Installing GCC

For ccc version 4.8.3

(crosstool-NG linaro-1.13.1-4.8-2014.04 - Linaro GCC 4.8-2014.04)

Copyright (©) 1988-2013 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.3 or any later version published by the
Free Software Foundation; with no Invariant Sections, the Front-Cover texts being (a) (see
below), and with the Back-Cover Texts being (b) (see below). A copy of the license is
included in the section entitled “GNU Free Documentation License”.

(a) The FSF’s Front-Cover Text is:
A GNU Manual
(b) The FSF’s Back-Cover Text is:

You have freedom to copy and modify this GNU Manual, like GNU software. Copies
published by the Free Software Foundation raise funds for GNU development.

./gfdl.html

Table of Contents

1 Installing GCC........... 1
2 Prerequisites.................. L. 3
3 Downloading GCC.............................. 7
4 Installing GCC: Configuration................. 9
5 Building......... ... 35
5.1 Building a native compiler oo 35
5.2 Building a cross compiler........... ... i i 38
5.3 Building in parallel....... 39
5.4 Building the Ada compiler i, 39
5.5 Building with profile feedbackl 39

6 Installing GCC: Testing....................... 41
6.1 How can you run the testsuite on selected tests?............... 41
6.2 Passing options and running multiple testsuites................ 42
6.3 Additional testing for Java Class Libraries..................... 42
6.4 How to interpret test results..........o il 43
6.5 Submitting test results........ ... 43

7 Installing GCC: Final installation............ 45
8 Installing GCC: Binaries...................... 47
9 Host/target specific installation notes for GCC
.. 49

10 Old installation documentation 69
10.1 Configurations Supported by GCC.......... 69
GNU Free Documentation License............... 71

ADDENDUM: How to use this License for your documents 78

Chapter 1: Installing GCC 1

1 Installing GCC

The latest version of this document is always available at http://gcc.gnu.org/install/. It
refers to the current development sources, instructions for specific released versions are
included with the sources.

This document describes the generic installation procedure for GCC as well as detailing
some target specific installation instructions.

GCC includes several components that previously were separate distributions with their
own installation instructions. This document supersedes all package-specific installation
instructions.

Before starting the build /install procedure please check the Chapter 9 [Specific], page 49.
We recommend you browse the entire generic installation instructions before you proceed.

Lists of successful builds for released versions of GCC are available at http://gcc.gnu.
org/buildstat.html. These lists are updated as new information becomes available.

The installation procedure itself is broken into five steps.

Please note that GCC does not support ‘make uninstall’ and probably won’t do so in
the near future as this would open a can of worms. Instead, we suggest that you install
GCC into a directory of its own and simply remove that directory when you do not need
that specific version of GCC any longer, and, if shared libraries are installed there as well,
no more binaries exist that use them.

http://gcc.gnu.org/install/
http://gcc.gnu.org/buildstat.html
http://gcc.gnu.org/buildstat.html

Chapter 2: Prerequisites 3

2 Prerequisites

GCC requires that various tools and packages be available for use in the build procedure.
Modifying GCC sources requires additional tools described below.

Tools/packages necessary for building GCC

ISO C++98 compiler

GNAT

Necessary to bootstrap GCC, although versions of GCC prior to 4.8 also allow
bootstrapping with a ISO C89 compiler and versions of GCC prior to 3.4 also
allow bootstrapping with a traditional (K&R) C compiler.

To build all languages in a cross-compiler or other configuration where 3-stage
bootstrap is not performed, you need to start with an existing GCC binary
(version 3.4 or later) because source code for language frontends other than C
might use GCC extensions.

Note that to bootstrap GCC with versions of GCC earlier than 3.4, you may
need to use ‘--disable-stagel-checking’, though bootstrapping the compiler
with such earlier compilers is strongly discouraged.

In order to build the Ada compiler (GNAT) you must already have GNAT in-
stalled because portions of the Ada frontend are written in Ada (with GNAT
extensions.) Refer to the Ada installation instructions for more specific infor-
mation.

A “working” POSIX compatible shell, or GNU bash

Necessary when running configure because some /bin/sh shells have bugs
and may crash when configuring the target libraries. In other cases, /bin/sh
or ksh have disastrous corner-case performance problems. This can cause target
configure runs to literally take days to complete in some cases.

So on some platforms /bin/ksh is sufficient, on others it isn’t. See the
host /target specific instructions for your platform, or use bash to be sure.
Then set CONFIG_SHELL in your environment to your “good” shell prior to
running configure/make.

zsh is not a fully compliant POSIX shell and will not work when configuring
GCC.

A POSIX or SVR4 awk

Necessary for creating some of the generated source files for GCC. If in doubt,
use a recent GNU awk version, as some of the older ones are broken. GNU awk
version 3.1.5 is known to work.

GNU binutils

Necessary in some circumstances, optional in others. See the host/target spe-
cific instructions for your platform for the exact requirements.

gzip version 1.2.4 (or later) or
bzip2 version 1.0.2 (or later)

Necessary to uncompress GCC tar files when source code is obtained via FTP
mirror sites.

4 Installing GCC

GNU make version 3.80 (or later)
You must have GNU make installed to build GCC.

GNU tar version 1.14 (or later)
Necessary (only on some platforms) to untar the source code. Many systems’
tar programs will also work, only try GNU tar if you have problems.

Perl version 5.6.1 (or later)
Necessary when targeting Darwin, building ‘libstdc++’, and not using
‘-—disable-symvers’. Necessary when targeting Solaris 2 with Sun 1d and
not using ‘--disable-symvers’. The bundled perl in Solaris 8 and up works.

Necessary when regenerating ‘Makefile’ dependencies in libiberty. Necessary
when regenerating ‘libiberty/functions.texi’. Necessary when generating
manpages from Texinfo manuals. Used by various scripts to generate some files
included in SVN (mainly Unicode-related and rarely changing) from source
tables.

jar, or InfoZIP (zip and unzip)
Necessary to build libgcj, the GCJ runtime.

Several support libraries are necessary to build GCC, some are required, others optional.
While any sufficiently new version of required tools usually work, library requirements are
generally stricter. Newer versions may work in some cases, but it’s safer to use the exact
versions documented. We appreciate bug reports about problems with newer versions,
though. If your OS vendor provides packages for the support libraries then using those
packages may be the simplest way to install the libraries.

GNU Multiple Precision Library (GMP) version 4.3.2 (or later)
Necessary to build GCC. If a GMP source distribution is found in a subdi-
rectory of your GCC sources named ‘gmp’, it will be built together with GCC.
Alternatively, if GMP is already installed but it is not in your library search
path, you will have to configure with the ‘~-with-gmp’ configure option. See
also ‘--with-gmp-1ib’ and ‘--with-gmp-include’.

MPFR Library version 2.4.2 (or later)
Necessary to build GCC. It can be downloaded from http://www.mpfr.org/
If an MPFR source distribution is found in a subdirectory of your GCC
sources named ‘mpfr’, it will be built together with GCC. Alternatively, if
MPFR is already installed but it is not in your default library search path, the
‘——with-mpfr’ configure option should be used. See also ‘--with-mpfr-1ib’
and ‘--with-mpfr-include’.

MPC Library version 0.8.1 (or later)
Necessary to build GCC. It can be downloaded from http: / /www .
multiprecision . org /. If an MPC source distribution is found in a
subdirectory of your GCC sources named ‘mpc’, it will be built together with
GCC. Alternatively, if MPC is already installed but it is not in your default
library search path, the ‘--with-mpc’ configure option should be used. See
also ‘--with-mpc-1ib’ and ‘--with-mpc-include’.

http://www.mpfr.org/
http://www.mpfr.org/
http://www.multiprecision.org/
http://www.multiprecision.org/

Chapter 2: Prerequisites 5

ISL Library version 0.11.1
Necessary to build GCC with the Graphite loop optimizations. It can be
downloaded from ftp://gcc .gnu.org/pub/gcc/infrastructure/ as
‘is1-0.11.1.tar.bz2’.

The ‘--with-is1’ configure option should be used if ISL is not installed in your
default library search path.

CLooG 0.18.0

Necessary to build GCC with the Graphite loop optimizations. It can be
downloaded from ftp://gcc .gnu.org/pub/gcc/infrastructure/ as
‘cloog-0.18.0.tar.gz’. The ‘-—with-cloog’ configure option should be used
if CLooG is not installed in your default library search path. CLooG needs
to be built against ISL 0.11.1. Use ‘--with-isl=system’ to direct CLooG to
pick up an already installed ISL, otherwise it will use ISL 0.11.1 as bundled
with CLooG. CLooG needs to be configured to use GMP internally, use
‘~—with-bits=gmp’ to direct it to do that.

Tools/packages necessary for modifying GCC

autoconf version 2.64

GNU m4 version 1.4.6 (or later)
Necessary when modifying ‘configure.ac’, ‘aclocal.mé4’, etc. to regenerate
‘configure’ and ‘config.in’ files.

automake version 1.11.1
Necessary when modifying a ‘Makefile.am’ file to regenerate its associated
‘Makefile.in’.

Much of GCC does not use automake, so directly edit the ‘Makefile.in’ file.
Specifically this applies to the ‘gcc’, ‘intl’, ‘libcpp’, ‘libiberty’, ‘libobjc’
directories as well as any of their subdirectories.

For directories that use automake, GCC requires the latest release in the 1.11
series, which is currently 1.11.1. When regenerating a directory to a newer
version, please update all the directories using an older 1.11 to the latest released
version.

gettext version 0.14.5 (or later)
Needed to regenerate ‘gcc.pot’.

gperf version 2.7.2 (or later)
Necessary when modifying gperf input files, e.g. ‘gcc/cp/cfns.gpert’ to re-
generate its associated header file, e.g. ‘gcc/cp/cfns.h’.

DejaGnu 1.4.4
Expect
Tel

Necessary to run the GCC testsuite; see the section on testing for details.

autogen version 5.5.4 (or later) and

guile version 1.4.1 (or later)
Necessary to regenerate ‘fixinc/fixincl.x’ from ‘fixinc/inclhack.def’ and
‘fixinc/*.tpl’.

ftp://gcc.gnu.org/pub/gcc/infrastructure/
ftp://gcc.gnu.org/pub/gcc/infrastructure/

6 Installing GCC

Necessary to run ‘make check’ for ‘fixinc’.

Necessary to regenerate the top level ‘Makefile.in’ file from ‘Makefile.tpl’
and ‘Makefile.def’.

Flex version 2.5.4 (or later)
Necessary when modifying ‘*.1’ files.

Necessary to build GCC during development because the generated output files
are not included in the SVN repository. They are included in releases.

Texinfo version 4.7 (or later)
Necessary for running makeinfo when modifying ‘*.texi’ files to test your
changes.

Necessary for running make dvi or make pdf to create printable documentation
in DVI or PDF format. Texinfo version 4.8 or later is required for make pdf.

Necessary to build GCC documentation during development because the gen-
erated output files are not included in the SVN repository. They are included
in releases.

TEX (any working version)
Necessary for running texi2dvi and texi2pdf, which are used when running
make dvi or make pdf to create DVI or PDF files, respectively.

SVN (any version)

SSH (any version)
Necessary to access the SVN repository. Public releases and weekly snapshots
of the development sources are also available via FTP.

GNU diffutils version 2.7 (or later)
Useful when submitting patches for the GCC source code.

patch version 2.5.4 (or later)
Necessary when applying patches, created with diff, to one’s own sources.

ecjl

gjavah
If you wish to modify ‘. java’ files in libjava, you will need to configure with
‘-—enable-java-maintainer-mode’, and you will need to have executables
named ecjl and gjavah in your path. The ecj1 executable should run the
Eclipse Java compiler via the GCC-specific entry point. You can download a
suitable jar from ftp://sourceware.org/pub/java/, or by running the script
contrib/download_ecj.

antlr.jar version 2.7.1 (or later)

antlr binary
If you wish to build the gjdoc binary in libjava, you will need to have an
‘antlr. jar’ library available. The library is searched for in system locations
but can be specified with ‘--—with-antlr-jar=’instead. When configuring with
‘-—enable-java-maintainer-mode’, you will need to have one of the executa-
bles named cantlr, runantlr or antlr in your path.

ftp://sourceware.org/pub/java/

Chapter 3: Downloading GCC 7

3 Downloading GCC

GCC is distributed via SVN and FTP tarballs compressed with gzip or bzip2.
Please refer to the releases web page for information on how to obtain GCC.

The source distribution includes the C, C++, Objective-C, Fortran, Java, and Ada (in
the case of GCC 3.1 and later) compilers, as well as runtime libraries for C++, Objective-C,
Fortran, and Java. For previous versions these were downloadable as separate components
such as the core GCC distribution, which included the C language front end and shared
components, and language-specific distributions including the language front end and the
language runtime (where appropriate).

If you also intend to build binutils (either to upgrade an existing installation or for use in
place of the corresponding tools of your OS), unpack the binutils distribution either in the
same directory or a separate one. In the latter case, add symbolic links to any components
of the binutils you intend to build alongside the compiler (‘bfd’, ‘binutils’, ‘gas’, ‘gprof’,
‘1d’, ‘opcodes’, . ..) to the directory containing the GCC sources.

Likewise the GMP, MPFR and MPC libraries can be automatically built together with
GCC. Unpack the GMP, MPFR and/or MPC source distributions in the directory contain-
ing the GCC sources and rename their directories to ‘gmp’, ‘mpfr’ and ‘mpc’, respectively
(or use symbolic links with the same name).

http://gcc.gnu.org/svn.html
http://gcc.gnu.org/releases.html

Chapter 4: Installing GCC: Configuration 9

4 Installing GCC: Configuration

Like most GNU software, GCC must be configured before it can be built. This document
describes the recommended configuration procedure for both native and cross targets.

We use srcdir to refer to the toplevel source directory for GCC; we use objdir to refer
to the toplevel build/object directory.

If you obtained the sources via SVN, srcdir must refer to the top ‘gec’ directory, the
one where the ‘MAINTAINERS’ file can be found, and not its ‘gcc’ subdirectory, otherwise
the build will fail.

