Therefore

Chapter 2: Header Files 12

#define HEADER "a\"b"

#include HEADER
looks for a file named ‘a\"b’. CPP searches for the file according to the rules for double-
quoted includes.

If the line expands to a token stream beginning with a ‘<’ token and including a ‘>’
token, then the tokens between the ‘<’ and the first >’ are combined to form the filename
to be included. Any whitespace between tokens is reduced to a single space; then any space
after the initial ‘<’ is retained, but a trailing space before the closing ‘>’ is ignored. CPP
searches for the file according to the rules for angle-bracket includes.

In either case, if there are any tokens on the line after the file name, an error occurs and
the directive is not processed. It is also an error if the result of expansion does not match
either of the two expected forms.

These rules are implementation-defined behavior according to the C standard. To min-
imize the risk of different compilers interpreting your computed includes differently, we
recommend you use only a single object-like macro which expands to a string constant.
This will also minimize confusion for people reading your program.

2.7 Wrapper Headers

Sometimes it is necessary to adjust the contents of a system-provided header file without
editing it directly. GCC’s fixincludes operation does this, for example. One way to do
that would be to create a new header file with the same name and insert it in the search
path before the original header. That works fine as long as you’re willing to replace the old
header entirely. But what if you want to refer to the old header from the new one?

You cannot simply include the old header with ‘#include’. That will start from the
beginning, and find your new header again. If your header is not protected from multiple
inclusion (see Section 2.4 [Once-Only Headers|, page 10), it will recurse infinitely and cause
a fatal error.

You could include the old header with an absolute pathname:
#include "/usr/include/old-header.h"

This works, but is not clean; should the system headers ever move, you would have to edit
the new headers to match.

There is no way to solve this problem within the C standard, but you can use the GNU
extension ‘#include_next’. It means, “Include the next file with this name”. This directive
works like ‘#include’ except in searching for the specified file: it starts searching the list
of header file directories after the directory in which the current file was found.

Suppose you specify ‘-I /usr/local/include’, and the list of directories to search
also includes ‘/usr/include’; and suppose both directories contain ‘signal.h’. Ordinary
#include <signal.h> finds the file under ‘/usr/local/include’. If that file contains
#include_next <signal.h>, it starts searching after that directory, and finds the file in
‘/usr/include’.

‘#include_next’ does not distinguish between <file> and "file" inclusion, nor does it
check that the file you specify has the same name as the current file. It simply looks for the
file named, starting with the directory in the search path after the one where the current
file was found.

Chapter 3: Macros 13

The use of ‘#include_next’ can lead to great confusion. We recommend it be used
only when there is no other alternative. In particular, it should not be used in the headers
belonging to a specific program; it should be used only to make global corrections along the
lines of fixincludes.

2.8 System Headers

The header files declaring interfaces to the operating system and runtime libraries often can-
not be written in strictly conforming C. Therefore, GCC gives code found in system headers
special treatment. All warnings, other than those generated by ‘#warning’ (see Chapter 5
[Diagnostics|, page 43), are suppressed while GCC is processing a system header. Macros
defined in a system header are immune to a few warnings wherever they are expanded. This
immunity is granted on an ad-hoc basis, when we find that a warning generates lots of false
positives because of code in macros defined in system headers.

Normally, only the headers found in specific directories are considered system headers.
These directories are determined when GCC is compiled. There are, however, two ways to
make normal headers into system headers.

The ‘~isystem’ command line option adds its argument to the list of directories to search
for headers, just like ‘-I’. Any headers found in that directory will be considered system
headers.

All directories named by ‘-~isystem’ are searched after all directories named by ‘-I’, no
matter what their order was on the command line. If the same directory is named by both
‘-I’ and ‘-isystem’, the ‘~I’ option is ignored. GCC provides an informative message when
this occurs if ‘-v’ is used.

There is also a directive, #pragma GCC system_header, which tells GCC to consider the
rest of the current include file a system header, no matter where it was found. Code that
comes before the ‘#pragma’ in the file will not be affected. #pragma GCC system_header
has no effect in the primary source file.

On very old systems, some of the pre-defined system header directories get even more
special treatment. GNU C++ considers code in headers found in those directories to be
surrounded by an extern "C" block. There is no way to request this behavior with a
‘#pragma’; or from the command line.

3 Macros

A macro is a fragment of code which has been given a name. Whenever the name is used, it
is replaced by the contents of the macro. There are two kinds of macros. They differ mostly
in what they look like when they are used. Object-like macros resemble data objects when
used, function-like macros resemble function calls.

You may define any valid identifier as a macro, even if it is a C keyword. The preprocessor
does not know anything about keywords. This can be useful if you wish to hide a keyword
such as const from an older compiler that does not understand it. However, the preprocessor
operator defined (see Section 4.2.3 [Defined|, page 42) can never be defined as a macro,
and C++’s named operators (see Section 3.7.4 [C++ Named Operators|, page 32) cannot be
macros when you are compiling C++.

Chapter 3: Macros 14

3.1 Object-like Macros

An object-like macro is a simple identifier which will be replaced by a code fragment. It
is called object-like because it looks like a data object in code that uses it. They are most
commonly used to give symbolic names to numeric constants.

You create macros with the ‘#define’ directive. ‘#define’ is followed by the name of
the macro and then the token sequence it should be an abbreviation for, which is variously
referred to as the macro’s body, expansion or replacement list. For example,

#define BUFFER_SIZE 1024

defines a macro named BUFFER_SIZE as an abbreviation for the token 1024. If somewhere
after this ‘#define’ directive there comes a C statement of the form
foo = (char *) malloc (BUFFER_SIZE);

then the C preprocessor will recognize and expand the macro BUFFER_SIZE. The C compiler
will see the same tokens as it would if you had written
foo = (char *) malloc (1024);

By convention, macro names are written in uppercase. Programs are easier to read when
it is possible to tell at a glance which names are macros.

The macro’s body ends at the end of the ‘#define’ line. You may continue the definition
onto multiple lines, if necessary, using backslash-newline. When the macro is expanded,
however, it will all come out on one line. For example,

#define NUMBERS 1, \
2, \
3
int x[] = { NUMBERS };
— int x[] = {1, 2, 3 };

The most common visible consequence of this is surprising line numbers in error messages.

There is no restriction on what can go in a macro body provided it decomposes into
valid preprocessing tokens. Parentheses need not balance, and the body need not resemble
valid C code. (If it does not, you may get error messages from the C compiler when you
use the macro.)

The C preprocessor scans your program sequentially. Macro definitions take effect at
the place you write them. Therefore, the following input to the C preprocessor

foo = X;

#define X 4

bar = X;
produces

foo = X;

bar = 4;

When the preprocessor expands a macro name, the macro’s expansion replaces the macro
invocation, then the expansion is examined for more macros to expand. For example,

#define TABLESIZE BUFSIZE
#define BUFSIZE 1024
TABLESIZE

+— BUFSIZE

— 1024

TABLESIZE is expanded first to produce BUFSIZE, then that macro is expanded to produce
the final result, 1024.

Chapter 3: Macros 15

Notice that BUFSIZE was not defined when TABLESIZE was defined. The ‘#define’ for
TABLESIZE uses exactly the expansion you specify—in this case, BUFSIZE—and does not
check to see whether it too contains macro names. Only when you use TABLESIZE is the
result of its expansion scanned for more macro names.

This makes a difference if you change the definition of BUFSIZE at some point in the source
file. TABLESIZE, defined as shown, will always expand using the definition of BUFSIZE that
is currently in effect:

#define BUFSIZE 1020
#define TABLESIZE BUFSIZE

#undef BUFSIZE
#define BUFSIZE 37

Now TABLESIZE expands (in two stages) to 37.

If the expansion of a macro contains its own name, either directly or via intermediate
macros, it is not expanded again when the expansion is examined for more macros. This
prevents infinite recursion. See Section 3.10.5 [Self-Referential Macros|, page 36, for the
precise details.

3.2 Function-like Macros

You can also define macros whose use looks like a function call. These are called function-
like macros. To define a function-like macro, you use the same ‘#define’ directive, but you
put a pair of parentheses immediately after the macro name. For example,

#define lang_init() c_init()

lang_init()
— c_init ()

A function-like macro is only expanded if its name appears with a pair of parentheses
after it. If you write just the name, it is left alone. This can be useful when you have a
function and a macro of the same name, and you wish to use the function sometimes.

extern void foo(void);
#define foo() /* optimized inline version */

foo();
funcptr = foo;

Here the call to foo() will use the macro, but the function pointer will get the address
of the real function. If the macro were to be expanded, it would cause a syntax error.