If either srcdir or objdir is located on an automounted NFS file system, the shell’s
built-in pwd command will return temporary pathnames. Using these can lead to various
sorts of build problems. To avoid this issue, set the PWDCMD environment variable to an
automounter-aware pwd command, e.g., pawd or ‘amq -w’, during the configuration and
build phases.

First, we highly recommend that GCC be built into a separate directory from the sources
which does not reside within the source tree. This is how we generally build GCC; building
where srcdir == objdir should still work, but doesn’t get extensive testing; building where
objdir is a subdirectory of srcdir is unsupported.

If you have previously built GCC in the same directory for a different target machine,
do ‘make distclean’ to delete all files that might be invalid. One of the files this deletes
is ‘Makefile’; if ‘make distclean’ complains that ‘Makefile’ does not exist or issues a
message like “don’t know how to make distclean” it probably means that the directory is
already suitably clean. However, with the recommended method of building in a separate
objdir, you should simply use a different objdir for each target.

Second, when configuring a native system, either cc or gcc must be in your path or
you must set CC in your environment before running configure. Otherwise the configuration
scripts may fail.

To configure GCC:

% mkdir objdir
% cd objdir
% srcdir/configure [options] [target]

Distributor options

If you will be distributing binary versions of GCC, with modifications to the source code,
you should use the options described in this section to make clear that your version contains
modifications.

--with-pkgversion=version
Specify a string that identifies your package. You may wish to include a build
number or build date. This version string will be included in the output of gcc
--version. This suffix does not replace the default version string, only the
‘GCC’ part.

The default value is ‘GCC’.

10 Installing GCC

--with-bugurl=url
Specify the URL that users should visit if they wish to report a bug. You are of
course welcome to forward bugs reported to you to the FSF, if you determine
that they are not bugs in your modifications.

The default value refers to the FSF’s GCC bug tracker.

Target specification

e GCC has code to correctly determine the correct value for target for nearly all native
systems. Therefore, we highly recommend you do not provide a configure target when
configuring a native compiler.

e target must be specified as ‘--target=target’ when configuring a cross compiler; ex-
amples of valid targets would be m68k-elf, sh-elf, etc.

e Specifying just target instead of ‘--target=target’ implies that the host defaults to
target.

Options specification

Use options to override several configure time options for GCC. A list of supported options
follows; ‘configure —--help’ may list other options, but those not listed below may not
work and should not normally be used.

Note that each ‘--enable’ option has a corresponding ‘--disable’ option and that each
‘-—with’ option has a corresponding ‘~-without’ option.

—-—prefix=dirname
Specify the toplevel installation directory. This is the recommended way to
install the tools into a directory other than the default. The toplevel installation
directory defaults to ‘/usr/local’.

We highly recommend against dirname being the same or a subdirectory of
objdir or vice versa. If specifying a directory beneath a user’s home direc-
tory tree, some shells will not expand dirname correctly if it contains the *~’
metacharacter; use $HOME instead.

The following standard autoconf options are supported. Normally you should
not need to use these options.

--exec-prefix=dirname
Specify the toplevel installation directory for architecture-
dependent files. The default is ‘prefix’.

--bindir=dirname
Specify the installation directory for the executables called by users
(such as gcc and g++). The default is ‘exec-prefix/bin’.

--libdir=dirname
Specify the installation directory for object code libraries and in-
ternal data files of GCC. The default is ‘exec-prefix/1ib’.

--libexecdir=dirname
Specify the installation directory for internal executables of GCC.
The default is ‘exec-prefix/libexec’.

Chapter 4: Installing GCC: Configuration 11

--with-slibdir=dirname
Specify the installation directory for the shared libgcc library. The
default is ‘1ibdir’.

--datarootdir=dirname
Specify the root of the directory tree for read-only architecture-
independent data files referenced by GCC. The default is
‘prefix/share’.

--infodir=dirname
Specify the installation directory for documentation in info format.
The default is ‘datarootdir/info’.

-—datadir=dirname
Specify the installation directory for some architecture-independent
data files referenced by GCC. The default is ‘datarootdir’.

-—docdir=dirname
Specify the installation directory for documentation files (other
than Info) for GCC. The default is ‘datarootdir/doc’.

--htmldir=dirname
Specify the installation directory for HIT'ML documentation files.
The default is ‘docdir’.

--pdfdir=dirname
Specify the installation directory for PDF documentation files. The
default is ‘docdir’.

—--mandir=dirname
Specify the installation directory for manual pages. The default is
‘datarootdir/man’. (Note that the manual pages are only extracts
from the full GCC manuals, which are provided in Texinfo format.
The manpages are derived by an automatic conversion process from
parts of the full manual.)

--with-gxx-include-dir=dirname
Specify the installation directory for G++ header files. The default
depends on other configuration options, and differs between cross
and native configurations.

--with-specs=specs
Specify additional command line driver SPECS. This can be
useful if you need to turn on a non-standard feature by default
without modifying the compiler’s source code, for instance
‘-—with-specs=%{!fcommon:%{!fno-common:-fno-common}}’.
See Section “Specifying subprocesses and the switches to pass to
them” in Using the GNU Compiler Collection (GCC),

—-—program-prefix=prefix
GCC supports some transformations of the names of its programs when in-
stalling them. This option prepends prefix to the names of programs to install

12

Installing GCC

in bindir (see above). For example, specifying ‘--program-prefix=foo-’ would
result in ‘gcc’ being installed as ‘/usr/local/bin/foo-gcc’.

--program-suffix=suffix

Appends suffix to the names of programs to install in bindir (see above). For
example, specifying ‘--program-suffix=-3.1" would result in ‘gcc’ being in-
stalled as ‘/usr/local/bin/gcc-3.1".

—--program-transform-name=pattern

Applies the ‘sed’ script pattern to be applied to the names of programs to
install in bindir (see above). pattern has to consist of one or more basic
‘sed’ editing commands, separated by semicolons. For example, if you
want the ‘gcc’ program name to be transformed to the installed program
‘/usr/local/bin/myowngcc’ and the ‘g++’ program name to be transformed
to ‘/usr/local/bin/gspecial++’ without changing other program names, you
could use the pattern ‘--program-transform-name=’s/ gcc$/myowngcc/;
s/ g++$/gspecial++/’’ to achieve this effect.

All three options can be combined and used together, resulting in more com-
plex conversion patterns. As a basic rule, prefix (and suffix) are prepended
(appended) before further transformations can happen with a special transfor-
mation script pattern.

As currently implemented, this option only takes effect for native builds; cross
compiler binaries’ names are not transformed even when a transformation is
explicitly asked for by one of these options.

For native builds, some of the installed programs are also installed with
the target alias in front of their name, as in ‘1686-pc-linux-gnu-gcc’.
All of the above transformations happen before the target alias is
prepended to the name—so, specifying ‘--program-prefix=foo-’ and
‘program-suffix=-3.1", the resulting binary would be installed as
‘/usr/local/bin/i686-pc-linux-gnu-foo-gcc-3.1".

As a last shortcoming, none of the installed Ada programs are transformed yet,
which will be fixed in some time.

--with-local-prefix=dirname

Specify the installation directory for local include files. The default is
‘/usr/local’. Specify this option if you want the compiler to search
directory ‘dirname/include’ for locally installed header files instead of
‘/usr/local/include’.

You should specify ‘--with-local-prefix’ omly if your site has a different
convention (not ‘/usr/local’) for where to put site-specific files.

The default value for ‘--with-local-prefix’is ‘/usr/local’ regardless of the
value of ‘--prefix’. Specifying ‘--prefix’ has no effect on which directory
GCC searches for local header files. This may seem counterintuitive, but actu-
ally it is logical.

The purpose of ‘—-prefix’ is to specify where to install GCC. The local header
files in ‘/usr/local/include’—if you put any in that directory—are not part
of GCC. They are part of other programs—perhaps many others. (GCC installs
its own header files in another directory which is based on the ‘--prefix’ value.)

Chapter 4: Installing GCC: Configuration 13

Both the local-prefix include directory and the GCC-prefix include directory
are part of GCC’s “system include” directories. Although these two directories
are not fixed, they need to be searched in the proper order for the correct
processing of the include_next directive. The local-prefix include directory is
searched before the GCC-prefix include directory. Another characteristic of
system include directories is that pedantic warnings are turned off for headers
in these directories.

Some autoconf macros add ‘-I directory’ options to the compiler command
line, to ensure that directories containing installed packages’ headers are
searched. When directory is one of GCC’s system include directories, GCC
will ignore the option so that system directories continue to be processed in
the correct order. This may result in a search order different from what was
specified but the directory will still be searched.

GCC automatically searches for ordinary libraries using GCC_EXEC_PREFIX.
Thus, when the same installation prefix is used for both GCC and packages,
GCC will automatically search for both headers and libraries. This provides
a configuration that is easy to use. GCC behaves in a manner similar to that
when it is installed as a system compiler in ‘/usr’.

Sites that need to install multiple versions of GCC may not want to use the
above simple configuration. It is possible to use the ‘--program-prefix’,
‘—-—program-suffix’ and ‘--program-transform-name’ options to install mul-
tiple versions into a single directory, but it may be simpler to use different
prefixes and the ‘--with-local-prefix’ option to specify the location of the
site-specific files for each version. It will then be necessary for users to specify
explicitly the location of local site libraries (e.g., with LIBRARY_PATH).

The same value can be used for both ‘--with-local-prefix’ and ‘--prefix’
provided it is not ‘/usr’. This can be used to avoid the default search of
‘/usr/local/include’.

Do not specify ‘/usr’ as the ‘-—with-local-prefix’! The directory you use for
‘——with-local-prefix’ must not contain any of the system’s standard header
files. If it did contain them, certain programs would be miscompiled (including
GNU Emacs, on certain targets), because this would override and nullify the
header file corrections made by the fixincludes script.

Indications are that people who use this option use it based on mistaken ideas
of what it is for. People use it as if it specified where to install part of GCC.
Perhaps they make this assumption because installing GCC creates the direc-
tory.

--with-native-system-header-dir=dirname
Specifies that dirname is the directory that contains native system header files,
rather than ‘/usr/include’. This option is most useful if you are creating a
compiler that should be isolated from the system as much as possible. It is
most commonly used with the ‘--with-sysroot’ option and will cause GCC
to search dirname inside the system root specified by that option.

14 Installing GCC

--enable-shared[=packagel, .. .]]
Build shared versions of libraries, if shared libraries are supported on the target
platform. Unlike GCC 2.95.x and earlier, shared libraries are enabled by default
on all platforms that support shared libraries.

If a list of packages is given as an argument, build shared libraries only for the
listed packages. For other packages, only static libraries will be built. Pack-
age names currently recognized in the GCC tree are ‘libgcc’ (also known as
‘gec’), ‘libstdc++ (not ‘libstdc++-v3’), ‘1libffi’, ‘z1ib’, ‘boehm-gc’, ‘ada’,
‘libada’, ‘libjava’, ‘libgo’, and ‘libobjc’. Note ‘libiberty’ does not sup-
port shared libraries at all.

Use ‘--disable-shared’ to build only static libraries. Note that
‘--disable-shared’ does not accept a list of package names as argument,
only ‘--enable-shared’ does.

--with-gnu-as

Specify that the compiler should assume that the assembler it finds is the GNU
assembler. However, this does not modify the rules to find an assembler and will
result in confusion if the assembler found is not actually the GNU assembler.
(Confusion may also result if the compiler finds the GNU assembler but has not
been configured with ‘--with-gnu-as’.) If you have more than one assembler
installed on your system, you may want to use this option in connection with
‘-—with-as=pathname’ or ‘--with-build-time-tools=pathname’.

The following systems are the only ones where it makes a difference whether
you use the GNU assembler. On any other system, ‘--with-gnu-as’ has no
effect.

e ‘hppal.O-any-any’
e ‘hppal.l-any-any’
e ‘sparc-sun-solaris2.any’
e ‘sparc64-any-solaris2.any’
--with-as=pathname
Specify that the compiler should use the assembler pointed to by pathname,

rather than the one found by the standard rules to find an assembler, which
are:

e Unless GCC is being built with a cross compiler, check the

‘libexec/gcc/target/version’ directory. libexec defaults to
‘exec-prefix/libexec’; exec-prefix defaults to prefix, which defaults
to ‘/usr/local’ wunless overridden by the ‘--prefix=pathname’

switch described above. target is the target system triple, such as
‘sparc-sun-solaris2.7’, and version denotes the GCC version, such as

3.0.

e If the target system is the same that you are building on, check operating
system specific directories (e.g. ‘/usr/ccs/bin’ on Sun Solaris 2).

e Check in the PATH for a tool whose name is prefixed by the target system
triple.

Chapter 4: Installing GCC: Configuration 15

e Check in the PATH for a tool whose name is not prefixed by the target
system triple, if the host and target system triple are the same (in other
words, we use a host tool if it can be used for the target as well).

You may want to use ‘~-with-as’ if no assembler is installed in the directories
listed above, or if you have multiple assemblers installed and want to choose
one that is not found by the above rules.

--with-gnu-1d
Same as ‘--with-gnu-as’ but for the linker.

--with-ld=pathname
Same as ‘——with-as’ but for the linker.

-—with-stabs
Specify that stabs debugging information should be used instead of whatever
format the host normally uses. Normally GCC uses the same debug format as
the host system.

On MIPS based systems and on Alphas, you must specify whether you want
GCC to create the normal ECOFF debugging format, or to use BSD-style stabs
passed through the ECOFF symbol table. The normal ECOFF debug format
cannot fully handle languages other than C. BSD stabs format can handle other
languages, but it only works with the GNU debugger GDB.

Normally, GCC uses the ECOFF debugging format by default; if you prefer
BSD stabs, specify ‘--with-stabs’ when you configure GCC.

No matter which default you choose when you configure GCC, the user can use
the ‘-gcoff’ and ‘-gstabs+’ options to specify explicitly the debug format for
a particular compilation.

‘-—with-stabs’ is meaningful on the ISC system on the 386, also, if
‘——with-gas’ is used. It selects use of stabs debugging information embedded
in COFF output. This kind of debugging information supports C++ well;
ordinary COFF debugging information does not.

‘--with-stabs’ is also meaningful on 386 systems running SVR4. It selects use
of stabs debugging information embedded in ELF output. The C++ compiler
currently (2.6.0) does not support the DWARF debugging information normally
used on 386 SVRA4 platforms; stabs provide a workable alternative. This requires
gas and gdb, as the normal SVR4 tools can not generate or interpret stabs.

-—with-tls=dialect
Specify the default TLS dialect, for systems were there is a choice. For ARM
targets, possible values for dialect are gnu or gnu2, which select between the
original GNU dialect and the GNU TLS descriptor-based dialect.

--enable-multiarch
Specify whether to enable or disable multiarch support. The default is to check
for glibc start files in a multiarch location, and enable it if the files are found.
The auto detection is enabled for native builds, and for cross builds configured
with ‘--with-sysroot’, and without ‘--with-native-system-header-dir’.
More documentation about multiarch can be found at http://wiki.debian.
org/Multiarch.

#with-gnu-as
#with-as
http://wiki.debian.org/Multiarch
http://wiki.debian.org/Multiarch

16

Installing GCC

-—disable-multilib

Specify that multiple target libraries to support different target variants, calling
conventions, etc. should not be built. The default is to build a predefined set
of them.

Some targets provide finer-grained control over which multilibs are built (e.g.,
‘--disable-softfloat’):

arm—*-* fpu, 26bit, underscore, interwork, biendian, nofmult.
m68*-x—* softfloat, m68881, m68000, m68020.

mips*x—*—x%
single-float, biendian, softfloat.
powerpc*—*—%, rs6000%—*—x%

aix64, pthread, softfloat, powercpu, powerpccpu, powerpcos, bien-
dian, sysv, aix.

—-with-multilib-list=1ist
——without-multilib-1list

Specify what multilibs to build. Currently only implemented for sh*-*-* and
x86-64-*-linux*.

shx—*-* [ist is a comma separated list of CPU names. These must be of the
form sh* or m* (in which case they match the compiler option for
that processor). The list should not contain any endian options -
these are handled by ‘--with-endian’.

If list is empty, then there will be no multilibs for extra processors.
The multilib for the secondary endian remains enabled.

As a special case, if an entry in the list starts with a ! (exclamation
point), then it is added to the list of excluded multilibs. Entries
of this sort should be compatible with ‘MULTILIB_EXCLUDES’ (once
the leading ! has been stripped).

If ‘~—with-multilib-1list’ is not given, then a default set of multi-
libs is selected based on the value of ‘~-target’. This is usually the
complete set of libraries, but some targets imply a more specialized
subset.

Example 1: to configure a compiler for SH4A only, but supporting
both endians, with little endian being the default:

--with-cpu=sh4a --with-endian=little,big --with-multilib-list=
Example 2: to configure a compiler for both SH4A and SH4AL-
DSP, but with only little endian SH4AL:

--with-cpu=sh4a --with-endian=little,big \

--with-multilib-list=sh4al, !mb/m4al

x86-64-*-1inux*
list is a comma separated list of m32, m64 and mx32 to enable 32-bit,
64-bit and x32 run-time libraries, respectively. If list is empty, then
there will be no multilibs and only the default run-time library will
be enabled.

Chapter 4: Installing GCC: Configuration 17

If ‘=-with-multilib-1list’ is not given, then only 32-bit and 64-bit
run-time libraries will be enabled.

--with-endian=endians
Specify what endians to use. Currently only implemented for sh*-*-*.

endians may be one of the following:

big Use big endian exclusively.
little Use little endian exclusively.
big,little

Use big endian by default. Provide a multilib for little endian.

little,big
Use little endian by default. Provide a multilib for big endian.

--enable-threads
Specify that the target supports threads. This affects the Objective-C compiler
and runtime library, and exception handling for other languages like C++ and
Java. On some systems, this is the default.

In general, the best (and, in many cases, the only known) threading model
available will be configured for use. Beware that on some systems, GCC has
not been taught what threading models are generally available for the system.
In this case, ‘-~—enable-threads’ is an alias for ‘--enable-threads=single’.

--disable-threads
Specify that threading support should be disabled for the system. This is an
alias for ‘--enable-threads=single’.

--enable-threads=1ib
Specify that Iib is the thread support library. This affects the Objective-C
compiler and runtime library, and exception handling for other languages like
C++ and Java. The possibilities for Iib are:

aix AIX thread support.
dce DCE thread support.
lynx LynxOS thread support.

mipssde MIPS SDE thread support.

no This is an alias for ‘single’.
posix Generic POSIX/Unix98 thread support.
rtems RTEMS thread support.

single Disable thread support, should work for all platforms.
tpf TPF thread support.

vxworks VxWorks thread support.

win32 Microsoft Win32 API thread support.

18 Installing GCC

—-—enable-tls
Specify that the target supports TLS (Thread Local Storage). Usually con-
figure can correctly determine if TLS is supported. In cases where it guesses
incorrectly, TLS can be explicitly enabled or disabled with ‘--enable-tls’ or
‘~-disable-tls’. This can happen if the assembler supports TLS but the C
library does not, or if the assumptions made by the configure test are incorrect.

-—disable-tls
Specify that the target does not support TLS. This is an alias for
‘~—enable-tls=no’.

--with-cpu=cpu

--with-cpu-32=cpu

--with-cpu-64=cpu
Specify which cpu variant the compiler should generate code for by default.
cpu will be used as the default value of the ‘-mcpu=’ switch. This option is
only supported on some targets, including ARM, 1386, M68k, PowerPC, and
SPARC. The ‘--with-cpu-32’ and ‘--with-cpu-64’ options specify separate
default CPUs for 32-bit and 64-bit modes; these options are only supported for
1386, x86-64 and PowerPC.

--with-schedule=cpu

--with-arch=cpu

--with-arch-32=cpu

--with-arch-64=cpu

--with-tune=cpu

--with-tune-32=cpu

--with-tune-64=cpu

--with-abi=abi

--with-fpu=type

--with-float=type
These configure options provide default values for the ‘-mschedule=’,
‘-march=’, ‘-mtune=’, ‘-mabi=’, and ‘-mfpu=’ options and for ‘-mhard-float’
or ‘-msoft-float’. As with ‘~-with-cpu’, which switches will be accepted
and acceptable values of the arguments depend on the target.

--with-mode=mode
Specify if the compiler should default to ‘-marm’ or ‘-mthumb’. This option is
only supported on ARM targets.

--with-stack-offset=num
This option sets the default for the -mstack-offset=num option, and will thus
generally also control the setting of this option for libraries. This option is only
supported on Epiphany targets.

--with-fpmath=isa
This options sets ‘-mfpmath=sse’ by default and specifies the default ISA for
floating-point arithmetics. You can select either ‘sse’ which enables ‘-msse2’
or ‘avx’ which enables ‘-mavx’ by default. This option is only supported on
1386 and x86-64 targets.

Chapter 4: Installing GCC: Configuration 19

--with-divide=type
Specify how the compiler should generate code for checking for division by zero.
This option is only supported on the MIPS target. The possibilities for type

are:
traps Division by zero checks use conditional traps (this is the default on
systems that support conditional traps).
breaks Division by zero checks use the break instruction.
--with-11lsc

On MIPS targets, make ‘-mllsc’ the default when no ‘-mno-1lsc’ option is
passed. This is the default for Linux-based targets, as the kernel will emulate
them if the ISA does not provide them.

--without-1lsc
On MIPS targets, make ‘-mno-11sc’ the default when no ‘-mllsc’ option is
passed.

--with-synci
On MIPS targets, make ‘-msynci’ the default when no ‘-mno-synci’ option is
passed.

--without-synci
On MIPS targets, make ‘-mno-synci’ the default when no ‘-msynci’ option is
passed. This is the default.

--with-mips-plt
On MIPS targets, make use of copy relocations and PLTs. These features are
extensions to the traditional SVR4-based MIPS ABIs and require support from
GNU binutils and the runtime C library.

--enable-__cxa_atexit
Define if you want to use __cxa_atexit, rather than atexit, to register C++ de-
structors for local statics and global objects. This is essential for fully standards-
compliant handling of destructors, but requires __cxa_atexit in libc. This option
is currently only available on systems with GNU libc. When enabled, this will
cause ‘-fuse-cxa-atexit’ to be passed by default.

--enable-gnu-indirect-function
Define if you want to enable the ifunc attribute. This option is currently only
available on systems with GNU libc on certain targets.

--enable-target-optspace
Specify that target libraries should be optimized for code space instead of code
speed. This is the default for the m32r platform.

--with-cpp-install-dir=dirname
Specify that the wuser visible cpp program should be installed in
‘prefix/dirname/cpp’, in addition to bindir.

-—enable-comdat
Enable COMDAT group support. This is primarily used to override the auto-
matically detected value.

20 Installing GCC

--enable-initfini-array
Force the use of sections .init_array and .fini_array (instead of .init and
.fini) for constructors and destructors. Option ‘--disable-initfini-array’
has the opposite effect. If neither option is specified, the configure script will
try to guess whether the .init_array and .fini_array sections are supported
and, if they are, use them.

—--enable-maintainer-mode
The build rules that regenerate the Autoconf and Automake output files as well
as the GCC master message catalog ‘gcc.pot’ are normally disabled. This is
because it can only be rebuilt if the complete source tree is present. If you
have changed the sources and want to rebuild the catalog, configuring with
‘~—enable-maintainer-mode’ will enable this. Note that you need a recent
version of the gettext tools to do so.

--disable-bootstrap
For a native build, the default configuration is to perform a 3-stage boot-
strap of the compiler when ‘make’ is invoked, testing that GCC can compile
itself correctly. If you want to disable this process, you can configure with
‘-—disable-bootstrap’.

--enable-bootstrap
In special cases, you may want to perform a 3-stage build even if the target and
host triplets are different. This is possible when the host can run code compiled
for the target (e.g. host is 1686-linux, target is i486-linux). Starting from GCC
4.2, to do this you have to configure explicitly with ‘-—~enable-bootstrap’.

--enable-generated-files-in-srcdir
Neither the .c and .h files that are generated from Bison and flex nor the info
manuals and man pages that are built from the .texi files are present in the SVN
development tree. When building GCC from that development tree, or from
one of our snapshots, those generated files are placed in your build directory,
which allows for the source to be in a readonly directory.

If you configure with ‘--enable-generated-files-in-srcdir’ then those gen-
erated files will go into the source directory. This is mainly intended for generat-
ing release or prerelease tarballs of the GCC sources, since it is not a requirement
that the users of source releases to have flex, Bison, or makeinfo.

--enable-version-specific-runtime-1libs

Specify that runtime libraries should be installed in the compiler specific subdi-
rectory (‘libdir/gcc’) rather than the usual places. In addition, ‘libstdc++"s
include files will be installed into ‘Iibdir’ unless you overruled it by using
‘-—with-gxx-include-dir=dirname’. Using this option is particularly use-
ful if you intend to use several versions of GCC in parallel. This is cur-
rently supported by ‘libgfortran’, ‘libjava’, ‘libmudflap’, ‘1ibstdc++’, and
‘libobjc’.

-—enable-languages=Ilangl,lang2,...
Specify that only a particular subset of compilers and their runtime libraries
should be built. For a list of valid values for langN you can issue the following

Chapter 4: Installing GCC: Configuration 21

command in the ‘gcc’ directory of your GCC source tree:

grep language= */config-lang.in

Currently, you can use any of the following: all, ada, c, c++, fortran, go,
java, objc, obj-c++. Building the Ada compiler has special requirements,
see below. If you do not pass this flag, or specify the option all, then all
default languages available in the ‘gcc’ sub-tree will be configured. Ada, Go
and Objective-C++ are not default languages; the rest are.

--enable-stagel-languages=langl,lang2,...

Specify that a particular subset of compilers and their runtime libraries should
be built with the system C compiler during stage 1 of the bootstrap process,
rather than only in later stages with the bootstrapped C compiler. The list
of valid values is the same as for ‘--enable-languages’, and the option all
will select all of the languages enabled by ‘--enable-languages’. This option
is primarily useful for GCC development; for instance, when a development
version of the compiler cannot bootstrap due to compiler bugs, or when one is
debugging front ends other than the C front end. When this option is used, one
can then build the target libraries for the specified languages with the stage-1
compiler by using make stagel-bubble all-target, or run the testsuite on the
stage-1 compiler for the specified languages using make stagel-start check-
gcc.

-—disable-libada
Specify that the run-time libraries and tools used by GNAT should not be
built. This can be useful for debugging, or for compatibility with previous
Ada build procedures, when it was required to explicitly do a ‘make -C gcc
gnatlib_and_tools’.

--disable-1libssp
Specify that the run-time libraries for stack smashing protection should not be
built.

--disable-libquadmath
Specify that the GCC quad-precision math library should not be built. On
some systems, the library is required to be linkable when building the Fortran
front end, unless ‘--disable-libquadmath-support’ is used.

--disable-libquadmath-support
Specify that the Fortran front end and libgfortran do not add support for
libquadmath on systems supporting it.

-—-disable-libgomp
Specify that the run-time libraries used by GOMP should not be built.

--with-dwarf2
Specify that the compiler should use DWARF 2 debugging information as the
default.

22

Installing GCC

--enable-targets=all
--enable-targets=target_list

Some GCC targets, e.g. powerpc64-linux, build bi-arch compilers. These are
compilers that are able to generate either 64-bit or 32-bit code. Typically,
the corresponding 32-bit target, e.g. powerpc-linux for powerpc64-linux, only
generates 32-bit code. This option enables the 32-bit target to be a bi-arch
compiler, which is useful when you want a bi-arch compiler that defaults to
32-bit, and you are building a bi-arch or multi-arch binutils in a combined tree.
On mips-linux, this will build a tri-arch compiler (ABI 032/n32/64), defaulted
to 032. Currently, this option only affects sparc-linux, powerpc-linux, x86-linux,
mips-linux and s390-linux.