If you put spaces between the macro name and the parentheses in the macro definition,
that does not define a function-like macro, it defines an object-like macro whose expansion
happens to begin with a pair of parentheses.

#define lang_init () c_init()

lang_init()
— () c_init() O

The first two pairs of parentheses in this expansion come from the macro. The third is
the pair that was originally after the macro invocation. Since lang_init is an object-like
macro, it does not consume those parentheses.

Chapter 3: Macros 16

3.3 Macro Arguments

Function-like macros can take arguments, just like true functions. To define a macro that
uses arguments, you insert parameters between the pair of parentheses in the macro def-
inition that make the macro function-like. The parameters must be valid C identifiers,
separated by commas and optionally whitespace.

To invoke a macro that takes arguments, you write the name of the macro followed by a
list of actual arguments in parentheses, separated by commas. The invocation of the macro
need not be restricted to a single logical line—it can cross as many lines in the source file
as you wish. The number of arguments you give must match the number of parameters in
the macro definition. When the macro is expanded, each use of a parameter in its body
is replaced by the tokens of the corresponding argument. (You need not use all of the
parameters in the macro body.)

As an example, here is a macro that computes the minimum of two numeric values, as
it is defined in many C programs, and some uses.

#define min(X, Y) ((X) < (V) 7 (X) : (Y))

x = min(a, b); = x=(a) <) ? (@) : (b));
y = min(1, 2); = oy = (@ <@ 7 : @);
z = min(a + 28, *p); — z=((a+28) < (xp) 7 (a+ 28) : (xp));

(In this small example you can already see several of the dangers of macro arguments. See
Section 3.10 [Macro Pitfalls], page 34, for detailed explanations.)

Leading and trailing whitespace in each argument is dropped, and all whitespace between
the tokens of an argument is reduced to a single space. Parentheses within each argument
must balance; a comma within such parentheses does not end the argument. However,
there is no requirement for square brackets or braces to balance, and they do not prevent a
comma from separating arguments. Thus,

macro (array[x =y, x + 11)
passes two arguments to macro: array[x =y and x + 1]. If you want to supply array[x =
y, x + 1] as an argument, you can write it as array[(x =y, x + 1)], which is equivalent
C code.

All arguments to a macro are completely macro-expanded before they are substituted
into the macro body. After substitution, the complete text is scanned again for macros to
expand, including the arguments. This rule may seem strange, but it is carefully designed
so you need not worry about whether any function call is actually a macro invocation. You
can run into trouble if you try to be too clever, though. See Section 3.10.6 [Argument
Prescan]|, page 37, for detailed discussion.

For example, min (min (a, b), c) is first expanded to

min (((a) < (b) 7 (a) : (b)), (c))
and then to

((((@) < (b) 7 (a) : (B))) < (c)
?7 (((@ <™ 7 @ : MN
: ()

(Line breaks shown here for clarity would not actually be generated.)

You can leave macro arguments empty; this is not an error to the preprocessor (but
many macros will then expand to invalid code). You cannot leave out arguments entirely;
if a macro takes two arguments, there must be exactly one comma at the top level of its
argument list. Here are some silly examples using min:

Chapter 3: Macros 17

min(, b) = (C)< ®?2C): D)

min(a,) — (a)< ()72 @): ()N

min(,) = (C)<)Yz C) ()N

min((,),) — () <)Y 2 (D) =« (N

min() error| macro "min" requires 2 arguments, but only 1 given
min(,,) error macro "min" passed 3 arguments, but takes just 2

Whitespace is not a preprocessing token, so if a macro foo takes one argument, foo ()
and foo () both supply it an empty argument. Previous GNU preprocessor implementa-
tions and documentation were incorrect on this point, insisting that a function-like macro
that takes a single argument be passed a space if an empty argument was required.

Macro parameters appearing inside string literals are not replaced by their corresponding
actual arguments.

#define foo(x) x, "x"
foo(bar) +— bar, "x"

3.4 Stringification

Sometimes you may want to convert a macro argument into a string constant. Parameters
are not replaced inside string constants, but you can use the ‘#’ preprocessing operator
instead. When a macro parameter is used with a leading ‘#’, the preprocessor replaces
it with the literal text of the actual argument, converted to a string constant. Unlike
normal parameter replacement, the argument is not macro-expanded first. This is called
stringification.