--enable-secureplt

This option enables ‘-msecure-plt’ by default for powerpc-linux. See Section
“RS/6000 and PowerPC Options” in Using the GNU Compiler Collection
(GCC),

—-enable-cld

This option enables ‘-mc1d’ by default for 32-bit x86 targets. See Section “i386
and x86-64 Options” in Using the GNU Compiler Collection (GCC),

-—enable-win32-registry
-—-enable-win32-registry=key
--disable-win32-registry

--nfp

The ‘--enable-win32-registry’ option enables Microsoft Windows-hosted
GCC to look up installations paths in the registry using the following key:

HKEY_LOCAL_MACHINE\SOFTWARE\Free Software Foundation\key

key defaults to GCC version number, and can be overridden by the
‘-—enable-win32-registry=key’ option. Vendors and distributors who use
custom installers are encouraged to provide a different key, perhaps one
comprised of vendor name and GCC version number, to avoid conflict with
existing installations. This feature is enabled by default, and can be disabled
by ‘--disable-win32-registry’ option. This option has no effect on the
other hosts.

Specify that the machine does not have a floating point unit. This option only
applies to ‘m68k-sun-sunosn’. On any other system, ‘-—nfp’ has no effect.

-—-enable-werror
—--disable-werror
--enable-werror=yes
--enable-werror=no

When you specify this option, it controls whether certain files in the compiler
are built with ‘~Werror’ in bootstrap stage2 and later. If you don’t specify it,
‘~Werror’ is turned on for the main development trunk. However it defaults to
off for release branches and final releases. The specific files which get ‘~Werror’
are controlled by the Makefiles.

Chapter 4: Installing GCC: Configuration 23

--enable-checking

--enable-checking=1ist
When you specify this option, the compiler is built to perform internal consis-
tency checks of the requested complexity. This does not change the generated
code, but adds error checking within the compiler. This will slow down the com-
piler and may only work properly if you are building the compiler with GCC.
This is ‘yes’ by default when building from SVN or snapshots, but ‘release’
for releases. The default for building the stagel compiler is ‘yes’. More control
over the checks may be had by specifying list. The categories of checks available
are ‘yes’ (most common checks ‘assert,misc,tree,gc,rtlflag,runtime’),
‘no’ (no checks at all), ‘all’ (all but ‘valgrind’), ‘release’ (cheapest checks
‘assert,runtime’) or ‘none’ (same as ‘no’). Individual checks can be enabled
with these flags ‘assert’, ‘df’, ‘fold’, ‘gc’, ‘gcac’ ‘misc’, ‘rtl’, ‘rtlflag’,
‘runtime’, ‘tree’, and ‘valgrind’.

The ‘valgrind’ check requires the external valgrind simulator, available
from http: //valgrind.org/. The ‘df’, ‘rtl’, ‘gcac’ and ‘valgrind’
checks are very expensive. To disable all checking, ‘--disable-checking’ or
‘-—enable-checking=none’ must be explicitly requested. Disabling assertions
will make the compiler and runtime slightly faster but increase the risk of
undetected internal errors causing wrong code to be generated.

--disable-stagel-checking

--enable-stagel-checking

--enable-stagel-checking=1ist
If no ‘--enable-checking’ option is specified the stagel compiler will be built
with ‘yes’ checking enabled, otherwise the stagel checking flags are the same
as specified by ‘~-enable-checking’. To build the stagel compiler with dif-
ferent checking options use ‘--enable-stagel-checking’. The list of checking
options is the same as for ‘--enable-checking’. If your system is too slow or
too small to bootstrap a released compiler with checking for stagel enabled,
you can use ‘--disable-stagel-checking’ to disable checking for the stagel
compiler.

—--enable-coverage

—-—-enable-coverage=level
With this option, the compiler is built to collect self coverage information, every
time it is run. This is for internal development purposes, and only works when
the compiler is being built with gcc. The level argument controls whether the
compiler is built optimized or not, values are ‘opt’ and ‘noopt’. For coverage
analysis you want to disable optimization, for performance analysis you want
to enable optimization. When coverage is enabled, the default level is without
optimization.

--enable-gather-detailed-mem-stats
When this option is specified more detailed information on memory allocation
is gathered. This information is printed when using ‘~fmem-report’.

http://valgrind.org/

24 Installing GCC

-—enable-nls

--disable-nls
The ‘--enable-nls’ option enables Native Language Support (NLS), which
lets GCC output diagnostics in languages other than American English. Native
Language Support is enabled by default if not doing a canadian cross build.
The ‘--disable-nls’ option disables NLS.

--with-included-gettext
If NLS is enabled, the ‘--with-included-gettext’ option causes the build
procedure to prefer its copy of GNU gettext.

--with-catgets
If NLS is enabled, and if the host lacks gettext but has the inferior catgets
interface, the GCC build procedure normally ignores catgets and instead uses
GCC’s copy of the GNU gettext library. The ‘--with-catgets’ option causes
the build procedure to use the host’s catgets in this situation.

--with-libiconv-prefix=dir
Search for libiconv header files in ‘dir/include’ and libiconv library files in
‘dir/1ib’.

-—enable-obsolete
Enable configuration for an obsoleted system. If you attempt to configure GCC
for a system (build, host, or target) which has been obsoleted, and you do not
specify this flag, configure will halt with an error message.

All support for systems which have been obsoleted in one release of GCC is
removed entirely in the next major release, unless someone steps forward to
maintain the port.

—--enable-decimal-float

--enable-decimal-float=yes

-—enable-decimal-float=no

—-—enable-decimal-float=bid

--enable-decimal-float=dpd

--disable-decimal-float
Enable (or disable) support for the C decimal floating point extension that is
in the IEEE 754-2008 standard. This is enabled by default only on PowerPC,
1386, and x86_64 GNU/Linux systems. Other systems may also support it,
but require the user to specifically enable it. You can optionally control which
decimal floating point format is used (either ‘bid’ or ‘dpd’). The ‘bid’ (binary
integer decimal) format is default on 1386 and x86_64 systems, and the ‘dpd’
(densely packed decimal) format is default on PowerPC systems.

--enable-fixed-point

--disable-fixed-point
Enable (or disable) support for C fixed-point arithmetic. This option is enabled
by default for some targets (such as MIPS) which have hardware-support for
fixed-point operations. On other targets, you may enable this option manually.

Chapter 4: Installing GCC: Configuration 25

--with-long-double-128
Specify if long double type should be 128-bit by default on selected
GNU/Linux architectures. If using --without-long-double-128, long
double will be by default 64-bit, the same as double type. When neither of
these configure options are used, the default will be 128-bit 1long double when
built against GNU C Library 2.4 and later, 64-bit long double otherwise.

--with-gmp=pathname

--with-gmp-include=pathname

--with-gmp-lib=pathname

--with-mpfr=pathname

--with-mpfr-include=pathname

--with-mpfr-lib=pathname

--with-mpc=pathname

--with-mpc-include=pathname

--with-mpc-lib=pathname
If you want to build GCC but do not have the GMP library, the MPFR
library and/or the MPC library installed in a standard location and do not
have their sources present in the GCC source tree then you can explicitly
specify the directory where they are installed (‘--with-gmp=gmpinstalldir’,
‘~-with-mpfr=mpfrinstalldir’, ‘--with-mpc=mpcinstalldir’). The
‘--with-gmp=gmpinstalldir’ option is shorthand for ‘--with-gmp-lib=
gmpinstalldir/1ib’ and ‘--with-gmp-include=gmpinstalldir/include’.
Likewise the ‘--with-mpfr=mpfrinstalldir’ option is shorthand for
‘~—with-mpfr-lib=mpfrinstalldir/1ib’ and ‘--with-mpfr-include=
mpfrinstalldir/include’, also the ‘-—with-mpc=mpcinstalldir’
option is shorthand for ‘--with-mpc-lib=mpcinstalldir/1ib’ and
‘-—with-mpc-include=mpcinstalldir/include’. If these shorthand
assumptions are not correct, you can use the explicit include and lib options
directly. You might also need to ensure the shared libraries can be found by
the dynamic linker when building and using GCC, for example by setting the
runtime shared library path variable (LD_LIBRARY_PATH on GNU/Linux and
Solaris systems).

These flags are applicable to the host platform only. When building a cross
compiler, they will not be used to configure target libraries.

--with-isl=pathname

--with-isl-include=pathname

--with-isl-lib=pathname

--with-cloog=pathname

--with-cloog-include=pathname

--with-cloog-lib=pathname
If you do not have ISL and the CLooG libraries installed in a standard
location and you want to build GCC, you can explicitly specify the directory
where they are installed (‘--with-isl=islinstalldir’, ‘--with-cloog=
clooginstalldir’). The ‘--with-isl=islinstalldir’ option is shorthand
for ‘--with-isl-lib=islinstalldir/1ib’ and ‘--with-isl-include=
islinstalldir/include’. Likewise the ‘--with-cloog=clooginstalldir’

26

Installing GCC

¢

option is shorthand for ‘--with-cloog-lib=clooginstalldir/lib’ and
‘--with-cloog-include=clooginstalldir/include’. If these shorthand
assumptions are not correct, you can use the explicit include and lib options
directly.

These flags are applicable to the host platform only. When building a cross
compiler, they will not be used to configure target libraries.

--with-host-libstdcxx=linker-args

If you are linking with a static copy of PPL, you can use this option
to specify how the linker should find the standard C++ library used
internally by PPL. Typical values of linker-args might be ‘-lstdc++’
or ‘-Wl,-Bstatic,-lstdc++,-Bdynamic -1m’. If you are linking with a
shared copy of PPL, you probably do not need this option; shared library
dependencies will cause the linker to search for the standard C++ library
automatically.

--with-stagel-ldflags=flags

This option may be used to set linker flags to be used when linking stage
1 of GCC. These are also used when linking GCC if configured with
‘--disable-bootstrap’. By default no special flags are used.

--with-stagel-libs=1ibs

This option may be used to set libraries to be used when linking
stage 1 of GCC. These are also used when linking GCC if config-
ured with ‘--disable-bootstrap’. The default is the argument to
‘~-with-host-libstdcxx’, if specified.

--with-boot-1ldflags=flags

This option may be used to set linker flags to be used when linking
stage 2 and later when bootstrapping GCC. If neither —with-boot-libs nor
—with-host-libstdcxx is set to a value, then the default is ‘-static-libstdc++
-static-libgcc’.

—-with-boot-libs=1ibs

This option may be used to set libraries to be used when linking stage
2 and later when bootstrapping GCC. The default is the argument to
‘——with-host-libstdcxx’, if specified.

--with-debug-prefix-map=map

Convert source directory names using ‘-fdebug-prefix-map’ when building
runtime libraries. ‘map’ is a space-separated list of maps of the form ‘old=new’.

—--enable-linker-build-id

Tells GCC to pass ‘--build-id’ option to the linker for all final links (links
performed without the ‘-r’ or ‘--relocatable’ option), if the linker supports it.
If you specify ‘--enable-linker-build-id’, but your linker does not support
‘~-build-id’ option, a warning is issued and the ‘--~enable-linker-build-id’
option is ignored. The default is off.

--with-linker-hash-style=choice

Tells GCC to pass ‘--hash-style=choice’ option to the linker for all final
links. choice can be one of ‘sysv’, ‘gnu’, and ‘both’ where ‘sysv’ is the default.

Chapter 4: Installing GCC: Configuration 27

—-—-enable-gnu-unique-object

--disable-gnu-unique-object
Tells GCC to use the gnu_unique_object relocation for C++ template static
data members and inline function local statics. Enabled by default for a native
toolchain with an assembler that accepts it and GLIBC 2.11 or above, otherwise
disabled.

—-—-enable-1lto

--disable-1to
Enable support for link-time optimization (LTO). This is enabled by default,
and may be disabled using ‘--disable-1to’.

--with-plugin-ld=pathname
Enable an alternate linker to be used at link-time optimization (LTO) link
time when ‘-fuse-linker-plugin’ is enabled. This linker should have plugin
support such as gold starting with version 2.20 or GNU Id starting with version
2.21. See ‘-fuse-linker-plugin’ for details.

--enable-canonical-system-headers

--disable-canonical-system-headers
Enable system header path canonicalization for ‘libcpp’. This can
produce shorter header file paths in diagnostics and dependency output
files, but these changed header paths may conflict with some compi-
lation environments. Enabled by default, and may be disabled using
‘-—disable-canonical-system-headers’.

Cross-Compiler-Specific Options

The following options only apply to building cross compilers.

--with-sysroot

--with-sysroot=dir
Tells GCC to consider dir as the root of a tree that contains (a subset of)
the root filesystem of the target operating system. Target system headers,
libraries and run-time object files will be searched for in there. More specifi-
cally, this acts as if ‘~—sysroot=dir’ was added to the default options of the
built compiler. The specified directory is not copied into the install tree, un-
like the options ‘--with-headers’ and ‘--with-1libs’ that this option obso-
letes. The default value, in case ‘--with-sysroot’ is not given an argument,
is ‘${gcc_tooldir}/sys-root’. If the specified directory is a subdirectory of
‘${exec_prefix}’, then it will be found relative to the GCC binaries if the
installation tree is moved.

This option affects the system root for the compiler used to build target libraries
(which runs on the build system) and the compiler newly installed with make
install; it does not affect the compiler which is used to build GCC itself.

If you specify the ‘-—with-native-system-header-dir=dirname’ option then
the compiler will search that directory within dirname for native system headers
rather than the default ‘/usr/include’.

28 Installing GCC

--with-build-sysroot

--with-build-sysroot=dir
Tells GCC to consider dir as the system root (see ‘--with-sysroot’)
while building target libraries, instead of the directory specified with
‘-—with-sysroot’. This option is only useful when you are already using
‘-—with-sysroot’. You can use ‘--with-build-sysroot’ when you are
configuring with ‘~-prefix’ set to a directory that is different from the one in
which you are installing GCC and your target libraries.

3

This option affects the system root for the compiler used to build target libraries
(which runs on the build system); it does not affect the compiler which is used
to build GCC itself.

If you specify the ‘-—with-native-system-header-dir=dirname’ option then
the compiler will search that directory within dirname for native system headers
rather than the default ‘/usr/include’.