There is no way to combine an argument with surrounding text and stringify it all
together. Instead, you can write a series of adjacent string constants and stringified argu-
ments. The preprocessor will replace the stringified arguments with string constants. The
C compiler will then combine all the adjacent string constants into one long string.

Here is an example of a macro definition that uses stringification:

#define WARN_IF(EXP) \
do { if (EXP) \
fprintf (stderr, "Warning: " #EXP "\n"); } \
while (0)
WARN_IF (x == 0);
— do { if (x == 0)
fprintf (stderr, "Warning: " "x == 0" "\n"); } while (0);

The argument for EXP is substituted once, as-is, into the if statement, and once, stringified,
into the argument to fprintf. If x were a macro, it would be expanded in the if statement,

but not in the string.

The do and while (0) are a kludge to make it possible to write WARN_IF (arg) ;, which
the resemblance of WARN_IF to a function would make C programmers want to do; see
Section 3.10.3 [Swallowing the Semicolon], page 35.

Stringification in C involves more than putting double-quote characters around the frag-
ment. The preprocessor backslash-escapes the quotes surrounding embedded string con-
stants, and all backslashes within string and character constants, in order to get a valid
C string constant with the proper contents. Thus, stringifying p = "foo\n"; results in
"p = \"foo\\n\";". However, backslashes that are not inside string or character constants
are not duplicated: ‘\n’ by itself stringifies to "\n".

Chapter 3: Macros 18

All leading and trailing whitespace in text being stringified is ignored. Any sequence of
whitespace in the middle of the text is converted to a single space in the stringified result.
Comments are replaced by whitespace long before stringification happens, so they never
appear in stringified text.

There is no way to convert a macro argument into a character constant.

If you want to stringify the result of expansion of a macro argument, you have to use
two levels of macros.

#define xstr(s) str(s)
#define str(s) #s
#define foo 4
str (foo)
’_> Ilfooll
xstr (foo)
— xstr (4)
— str (4)
*_> ||4||
s is stringified when it is used in str, so it is not macro-expanded first. But s is
an ordinary argument to xstr, so it is completely macro-expanded before xstr itself is
expanded (see Section 3.10.6 [Argument Prescan|, page 37). Therefore, by the time str

gets to its argument, it has already been macro-expanded.

3.5 Concatenation

It is often useful to merge two tokens into one while expanding macros. This is called token
pasting or token concatenation. The ‘##’ preprocessing operator performs token pasting.
When a macro is expanded, the two tokens on either side of each ‘##’ operator are combined
into a single token, which then replaces the ‘##’ and the two original tokens in the macro
expansion. Usually both will be identifiers, or one will be an identifier and the other a
preprocessing number. When pasted, they make a longer identifier. This isn’t the only
valid case. It is also possible to concatenate two numbers (or a number and a name, such
as 1.5 and e3) into a number. Also, multi-character operators such as += can be formed
by token pasting.

However, two tokens that don’t together form a valid token cannot be pasted together.
For example, you cannot concatenate x with + in either order. If you try, the preprocessor
issues a warning and emits the two tokens. Whether it puts white space between the tokens
is undefined. It is common to find unnecessary uses of ‘##’ in complex macros. If you get
this warning, it is likely that you can simply remove the ‘##’.

Both the tokens combined by ‘##’ could come from the macro body, but you could just
as well write them as one token in the first place. Token pasting is most useful when one
or both of the tokens comes from a macro argument. If either of the tokens next to an ‘##’
is a parameter name, it is replaced by its actual argument before ‘## executes. As with
stringification, the actual argument is not macro-expanded first. If the argument is empty,
that ‘## has no effect.

Keep in mind that the C preprocessor converts comments to whitespace before macros
are even considered. Therefore, you cannot create a comment by concatenating ‘/’ and
‘*’. You can put as much whitespace between ‘##’ and its operands as you like, including
comments, and you can put comments in arguments that will be concatenated. However,
it is an error if ‘##’ appears at either end of a macro body.

Chapter 3: Macros 19

Consider a C program that interprets named commands. There probably needs to be a
table of commands, perhaps an array of structures declared as follows:

struct command
{
char *name;
void (*function) (void);

};

struct command commands[] =
{
{ "quit", quit_command },
{ "help", help_command },

};

It would be cleaner not to have to give each command name twice, once in the string
constant and once in the function name. A macro which takes the name of a command as
an argument can make this unnecessary. The string constant can be created with stringi-
fication, and the function name by concatenating the argument with ‘_command’. Here is
how it is done:

#define COMMAND(NAME) { #NAME, NAME ## _command }

struct command commands[] =

{
COMMAND (quit),
COMMAND (help),

};...

3.6 Variadic Macros

A macro can be declared to accept a variable number of arguments much as a function can.
The syntax for defining the macro is similar to that of a function. Here is an example:

#define eprintf(...) fprintf (stderr, __VA_ARGS__)

This kind of macro is called variadic. When the macro is invoked, all the tokens in its
argument list after the last named argument (this macro has none), including any commas,
become the variable argument. This sequence of tokens replaces the identifier __VA_ARGS__
in the macro body wherever it appears. Thus, we have this expansion:

eprintf ("%s:%d: ", input_file, lineno)
— fprintf (stderr, "¥%s:%d: ", input_file, lineno)

The variable argument is completely macro-expanded before it is inserted into the macro
expansion, just like an ordinary argument. You may use the ‘#’ and ‘## operators to
stringify the variable argument or to paste its leading or trailing token with another token.
(But see below for an important special case for ‘##’.)

If your macro is complicated, you may want a more descriptive name for the variable
argument than __VA_ARGS__. CPP permits this, as an extension. You may write an argu-
ment name immediately before the ¢...’; that name is used for the variable argument. The
eprintf macro above could be written

#define eprintf(args...) fprintf (stderr, args)

using this extension. You cannot use __VA_ARGS__ and this extension in the same macro.

Chapter 3: Macros 20

You can have named arguments as well as variable arguments in a variadic macro. We
could define eprintf like this, instead:

#define eprintf(format, ...) fprintf (stderr, format VA_ARGS__)

P —

This formulation looks more descriptive, but unfortunately it is less flexible: you must now
supply at least one argument after the format string. In standard C, you cannot omit the
comma separating the named argument from the variable arguments. Furthermore, if you
leave the variable argument empty, you will get a syntax error, because there will be an
extra comma after the format string.
eprintf ("success!\n",);
— fprintf(stderr, "success!'!\n",);

GNU CPP has a pair of extensions which deal with this problem. First, you are allowed

to leave the variable argument out entirely:

eprintf ("success!\n")
— fprintf (stderr, "success!\n",);
Second, the ‘##’ token paste operator has a special meaning when placed between a comma
and a variable argument. If you write

#define eprintf(format, ...) fprintf (stderr, format, ##__VA_ARGS__)

and the variable argument is left out when the eprintf macro is used, then the comma
before the ‘## will be deleted. This does not happen if you pass an empty argument, nor
does it happen if the token preceding ‘##’ is anything other than a comma.
eprintf ("success!\n")
— fprintf(stderr, "success!\n");

The above explanation is ambiguous about the case where the only macro parameter is a
variable arguments parameter, as it is meaningless to try to distinguish whether no argument
at all is an empty argument or a missing argument. In this case the C99 standard is clear
that the comma must remain, however the existing GCC extension used to swallow the
comma. So CPP retains the comma when conforming to a specific C standard, and drops
it otherwise.

C99 mandates that the only place the identifier __VA_ARGS__ can appear is in the re-
placement list of a variadic macro. It may not be used as a macro name, macro argument
name, or within a different type of macro. It may also be forbidden in open text; the
standard is ambiguous. We recommend you avoid using it except for its defined purpose.

Variadic macros are a new feature in C99. GNU CPP has supported them for a long
time, but only with a named variable argument (‘args...’, not ‘...” and __VA_ARGS__).
If you are concerned with portability to previous versions of GCC, you should use only
named variable arguments. On the other hand, if you are concerned with portability to
other conforming implementations of C99, you should use only __VA_ARGS__.

Previous versions of CPP implemented the comma-deletion extension much more gener-
ally. We have restricted it in this release to minimize the differences from C99. To get the
same effect with both this and previous versions of GCC, the token preceding the special
‘##’ must be a comma, and there must be white space between that comma and whatever
comes immediately before it:

#define eprintf(format, args...) fprintf (stderr, format , #