--with-headers

--with-headers=dir
Deprecated in favor of ‘--with-sysroot’. Specifies that target headers are
available when building a cross compiler. The dir argument specifies a di-
rectory which has the target include files. These include files will be copied
into the ‘gcc’ install directory. This option with the dir argument is required
when building a cross compiler, if ‘prefix/target/sys-include’ doesn’t pre-
exist. If ‘prefix/target/sys-include’ does pre-exist, the dir argument may
be omitted. fixincludes will be run on these files to make them compatible

with GCC.

--without-headers
Tells GCC not use any target headers from a libc when building a cross compiler.
When crossing to GNU/Linux, you need the headers so GCC can build the
exception handling for libgce.

--with-1libs

--with-libs="dirl dir2 ... dirN"
Deprecated in favor of ‘--with-sysroot’. Specifies a list of directories which
contain the target runtime libraries. These libraries will be copied into the ‘gcc’
install directory. If the directory list is omitted, this option has no effect.

-—-with-newlib
Specifies that ‘newlib’ is being used as the target C library. This causes _
_eprintf to be omitted from ‘libgcc.a’ on the assumption that it will be
provided by ‘newlib’.

-—with-avrlibc
Specifies that ‘AVR-Libc’ is being used as the target C library. This causes
float support functions like __addsf3 to be omitted from ‘libgcc.a’ on the
assumption that it will be provided by ‘libm.a’. For more technical details,
cf. PR54461. This option is only supported for the AVR target. It is not
supported for RTEMS configurations, which currently use newlib. The option
is supported since version 4.7.2 and is the default in 4.8.0 and newer.

http://gcc.gnu.org/PR54461

Chapter 4: Installing GCC: Configuration 29

--with-build-time-tools=dir
Specifies where to find the set of target tools (assembler, linker, etc.) that will
be used while building GCC itself. This option can be useful if the directory
layouts are different between the system you are building GCC on, and the
system where you will deploy it.

For example, on an ‘ia64-hp-hpux’ system, you may have the GNU assembler
and linker in ‘/usr/bin’, and the native tools in a different path, and build a
toolchain that expects to find the native tools in ‘/usr/bin’.

When you use this option, you should ensure that dir includes ar, as, 1d, nm,
ranlib and strip if necessary, and possibly objdump. Otherwise, GCC may
use an inconsistent set of tools.

Java-Specific Options
The following option applies to the build of the Java front end.

--disable-libgc]

Specify that the run-time libraries used by GCJ should not be built. This
is useful in case you intend to use GCJ with some other run-time, or you're
going to install it separately, or it just happens not to build on your particular
machine. In general, if the Java front end is enabled, the GCJ libraries will be
enabled too, unless they’re known to not work on the target platform. If GCJ
is enabled but ‘1ibgcj’ isn’t built, you may need to port it; in this case, before
modifying the top-level ‘configure.in’ so that ‘libgcj’ is enabled by default
on this platform, you may use ‘--enable-libgcj’ to override the default.

The following options apply to building ‘1ibgcj’.
General Options

--enable-java-maintainer-mode
By default the ‘1ibjava’ build will not attempt to compile the ‘. java’ source
files to ‘.class’. Instead, it will use the ‘.class’ files from the source tree. If
you use this option you must have executables named ecj1 and gjavah in your
path for use by the build. You must use this option if you intend to modify any
‘.java’ files in ‘libjava’.

--with-java-home=dirname
This ‘libjava’ option overrides the default value of the ‘java.home’
system property. It is also used to set ‘sun.boot.class.path’ to
‘dirname/1ib/rt.jar’. By default ‘java.home’ is set to ‘prefix’ and
‘sun.boot.class.path’ to ‘datadir/java/libgcj-version.jar’.

--with-ecj-jar=filename
This option can be used to specify the location of an external jar file containing
the Eclipse Java compiler. A specially modified version of this compiler is used
by gcj to parse ‘. java’ source files. If this option is given, the ‘libjava’ build
will create and install an ‘ecj1’ executable which uses this jar file at runtime.
If this option is not given, but an ‘ecj.jar’ file is found in the topmost source
tree at configure time, then the ‘libgcj’ build will create and install ‘ecj1’,

30 Installing GCC

and will also install the discovered ‘ecj. jar’ into a suitable place in the install
tree.

If ‘ecj1’ is not installed, then the user will have to supply one on his path in
order for gcj to properly parse ‘. java’ source files. A suitable jar is available
from ftp://sourceware.org/pub/java/.

--disable-getenv-properties
Don’t set system properties from GCJ_PROPERTIES.

--enable-hash-synchronization
Use a global hash table for monitor locks. Ordinarily, ‘1ibgcj’’s ‘configure’
script automatically makes the correct choice for this option for your platform.
Only use this if you know you need the library to be configured differently.

--enable-interpreter
Enable the Java interpreter. The interpreter is automatically enabled by default
on all platforms that support it. This option is really only useful if you want
to disable the interpreter (using ‘--disable-interpreter’).

--disable-java-net
Disable java.net. This disables the native part of java.net only, using non-
functional stubs for native method implementations.

--disable-jvmpi
Disable JVMPI support.

--disable-libgcj-bc

Disable BC ABI compilation of certain parts of libgcj. By default,
some portions of libgej are compiled with ‘-findirect-dispatch’ and
‘~fno-indirect-classes’, allowing them to be overridden at run-time.

If ‘--disable-libgcj-bc’ is specified, libgcj is built without these options.
This allows the compile-time linker to resolve dependencies when statically
linking to libgcj. However it makes it impossible to override the affected portions
of libgcj at run-time.

—-—enable-reduced-reflection
Build most of libgcj with ‘~freduced-reflection’. This reduces the size of
libgcj at the expense of not being able to do accurate reflection on the classes
it contains. This option is safe if you know that code using libgcj will never use
reflection on the standard runtime classes in libgcj (including using serialization,

RMI or CORBA).

-—with-ecos
Enable runtime eCos target support.

--without-1libffi
Don’t use ‘1ibffi’. This will disable the interpreter and JNI support as well,
as these require ‘1ibffi’ to work.

-—enable-libgcj-debug
Enable runtime debugging code.

ftp://sourceware.org/pub/java/

Chapter 4: Installing GCC: Configuration 31

--enable-libgcj-multifile
If specified, causes all ‘. java’ source files to be compiled into ‘.class’ files in
one invocation of ‘gcj’. This can speed up build time, but is more resource-
intensive. If this option is unspecified or disabled, ‘gcj’ is invoked once for each
‘.java’ file to compile into a ‘.class’ file.

--with-libiconv-prefix=DIR
Search for libiconv in ‘DIR/include’ and ‘DIR/1ib’.

--enable-sjlj-exceptions
Force use of the setjmp/longjmp-based scheme for exceptions. ‘configure’
ordinarily picks the correct value based on the platform. Only use this option
if you are sure you need a different setting.

--with-system-z1lib
Use installed ‘z1ib’ rather than that included with GCC.

--with-win32-nlsapi=ansi, unicows or unicode
Indicates how MinGW ‘libgcj’ translates between UNICODE characters and
the Win32 API.

--enable-java-home
If enabled, this creates a JPackage compatible SDK environment during install.
Note that if —enable-java-home is used, —with-arch-directory=ARCH must also
be specified.

—-—with-arch-directory=ARCH
Specifies the name to use for the ‘jre/l1ib/ARCH’ directory in the SDK en-
vironment created when —enable-java-home is passed. Typical names for this
directory include 1386, amd64, ia64, etc.

--with-os-directory=DIR
Specifies the OS directory for the SDK include directory. This is set to auto
detect, and is typically ’linux’.

--with-origin-name=NAME
Specifies the JPackage origin name. This defaults to the ’gcj’ in java-1.5.0-gcj.

-—with-arch-suffix=SUFFIX
Specifies the suffix for the sdk directory. Defaults to the empty string. Examples
include ".x86_64" in ’java-1.5.0-gcj-1.5.0.0.x86_64".

--with-jvm-root-dir=DIR
Specifies where to install the SDK. Default is $(prefix)/lib/jvm.

--with-jvm-jar-dir=DIR
Specifies where to install jars. Default is $(prefix)/lib/jvm-exports.

--with-python-dir=DIR
Specifies where to install the Python modules used for aot-compile. DIR should
not include the prefix used in installation. For example, if the Python mod-
ules are to be installed in /usr/lib/python2.5/site-packages, then —with-python-
dir=/lib/python2.5/site-packages should be passed. If this is not specified, then
the Python modules are installed in $(prefix)/share/python.

32

Installing GCC

-—-enable-aot-compile-rpm
Adds aot-compile-rpm to the list of installed scripts.

-—enable-browser-plugin
Build the gcjwebplugin web browser plugin.

--enable-static-libjava
Build static libraries in libjava. The default is to only build shared libraries.

ansi

unicows

unicode

Use the single-byte char and the Win32 A functions natively, trans-
lating to and from UNICODE when using these functions. If un-
specified, this is the default.

Use the WCHAR and Win32 W functions natively. Adds -lunicows
to ‘libgcj.spec’ to link with ‘1ibunicows’. ‘unicows.dll’ needs
to be deployed on Microsoft Windows 9X machines running built
executables. ‘libunicows.a’, an open-source import library
around Microsoft’s unicows.dll, is obtained from http: / /
libunicows . sourceforge . net /, which also gives details on
getting ‘unicows.dll’ from Microsoft.

Use the WCHAR and Win32 W functions natively. Does not add -
lunicows to ‘libgcj.spec’. The built executables will only run
on Microsoft Windows NT and above.

AWT-Specific Options
—--with-x Use the X Window System.

--enable-java-awt=PEER(S)
Specifies the AWT peer library or libraries to build alongside ‘1ibgcj’. If this
option is unspecified or disabled, AWT will be non-functional. Current valid
values are ‘gtk’ and ‘x1ib’. Multiple libraries should be separated by a comma

(ie.

--enable-gtk-cairo

--enable-java-awt=gtk,x1ib’).

Build the cairo Graphics2D implementation on GTK.

--enable-java-gc=TYPE
Choose garbage collector. Defaults to ‘boehm’ if unspecified.

--disable-gtktest

Do not try to compile and run a test GTK+ program.

--disable-glibtest

Do not try to compile and run a test GLIB program.

--with-libart-prefix=PFX
Prefix where libart is installed (optional).

--with-libart-exec-prefix=PFX
Exec prefix where libart is installed (optional).

—-disable-libarttest

Do not try to compile and run a test libart program.

http://libunicows.sourceforge.net/
http://libunicows.sourceforge.net/

Chapter 4: Installing GCC: Configuration 33

Overriding configure test results

Sometimes, it might be necessary to override the result of some configure test, for example
in order to ease porting to a new system or work around a bug in a test. The toplevel
configure script provides three variables for this:

build_configargs
The contents of this variable is passed to all build configure scripts.

host_configargs
The contents of this variable is passed to all host configure scripts.

target_configargs
The contents of this variable is passed to all target configure scripts.

In order to avoid shell and make quoting issues for complex overrides, you can pass a
setting for CONFIG_SITE and set variables in the site file.

Chapter 5: Building 35

5 Building

Now that GCC is configured, you are ready to build the compiler and runtime libraries.

Some commands executed when making the compiler may fail (return a nonzero status)
and be ignored by make. These failures, which are often due to files that were not found,
are expected, and can safely be ignored.

It is normal to have compiler warnings when compiling certain files. Unless you
are a GCC developer, you can generally ignore these warnings unless they cause
compilation to fail. Developers should attempt to fix any warnings encountered, however
they can temporarily continue past warnings-as-errors by specifying the configure flag
‘~-disable-werror’.

On certain old systems, defining certain environment variables such as CC can interfere
with the functioning of make.

If you encounter seemingly strange errors when trying to build the compiler in a directory
other than the source directory, it could be because you have previously configured the
compiler in the source directory. Make sure you have done all the necessary preparations.

If you build GCC on a BSD system using a directory stored in an old System V file
system, problems may occur in running fixincludes if the System V file system doesn’t
support symbolic links. These problems result in a failure to fix the declaration of size_t
in ‘sys/types.h’. If you find that size_t is a signed type and that type mismatches occur,
this could be the cause.

The solution is not to use such a directory for building GCC.

Similarly, when building from SVN or snapshots, or if you modify ‘*.1’ files, you need the
Flex lexical analyzer generator installed. If you do not modify ‘*.1’ files, releases contain
the Flex-generated files and you do not need Flex installed to build them. There is still one
Flex-based lexical analyzer (part of the build machinery, not of GCC itself) that is used
even if you only build the C front end.

When building from SVN or snapshots, or if you modify Texinfo documentation, you need
version 4.7 or later of Texinfo installed if you want Info documentation to be regenerated.
Releases contain Info documentation pre-built for the unmodified documentation in the
release.

5.1 Building a native compiler

For a native build, the default configuration is to perform a 3-stage bootstrap of the com-
piler when ‘make’ is invoked. This will build the entire GCC system and ensure that it
compiles itself correctly. It can be disabled with the ‘--disable-bootstrap’ parameter
to ‘configure’, but bootstrapping is suggested because the compiler will be tested more
completely and could also have better performance.

The bootstrapping process will complete the following steps:
e Build tools necessary to build the compiler.

e Perform a 3-stage bootstrap of the compiler. This includes building three times the
target tools for use by the compiler such as binutils (bfd, binutils, gas, gprof, 1d, and
opcodes) if they have been individually linked or moved into the top level GCC source
tree before configuring.

36 Installing GCC

e Perform a comparison test of the stage2 and stage3 compilers.

e Build runtime libraries using the stage3 compiler from the previous step.

If you are short on disk space you might consider ‘make bootstrap-lean’ instead. The
sequence of compilation is the same described above, but object files from the stagel and
stage2 of the 3-stage bootstrap of the compiler are deleted as soon as they are no longer
needed.

If you wish to use non-default GCC flags when compiling the stage2 and stage3 compilers,
set BOOT_CFLAGS on the command line when doing ‘make’. For example, if you want to save
additional space during the bootstrap and in the final installation as well, you can build
the compiler binaries without debugging information as in the following example. This will
save roughly 40% of disk space both for the bootstrap and the final installation. (Libraries
will still contain debugging information.)

make BOOT_CFLAGS=’-0’ bootstrap

You can place non-default optimization flags into BOOT_CFLAGS; they are less well tested
here than the default of ‘~g -02’, but should still work. In a few cases, you may find that
you need to specify special flags such as ‘-msoft-float’ here to complete the bootstrap; or,
if the native compiler miscompiles the stagel compiler, you may need to work around this,
by choosing BOOT_CFLAGS to avoid the parts of the stagel compiler that were miscompiled,
or by using ‘make bootstrapd’ to increase the number of stages of bootstrap.

BOOT_CFLAGS does not apply to bootstrapped target libraries. Since these are always
compiled with the compiler currently being bootstrapped, you can use CFLAGS_FOR_TARGET
to modify their compilation flags, as for non-bootstrapped target libraries. Again, if the
native compiler miscompiles the stagel compiler, you may need to work around this by
avoiding non-working parts of the stagel compiler. Use STAGE1_TFLAGS to this end.

If you used the flag ‘--enable-languages=. ..’ to restrict the compilers to be built, only
those you’'ve actually enabled will be built. This will of course only build those runtime
libraries, for which the particular compiler has been built. Please note, that re-defining
LANGUAGES when calling ‘make’ does not work anymore!

If the comparison of stage2 and stage3 fails, this normally indicates that the stage2
compiler has compiled GCC incorrectly, and is therefore a potentially serious bug which
you should investigate and report. (On a few systems, meaningful comparison of object
files is impossible; they always appear “different”. If you encounter this problem, you will
need to disable comparison in the ‘Makefile’.)

If you do not want to bootstrap your compiler, you can configure with
‘-—disable-bootstrap’. In particular cases, you may want to bootstrap your
compiler even if the target system is not the same as the one you are building
on: for example, you could build a powerpc-unknown-linux-gnu toolchain on a
powerpc64-unknown-linux-gnu host. In this case, pass ‘--enable-bootstrap’ to the
configure script.

BUILD_CONFIG can be used to bring in additional customization to the build. It can be
set to a whitespace-separated list of names. For each such NAME, top-level ‘config/NAME.mk’
will be included by the top-level ‘Makefile’, bringing in any settings it contains. The de-
fault BUILD_CONFIG can be set using the configure option ‘~-with-build-config=NAME. ..’ .
Some examples of supported build configurations are:

Chapter 5: Building 37

‘bootstrap-01’
Removes any ‘-0’-started option from BOOT_CFLAGS, and adds ‘-01’ to it.
‘BUILD_CONFIG=bootstrap-01’ is equivalent to ‘BOOT_CFLAGS=’-g -01°’.

‘bootstrap-03’
Analogous to bootstrap-01.

‘bootstrap-1to’
Enables Link-Time Optimization for host tools during bootstrapping.
‘BUILD_CONFIG=bootstrap-lto’ is equivalent to adding ‘-flto’ to
‘BOOT_CFLAGS’.

‘bootstrap-debug’

Verifies that the compiler generates the same executable code, whether or not
it is asked to emit debug information. To this end, this option builds stage2
host programs without debug information, and uses ‘contrib/compare-debug’
to compare them with the stripped stage3 object files. If BOOT_CFLAGS is over-
ridden so as to not enable debug information, stage2 will have it, and stage3
won’t. This option is enabled by default when GCC bootstrapping is enabled,
if strip can turn object files compiled with and without debug info into iden-
tical object files. In addition to better test coverage, this option makes default
bootstraps faster and leaner.

‘bootstrap-debug-big’
Rather than comparing stripped object files, as in bootstrap-debug, this op-
tion saves internal compiler dumps during stage2 and stage3 and compares them
as well, which helps catch additional potential problems, but at a great cost in
terms of disk space. It can be specified in addition to ‘bootstrap-debug’.

‘bootstrap-debug-lean’
This option saves disk space compared with bootstrap-debug-big, but at the
expense of some recompilation. Instead of saving the dumps of stage2 and
stage3 until the final compare, it uses ‘~fcompare-debug’ to generate, compare
and remove the dumps during stage3, repeating the compilation that already
took place in stage2, whose dumps were not saved.

‘bootstrap-debug-1ib’
This option tests executable code invariance over debug information generation
on target libraries, just like bootstrap-debug-lean tests it on host programs.
It builds stage3 libraries with ‘-fcompare-debug’, and it can be used along
with any of the bootstrap-debug options above.

There aren’t -lean or -big counterparts to this option because most libraries
are only build in stage3, so bootstrap compares would not get significant cov-
erage. Moreover, the few libraries built in stage2 are used in stage3 host pro-
grams, so we wouldn’t want to compile stage2 libraries with different options
for comparison purposes.

‘bootstrap-debug-ckovw’
Arranges for error messages to be issued if the compiler built on any stage is
run without the option ‘-fcompare-debug’. This is useful to verify the full

38 Installing GCC

‘~fcompare-debug’ testing coverage. It must be used along with bootstrap-
debug-lean and bootstrap-debug-1lib.

‘bootstrap-time’
Arranges for the run time of each program started by the GCC driver, built in
any stage, to be logged to ‘time.log’, in the top level of the build tree.

5.2 Building a cross compiler

When building a cross compiler, it is not generally possible to do a 3-stage bootstrap of the
compiler. This makes for an interesting problem as parts of GCC can only be built with
GCC.

To build a cross compiler, we recommend first building and installing a native compiler.
You can then use the native GCC compiler to build the cross compiler. The installed native
compiler needs to be GCC version 2.95 or later.

If the cross compiler is to be built with support for the Java programming language and
the ability to compile .java source files is desired, the installed native compiler used to build
the cross compiler needs to be the same GCC version as the cross compiler. In addition the

?

cross compiler needs to be configured with ‘--with-ecj-jar=...".

Assuming you have already installed a native copy of GCC and configured your cross
compiler, issue the command make, which performs the following steps:

e Build host tools necessary to build the compiler.

e Build target tools for use by the compiler such as binutils (bfd, binutils, gas, gprof, 1d,
and opcodes) if they have been individually linked or moved into the top level GCC
source tree before configuring.

e Build the compiler (single stage only).

e Build runtime libraries using the compiler from the previous step.

Note that if an error occurs in any step the make process will exit.

If you are not building GNU binutils in the same source tree as GCC, you will need a
cross-assembler and cross-linker installed before configuring GCC. Put them in the directory
‘prefix/target/bin’. Here is a table of the tools you should put in this directory:

‘as’ This should be the cross-assembler.
‘1d’ This should be the cross-linker.
‘ar’ This should be the cross-archiver: a program which can manipulate archive files

(linker libraries) in the target machine’s format.
‘ranlib’ This should be a program to construct a symbol table in an archive file.

The installation of GCC will find these programs in that directory, and copy or link
them to the proper place to for the cross-compiler to find them when run later.

The easiest way to provide these files is to build the Binutils package. Configure it with
the same ‘--host’ and ‘--target’ options that you use for configuring GCC, then build
and install them. They install their executables automatically into the proper directory.
Alas, they do not support all the targets that GCC supports.

Chapter 5: Building 39

If you are not building a C library in the same source tree as GCC, you should also
provide the target libraries and headers before configuring GCC, specifying the directories
with ‘~—-with-sysroot’ or ‘--with-headers’ and ‘--with-1libs’. Many targets also require
“start files” such as ‘crt0.o’ and ‘crtn.o’ which are linked into each executable. There
may be several alternatives for ‘crt0.0o’, for use with profiling or other compilation options.
Check your target’s definition of STARTFILE_SPEC to find out what start files it uses.

5.3 Building in parallel

GNU Make 3.80 and above, which is necessary to build GCC, support building in parallel.
To activate this, you can use ‘make -j 2’ instead of ‘make’. You can also specify a bigger
number, and in most cases using a value greater than the number of processors in your
machine will result in fewer and shorter I/O latency hits, thus improving overall throughput;
this is especially true for slow drives and network filesystems.

5.4 Building the Ada compiler

In order to build GNAT, the Ada compiler, you need a working GNAT compiler (GCC
version 4.0 or later). This includes GNAT tools such as gnatmake and gnatlink, since the
Ada front end is written in Ada and uses some GNAT-specific extensions.

In order to build a cross compiler, it is suggested to install the new compiler as native
first, and then use it to build the cross compiler.

configure does not test whether the GNAT installation works and has a sufficiently
recent version; if too old a GNAT version is installed, the build will fail unless
‘--enable-languages’ is used to disable building the Ada front end.

ADA_INCLUDE_PATH and ADA_OBJECT_PATH environment variables must not be set when
building the Ada compiler, the Ada tools, or the Ada runtime libraries. You can check that
your build environment is clean by verifying that ‘gnatls -v’ lists only one explicit path in
each section.

5.5 Building with profile feedback

It is possible to use profile feedback to optimize the compiler itself. This should result in
a faster compiler binary. Experiments done on x86 using gcc 3.3 showed approximately 7
percent speedup on compiling C programs. To bootstrap the compiler with profile feedback,
use make profiledbootstrap.

When ‘make profiledbootstrap’ is run, it will first build a stagel compiler. This
compiler is used to build a stageprofile compiler instrumented to collect execution counts
of instruction and branch probabilities. Then runtime libraries are compiled with profile
collected. Finally a stagefeedback compiler is built using the information collected.

Unlike standard bootstrap, several additional restrictions apply. The compiler used to
build stagel needs to support a 64-bit integral type. It is recommended to only use GCC
for this. Also parallel make is currently not supported since collisions in profile collecting
may occur.

Chapter 6: Installing GCC: Testing 41

6 Installing GCC: Testing

Before you install GCC, we encourage you to run the testsuites and to compare your results
with results from a similar configuration that have been submitted to the gcc-testresults
mailing list. Some of these archived results are linked from the build status lists at http://
gcc . gnu . org/buildstat . html, although not everyone who reports a successful build
runs the testsuites and submits the results. This step is optional and may require you to
download additional software, but it can give you confidence in your new GCC installation
or point out problems before you install and start using your new GCC.

First, you must have downloaded the testsuites. These are part of the full distribution,
but if you downloaded the “core” compiler plus any front ends, you must download the
testsuites separately.

Second, you must have the testing tools installed. This includes DejaGnu, Tcl, and
Expect; the DejaGnu site has links to these.

If the directories where runtest and expect were installed are not in the PATH, you may
need to set the following environment variables appropriately, as in the following example
(which assumes that DejaGnu has been installed under ‘/usr/local’):

TCL_LIBRARY = /usr/local/share/tcl8.0
DEJAGNULIBS /usr/local/share/dejagnu

(On systems such as Cygwin, these paths are required to be actual paths, not mounts
or links; presumably this is due to some lack of portability in the DejaGnu code.)

Finally, you can run the testsuite (which may take a long time):
cd objdir; make -k check

This will test various components of GCC, such as compiler front ends and runtime
libraries. While running the testsuite, DejaGnu might emit some harmless messages resem-
bling ‘WARNING: Couldn’t find the global config file.’ or ‘WARNING: Couldn’t find
tool init file’ that can be ignored.

If you are testing a cross-compiler, you may want to run the testsuite on a simulator as
described at http://gcc.gnu.org/simtest-howto.html.

6.1 How can you run the testsuite on selected tests?

In order to run sets of tests selectively, there are targets ‘make check-gcc’ and language spe-
cific ‘make check-c’, ‘make check-c++’, ‘make check-fortran’, ‘make check-java’, ‘make
check-ada’, ‘make check-objc’, ‘make check-obj-c++’, ‘make check-1to’ in the ‘gcc’ sub-
directory of the object directory. You can also just run ‘make check’ in a subdirectory of
the object directory.

A more selective way to just run all gcc execute tests in the testsuite is to use
make check-gcc RUNTESTFLAGS="execute.exp other-options"

Likewise, in order to run only the g++ “old-deja” tests in the testsuite with filenames
matching ‘9805*’, you would use
make check-g++ RUNTESTFLAGS="old-deja.exp=9805% other-options"

The ‘x.exp’ files are located in the testsuite directories of the GCC source, the most
important ones being ‘compile.exp’, ‘execute.exp’, ‘dg.exp’ and ‘old-deja.exp’. To get
a list of the possible ‘*.exp’ files, pipe the output of ‘make check’ into a file and look at

the ‘Runningexp’ lines.

http://gcc.gnu.org/ml/gcc-testresults/
http://gcc.gnu.org/ml/gcc-testresults/
http://gcc.gnu.org/buildstat.html
http://gcc.gnu.org/buildstat.html
download.html
http://www.gnu.org/software/dejagnu/
http://gcc.gnu.org/simtest-howto.html

42 Installing GCC

6.2 Passing options and running multiple testsuites

3

You can pass multiple options to the testsuite using the ‘--target_board’ option of De-
jaGNU, either passed as part of ‘RUNTESTFLAGS’, or directly to runtest if you prefer to
work outside the makefiles. For example,

make check-g++ RUNTESTFLAGS="--target_board=unix/-03/-fmerge-constants"

will run the standard g++ testsuites (“unix” is the target name for a standard native
testsuite situation), passing ‘-03 -fmerge-constants’ to the compiler on every test, i.e.,
slashes separate options.

You can run the testsuites multiple times using combinations of options with a syntax
similar to the brace expansion of popular shells:
..."--target_board=arm-sim\{-mhard-float,-msoft-float\}\{-01,-02,-03,\}"

(Note the empty option caused by the trailing comma in the final group.) The following
will run each testsuite eight times using the ‘arm-sim’ target, as if you had specified all
possible combinations yourself:

--target_board=’arm-sim/-mhard-float/-01 \
arm-sim/-mhard-float/-02 \
arm-sim/-mhard-float/-03 \
arm-sim/-mhard-float \
arm-sim/-msoft-float/-01 \
arm-sim/-msoft-float/-02 \
arm-sim/-msoft-float/-03 \
arm-sim/-msoft-float’

They can be combined as many times as you wish, in arbitrary ways. This list:

..."--target_board=unix/-Wextra\{-03,-fno-strength\}\{-fomit-frame, \}"
will generate four combinations, all involving ‘-Wextra’.

The disadvantage to this method is that the testsuites are run in serial, which is a
waste on multiprocessor systems. For users with GNU Make and a shell which performs
brace expansion, you can run the testsuites in parallel by having the shell perform the
combinations and make do the parallel runs. Instead of using ‘--target_board’, use a
special makefile target:

make -jN check-testsuite//test-target/optionl/option2/...
For example,
make -j3 check-gcc//sh-hms-sim/{-m1,-m2,-m3,-m3e,-m4}/{,-nofpu}

will run three concurrent “make-gec” testsuites, eventually testing all ten combinations
as described above. Note that this is currently only supported in the ‘gcc’ subdirectory.
(To see how this works, try typing echo before the example given here.)

6.3 Additional testing for Java Class Libraries

The Java runtime tests can be executed via ‘make check’in the ‘target/libjava/testsuite’l]

directory in the build tree.

The Mauve Project provides a suite of tests for the Java Class Libraries. This suite
can be run as part of libgcj testing by placing the Mauve tree within the libjava testsuite
at ‘libjava/testsuite/libjava.mauve/mauve’, or by specifying the location of that tree
when invoking ‘make’; as in ‘make MAUVEDIR="/mauve check’.

http://sourceware.org/mauve/

Chapter 6: Installing GCC: Testing 43

6.4 How to interpret test results

The result of running the testsuite are various ‘*.sum’ and ‘*.log’ files in the testsuite
subdirectories. The ‘*.1log’ files contain a detailed log of the compiler invocations and the
corresponding results, the ‘*x.sum’ files summarize the results. These summaries contain
status codes for all tests:

e PASS: the test passed as expected
e XPASS: the test unexpectedly passed
e FAIL: the test unexpectedly failed
e XFAIL: the test failed as expected
e UNSUPPORTED: the test is not supported on this platform
e ERROR: the testsuite detected an error
e WARNING: the testsuite detected a possible problem
It is normal for some tests to report unexpected failures. At the current time the testing

harness does not allow fine grained control over whether or not a test is expected to fail.
This problem should be fixed in future releases.

6.5 Submitting test results

If you want to report the results to the GCC project, use the ‘contrib/test_summary’ shell
script. Start it in the objdir with
srcdir/contrib/test_summary -p your_commentary.txt \
-m gcc-testresults@gcc.gnu.org |sh

This script uses the Mail program to send the results, so make sure it is in your PATH.
The file ‘your_commentary.txt’ is prepended to the testsuite summary and should contain
any special remarks you have on your results or your build environment. Please do not
edit the testsuite result block or the subject line, as these messages may be automatically
processed.

Chapter 7: Installing GCC: Final installation 45

7 Installing GCC: Final installation

Now that GCC has been built (and optionally tested), you can install it with
cd objdir &% make install

We strongly recommend to install into a target directory where there is no previous
version of GCC present. Also, the GNAT runtime should not be stripped, as this would
break certain features of the debugger that depend on this debugging information (catching
Ada exceptions for instance).

That step completes the installation of GCC; user level binaries can be found in
‘prefix/bin’ where prefix is the value you specified with the ‘--prefix’ to configure
(or ‘/usr/local’ by default). (If you specified ‘--bindir’, that directory will be used
instead; otherwise, if you specified ‘--exec-prefix’, ‘exec-prefix/bin’ will be used.)
Headers for the C++ and Java libraries are installed in ‘prefix/include’; libraries in
‘libdir’ (normally ‘prefix/1ib’); internal parts of the compiler in ‘libdir/gcc’ and
‘libexecdir/gcc’; documentation in info format in ‘infodir’ (normally ‘prefix/info’).

When installing cross-compilers, GCC’s executables are not only installed into ‘bindir’,
that is, ‘exec-prefix/bin’, but additionally into ‘exec-prefix/target-alias/bin’, if
that directory exists. Typically, such tooldirs hold target-specific binutils, including assem-
bler and linker.

Installation into a temporary staging area or into a chroot jail can be achieved with the
command
make DESTDIR=path-to-rootdir install

where path-to-rootdir is the absolute path of a directory relative to which all installation
paths will be interpreted. Note that the directory specified by DESTDIR need not exist yet;
it will be created if necessary.

There is a subtle point with tooldirs and DESTDIR: If you relocate a cross-compiler in-
stallation with e.g. ‘DESTDIR=rootdir’, then the directory ‘rootdir/exec-prefix/target-
alias/bin’ will be filled with duplicated GCC executables only if it already exists, it will
not be created otherwise. This is regarded as a feature, not as a bug, because it gives
slightly more control to the packagers using the DESTDIR feature.

You can install stripped programs and libraries with

make install-strip

If you are bootstrapping a released version of GCC then please quickly review the build
status page for your release, available from http://gcc.gnu.org/buildstat.html. If your
system is not listed for the version of GCC that you built, send a note to gcc@gcc.gnu.org
indicating that you successfully built and installed GCC. Include the following information:

e Output from running ‘srcdir/config.guess’. Do not send that file itself, just the
one-line output from running it.

e The output of ‘gcc -v’ for your newly installed gcc. This tells us which version of
GCC you built and the options you passed to configure.

e Whether you enabled all languages or a subset of them. If you used a full distribution
then this information is part of the configure options in the output of ‘gcc -v’, but if
you downloaded the “core” compiler plus additional front ends then it isn’t apparent
which ones you built unless you tell us about it.

http://gcc.gnu.org/buildstat.html
mailto:gcc@gcc.gnu.org

46 Installing GCC

e If the build was for GNU /Linux, also include:

e The distribution name and version (e.g., Red Hat 7.1 or Debian 2.2.3); this infor-
mation should be available from ‘/etc/issue’.

e The version of the Linux kernel, available from ‘uname --version’ or ‘uname -a’.

e The version of glibc you used; for RPM-based systems like Red Hat, Mandrake,
and SuSE type ‘rpm -q glibc’ to get the glibc version, and on systems like Debian
and Progeny use ‘dpkg -1 1ibc6’.

For other systems, you can include similar information if you think it is relevant.

e Any other information that you think would be useful to people building GCC on the
same configuration. The new entry in the build status list will include a link to the
archived copy of your message.

We'd also like to know if the Chapter 9 [Specific], page 49 didn’t include your
host/target information or if that information is incomplete or out of date. Send a note to
gcc@gec.gnu. org detailing how the information should be changed.

If you find a bug, please report it following the bug reporting guidelines.

If you want to print the GCC manuals, do ‘cd objdir; make dvi’. You will need to have
texi2dvi (version at least 4.7) and TEX installed. This creates a number of ‘.dvi’ files in
subdirectories of ‘objdir’; these may be converted for printing with programs such as dvips.
Alternately, by using ‘make pdf’ in place of ‘make dvi’, you can create documentation in
the form of ‘.pdf’ files; this requires texi2pdf, which is included with Texinfo version 4.8
and later. You can also buy printed manuals from the Free Software Foundation, though
such manuals may not be for the most recent version of GCC.

If you would like to generate online HI'ML documentation, do ‘cd objdir; make html’
and HTML will be generated for the gcc manuals in ‘objdir/gcc/HTML’ .

mailto:gcc@gcc.gnu.org
../bugs/
http://shop.fsf.org/

Chapter 8: Installing GCC: Binaries 47

8 Installing GCC: Binaries

We are often asked about pre-compiled versions of GCC. While we cannot provide these for
all platforms, below you’ll find links to binaries for various platforms where creating them
by yourself is not easy due to various reasons.

Please note that we did not create these binaries, nor do we support them. If you have
any problems installing them, please contact their makers.

o AIX:
e Bull’s Freeware and Shareware Archive for AIX;
e Hudson Valley Community College Open Source Software for IBM System p;
e AIX 5L and 6 Open Source Packages.
e DOS—DJGPP.
e Renesas H8/300[HS]—GNU Development Tools for the Renesas H8/300[HS] Series.
e HP-UX:
e HP-UX Porting Center;
e Binaries for HP-UX 11.00 at Aachen University of Technology.
e SCO OpenServer/Unixware.
e Solaris 2 (SPARC, Intel):
e Sunfreeware
e Blastwave
OpenCSW
e TGCware

e Microsoft Windows:

e The Cygwin project;
e The MinGW project.

e The Written Word offers binaries for AIX 4.3.3, 5.1 and 5.2, GNU/Linux (i386), HP-UX
10.20, 11.00, and 11.11, and Solaris/SPARC 2.5.1, 2.6, 7, 8, 9 and 10.

e OpenPKG offers binaries for quite a number of platforms.

e The GFortran Wiki has links to GNU Fortran binaries for several platforms.

http://www.bullfreeware.com
http://pware.hvcc.edu
http://www.perzl.org/aix/
http://www.delorie.com/djgpp/
http://h8300-hms.sourceforge.net/
http://hpux.connect.org.uk/
ftp://sunsite.informatik.rwth-aachen.de/pub/packages/gcc_hpux/
http://www.sco.com/skunkware/devtools/index.html#gcc
http://www.sunfreeware.com/
http://www.blastwave.org/
http://www.opencsw.org/
http://jupiterrise.com/tgcware/
http://sourceware.org/cygwin/
http://www.mingw.org/
ftp://ftp.thewrittenword.com/packages/by-name/
http://www.openpkg.org/
http://gcc.gnu.org/wiki/GFortranBinaries

Chapter 9: Host/target specific installation notes for GCC 49

9 Host/target specific installation notes for GCC

Please read this document carefully before installing the GNU Compiler Collection on your
machine.

Note that this list of install notes is not a list of supported hosts or targets. Not all
supported hosts and targets are listed here, only the ones that require host-specific or
target-specific information have to.

alpha*-*-*

This section contains general configuration information for all alpha-based platforms using
ELF (in particular, ignore this section for DEC OSF/1, Digital UNIX and Tru64 UNIX).
In addition to reading this section, please read all other sections that match your target.

We require binutils 2.11.2 or newer. Previous binutils releases had a number of problems
with DWARF 2 debugging information, not the least of which is incorrect linking of shared
libraries.

alpha*-dec-osf5.1

Systems using processors that implement the DEC Alpha architecture and are running
the DEC/Compaq/HP Unix (DEC OSF/1, Digital UNIX, or Compaq/HP Tru64 UNIX)
operating system, for example the DEC Alpha AXP systems.

Support for Tru64 UNIX V5.1 has been removed in GCC 4.8. As of GCC 4.6, support
for Tru64 UNIX V4.0 and V5.0 has been removed. As of GCC 3.2, versions before alpha*-

dec-osf4 are no longer supported. (These are the versions which identify themselves as
DEC OSF/1.)

amd64-*-solaris2.1[0-9]*
This is a synonym for ‘x86_64-*-solaris2.1[0-9]* .

arm-*-eabi

ARM-family processors. Subtargets that use the ELF object format require GNU binutils
2.13 or newer. Such subtargets include: arm-*-netbsdelf, arm-*-*linux-* and arm-*-
rtemseabi.

avr

ATMEL AVR-family micro controllers. These are used in embedded applications. There are
no standard Unix configurations. See Section “AVR Options” in Using the GNU Compiler
Collection (GCC), for the list of supported MCU types.

Use ‘configure --target=avr --enable-languages="c"’ to configure GCC.

Further installation notes and other useful information about AVR tools can also be
obtained from:

e http://www.nongnu.org/avr/
e http://www.amelek.gda.pl/avr/

http://www.nongnu.org/avr/
http://www.amelek.gda.pl/avr/

50 Installing GCC

We strongly recommend using binutils 2.13 or newer.
The following error:
Error: register required

indicates that you should upgrade to a newer version of the binutils.

Blackfin

The Blackfin processor, an Analog Devices DSP. See Section “Blackfin Options” in Using
the GNU Compiler Collection (GCC),

More information, and a version of binutils with support for this processor, is available
at http://blackfin.uclinux.org

CR16

The CR16 CompactRISC architecture is a 16-bit architecture. This architecture is used in
embedded applications.

See Section “CR16 Options” in Using and Porting the GNU Compiler Collection (GCC),

Use ‘configure --target=cr16-elf --enable-languages=c,c++ to configure GCC
for building a CR16 elf cross-compiler.

Use ‘configure --target=crl6-uclinux --enable-languages=c,c++ to configure
GCC for building a CR16 uclinux cross-compiler.

CRIS

CRIS is the CPU architecture in Axis Communications ETRAX system-on-a-chip series.
These are used in embedded applications.

See Section “CRIS Options” in Using the GNU Compiler Collection (GCC), for a list of
CRIS-specific options.

There are a few different CRIS targets:

cris-axis-elf
Mainly for monolithic embedded systems. Includes a multilib for the ‘v10’ core
used in ‘ETRAX 100 LX’.

cris—axis—linux-gnu
A GNU/Linux port for the CRIS architecture, currently targeting ‘ETRAX 100
LX’ by default.

For cris-axis-elf you need binutils 2.11 or newer. For cris-axis-linux-gnu you
need binutils 2.12 or newer.

Pre-packaged tools can be obtained from ftp://ftp.axis.com/pub/axis/tools/cris/
compiler-kit/. More information about this platform is available at http://developer.
axis.com/.

http://blackfin.uclinux.org
ftp://ftp.axis.com/pub/axis/tools/cris/compiler-kit/
ftp://ftp.axis.com/pub/axis/tools/cris/compiler-kit/
http://developer.axis.com/
http://developer.axis.com/

Chapter 9: Host/target specific installation notes for GCC 51

DOS

Please have a look at the binaries page.

You cannot install GCC by itself on MSDOS; it will not compile under any MSDOS
compiler except itself. You need to get the complete compilation package DJGPP, which
includes binaries as well as sources, and includes all the necessary compilation tools and
libraries.

epiphany-*-elf
Adapteva Epiphany. This configuration is intended for embedded systems.

*_*_freebsd*

Support for FreeBSD 1 was discontinued in GCC 3.2. Support for FreeBSD 2 (and any
mutant a.out variants of FreeBSD 3) was discontinued in GCC 4.0.

In order to better utilize FreeBSD base system functionality and match the configuration
of the system compiler, GCC 4.5 and above as well as GCC 4.4 past 2010-06-20 leverage
SSP support in libc (which is present on FreeBSD 7 or later) and the use of __cxa_atexit
by default (on FreeBSD 6 or later). The use of d1_iterate_phdr inside ‘libgcc_s.so.1’
and boehm-gc (on FreeBSD 7 or later) is enabled by GCC 4.5 and above.

We support FreeBSD using the ELF file format with DWARF 2 debugging for all CPU
architectures. You may use ‘-gstabs’ instead of ‘~g’, if you really want the old debugging
format. There are no known issues with mixing object files and libraries with different
debugging formats. Otherwise, this release of GCC should now match more of the configu-
ration used in the stock FreeBSD configuration of GCC. In particular, ‘-—enable-threads’
is now configured by default. However, as a general user, do not attempt to replace the
system compiler with this release. Known to bootstrap and check with good results on
FreeBSD 7.2-STABLE. In the past, known to bootstrap and check with good results on
FreeBSD 3.0, 3.4, 4.0, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9 and 5-CURRENT.

The version of binutils installed in ‘/usr/bin’ probably works with this release
of GCC. Bootstrapping against the latest GNU binutils and/or the version found in
‘/usr/ports/devel/binutils’ has been known to enable additional features and improve
overall testsuite results. However, it is currently known that boehm-gc (which itself is
required for java) may not configure properly on FreeBSD prior to the FreeBSD 7.0 release
with GNU binutils after 2.16.1.

h8300-hms

Renesas H8/300 series of processors.
Please have a look at the binaries page.

The calling convention and structure layout has changed in release 2.6. All code must be
recompiled. The calling convention now passes the first three arguments in function calls
in registers. Structures are no longer a multiple of 2 bytes.

hppa*-hp-hpux*
Support for HP-UX version 9 and older was discontinued in GCC 3.4.

binaries.html
binaries.html

52 Installing GCC

We require using gas/binutils on all hppa platforms. Version 2.19 or later is recom-
mended.

It may be helpful to configure GCC with the ‘--with-gnu-as’ and ‘--with-as=...’
options to ensure that GCC can find GAS.

The HP assembler should not be used with GCC. It is rarely tested and may not work.
It shouldn’t be used with any languages other than C due to its many limitations.

Specifically, ‘-g’ does not work (HP-UX uses a peculiar debugging format which GCC
does not know about). It also inserts timestamps into each object file it creates, causing
the 3-stage comparison test to fail during a bootstrap. You should be able to continue by
saying ‘make all-host all-target’ after getting the failure from ‘make’.

Various GCC features are not supported. For example, it does not support weak symbols
or alias definitions. As a result, explicit template instantiations are required when using
C++. This makes it difficult if not impossible to build many C++ applications.

There are two default scheduling models for instructions. These are PROCES-
SOR_7T100LC and PROCESSOR_8000. They are selected from the pa-risc architecture
specified for the target machine when configuring. PROCESSOR_8000 is the default.
PROCESSOR_7100LC is selected when the target is a ‘hppal*’ machine.

The PROCESSOR._8000 model is not well suited to older processors. Thus, it is impor-
tant to completely specify the machine architecture when configuring if you want a model
other than PROCESSOR_8000. The macro TARGET_SCHED_DEFAULT can be defined
in BOOT_CFLAGS if a different default scheduling model is desired.

As of GCC 4.0, GCC uses the UNIX 95 namespace for HP-UX 10.10 through 11.00,
and the UNIX 98 namespace for HP-UX 11.11 and later. This namespace change might
cause problems when bootstrapping with an earlier version of GCC or the HP compiler as
essentially the same namespace is required for an entire build. This problem can be avoided
in a number of ways. With HP cc, UNIX_STD can be set to ‘95’ or ‘98’. Another way is to
add an appropriate set of predefines to CC. The description for the ‘munix=" option contains
a list of the predefines used with each standard.

More specific information to ‘hppa*-hp-hpux*’ targets follows.

hppa*-hp-hpux10

For hpux10.20, we highly recommend you pick up the latest sed patch PHCO_19798 from
HP.

The C++ ABI has changed incompatibly in GCC 4.0. COMDAT subspaces are used for
one-only code and data. This resolves many of the previous problems in using C++ on this
target. However, the ABI is not compatible with the one implemented under HP-UX 11
using secondary definitions.

hppa*-hp-hpux11

GCC 3.0 and up support HP-UX 11. GCC 2.95.x is not supported and cannot be used to
compile GCC 3.0 and up.

The libffi and libjava libraries haven’t been ported to 64-bit HP-UX and don’t build.

./configure.html#with-gnu-as

Chapter 9: Host/target specific installation notes for GCC 53

Refer to binaries for information about obtaining precompiled GCC binaries for HP-
UX. Precompiled binaries must be obtained to build the Ada language as it can’t be
bootstrapped using C. Ada is only available for the 32-bit PA-RISC runtime.

Starting with GCC 3.4 an ISO C compiler is required to bootstrap. The bundled compiler
supports only traditional C; you will need either HP’s unbundled compiler, or a binary
distribution of GCC.

It is possible to build GCC 3.3 starting with the bundled HP compiler, but the pro-
cess requires several steps. GCC 3.3 can then be used to build later versions. The
fastjar program contains ISO C code and can’t be built with the HP bundled compiler.
This problem can be avoided by not building the Java language. For example, use the
‘-—enable-languages="c,c++,f77,0bjc"’ option in your configure command.

There are several possible approaches to building the distribution. Binutils can be built
first using the HP tools. Then, the GCC distribution can be built. The second approach is
to build GCC first using the HP tools, then build binutils, then rebuild GCC. There have
been problems with various binary distributions, so it is best not to start from a binary
distribution.

On 64-bit capable systems, there are two distinct targets. Different installation prefixes
must be used if both are to be installed on the same system. The ‘hppa[1-2] *-hp-hpux11%’
target generates code for the 32-bit PA-RISC runtime architecture and uses the HP linker.
The ‘hppa64-hp-hpuxllx’ target generates 64-bit code for the PA-RISC 2.0 architecture.

The script config.guess now selects the target type based on the compiler detected during
configuration. You must define PATH or CC so that configure finds an appropriate compiler
for the initial bootstrap. When CC is used, the definition should contain the options that
are needed whenever CC is used.

Specifically, options that determine the runtime architecture must be in CC to correctly
select the target for the build. It is also convenient to place many other compiler op-
tions in CC. For example, CC="cc -Ac +DA2.0W -Wp,-H16376 -D_CLASSIC_TYPES -D_HPUX_
SOURCE" can be used to bootstrap the GCC 3.3 branch with the HP compiler in 64-bit
K&R/bundled mode. The ‘+DA2.0W’ option will result in the automatic selection of the
‘hppa64-hp-hpux11*’ target. The macro definition table of cpp needs to be increased for a
successful build with the HP compiler. _.CLASSIC_TYPES and _ HPUX_SOURCE need to
be defined when building with the bundled compiler, or when using the ‘-Ac’ option. These
defines aren’t necessary with ‘-Ae’.

It is best to explicitly configure the ‘hppa64-hp-hpuxl1l*’ target with the
‘--with-1d=...’ option. This overrides the standard search for Id. The two linkers
supported on this target require different commands. The default linker is determined
during configuration. As a result, it’s not possible to switch linkers in the middle of a GCC
build. This has been reported to sometimes occur in unified builds of binutils and GCC.

A recent linker patch must be installed for the correct operation of GCC 3.3 and later.
PHSS_26559 and PHSS_24304 are the oldest linker patches that are known to work. They
are for HP-UX 11.00 and 11.11, respectively. PHSS_24303, the companion to PHSS_24304,
might be usable but it hasn’t been tested. These patches have been superseded. Consult
the HP patch database to obtain the currently recommended linker patch for your system.

The patches are necessary for the support of weak symbols on the 32-bit port, and for the
running of initializers and finalizers. Weak symbols are implemented using SOM secondary

binaries.html

54 Installing GCC

definition symbols. Prior to HP-UX 11, there are bugs in the linker support for secondary
symbols. The patches correct a problem of linker core dumps creating shared libraries
containing secondary symbols, as well as various other linking issues involving secondary
symbols.

GCC 3.3 uses the ELF DT_INIT_ARRAY and DT_FINI_ARRAY capabilities to run
initializers and finalizers on the 64-bit port. The 32-bit port uses the linker ‘+init’ and
‘+fini’ options for the same purpose. The patches correct various problems with the
+init/+fini options, including program core dumps. Binutils 2.14 corrects a problem on the
64-bit port resulting from HP’s non-standard use of the .init and .fini sections for array
initializers and finalizers.

Although the HP and GNU linkers are both supported for the ‘hppa64-hp-hpux11x*’
target, it is strongly recommended that the HP linker be used for link editing on this
target.

At this time, the GNU linker does not support the creation of long branch stubs. As a
result, it can’t successfully link binaries containing branch offsets larger than 8 megabytes.
In addition, there are problems linking shared libraries, linking executables with ‘-static’,
and with dwarf2 unwind and exception support. It also doesn’t provide stubs for internal
calls to global functions in shared libraries, so these calls can’t be overloaded.

The HP dynamic loader does not support GNU symbol versioning, so symbol
versioning is not supported. It may be necessary to disable symbol versioning with
‘-—disable-symvers’ when using GNU Id.

POSIX threads are the default. The optional DCE thread library is not supported, so
‘-—enable-threads=dce’ does not work.

*_*_linux-gnu

Versions of libstdc++-v3 starting with 3.2.1 require bug fixes present in glibc 2.2.5 and later.
More information is available in the libstdc++-v3 documentation.

i786-*-linux*

As of GCC 3.3, binutils 2.13.1 or later is required for this platform. See bug 10877 for more
information.

If you receive Signal 11 errors when building on GNU/Linux, then it is possible you have
a hardware problem. Further information on this can be found on www.bitwizard.nl.

i?786-*-solaris2.9

The Sun assembler in Solaris 9 has several bugs and limitations. While GCC works around
them, several features are missing, so it is recommended to use the GNU assembler instead.
There is no bundled version, but the current version, from GNU binutils 2.22, is known to
work.

Solaris 2/x86 doesn’t support the execution of SSE/SSE2 instructions before Solaris 9
4/04, even if the CPU supports them. Programs will receive SIGILL if they try. The fix is
available both in Solaris 9 Update 6 and kernel patch 112234-12 or newer. To avoid this
problem, ‘-march’ defaults to ‘pentiumpro’ on Solaris 9. If you have the patch installed,

http://gcc.gnu.org/PR10877
http://www.bitwizard.nl/sig11/

Chapter 9: Host/target specific installation notes for GCC 55

4

you can configure GCC with an appropriate ‘--with-arch’ option, but need GNU as for

SSE2 support.

i?786-*-solaris2.10

Use this for Solaris 10 or later on x86 and x86-64 systems. Starting with GCC 4.7, there is
also a 64-bit ‘amd64-*-solaris2.1[0-9]*’ or ‘x86_64-*-solaris2.1[0-9]*’ configuration
that corresponds to ‘sparcv9-sun-solaris2x*’.

It is recommended that you configure GCC to use the GNU assembler, in
‘/usr/sfw/bin/gas’. The versions included in Solaris 10, from GNU binutils 2.15,
and Solaris 11, from GNU binutils 2.19, work fine, although the current version, from
GNU binutils 2.22, is known to work, too. Recent versions of the Sun assembler in
‘/usr/ccs/bin/as’ work almost as well, though.

For linking, the Sun linker, is preferred. If you want to use the GNU linker instead,
which is available in ‘/usr/sfw/bin/gld’, note that due to a packaging bug the version in
Solaris 10, from GNU binutils 2.15, cannot be used, while the version in Solaris 11, from
GNU binutils 2.19, works, as does the latest version, from GNU binutils 2.22.

To use GNU as, configure with the options ‘--with-gnu-as --with-as=/usr/sfw/bin/
gas’. It may be necessary to configure with ‘--without-gnu-1d --with-1d=/usr/ccs/
bin/1d’ to guarantee use of Sun 1d.

ia64-*-linux

IA-64 processor (also known as IPF, or Itanium Processor Family) running GNU /Linux.

If you are using the installed system libunwind library with ‘--with-system-1libunwind’,
then you must use libunwind 0.98 or later.

None of the following versions of GCC has an ABI that is compatible with any of the
other versions in this list, with the exception that Red Hat 2.96 and Trillian 000171 are
compatible with each other: 3.1, 3.0.2, 3.0.1, 3.0, Red Hat 2.96, and Trillian 000717. This
primarily affects C++ programs and programs that create shared libraries. GCC 3.1 or later
is recommended for compiling linux, the kernel. As of version 3.1 GCC is believed to be
fully ABI compliant, and hence no more major ABI changes are expected.

ia64-*-hpux*

Building GCC on this target requires the GNU Assembler. The bundled HP assembler will
not work. To prevent GCC from using the wrong assembler, the option ‘--with-gnu-as’
may be necessary.

The GCC libunwind library has not been ported to HPUX. This means that
for GCC versions 3.2.3 and earlier, ‘--enable-libunwind-exceptions’ is required
to build GCC. For GCC 3.3 and later, this is the default. For gcc 3.4.3 and later,
‘-—enable-libunwind-exceptions’ is removed and the system libunwind library will
always be used.

_ibm-aix

Support for AIX version 3 and older was discontinued in GCC 3.4. Support for AIX version
4.2 and older was discontinued in GCC 4.5.

56 Installing GCC

“out of memory” bootstrap failures may indicate a problem with process resource limits
(ulimit). Hard limits are configured in the ‘/etc/security/limits’ system configuration
file.

GCC can bootstrap with recent versions of IBM XLC, but bootstrapping with an earlier
release of GCC is recommended. Bootstrapping with XLC requires a larger data segment,
which can be enabled through the LDR_CNTRL environment variable, e.g.,

% LDR_CNTRL=MAXDATA=0x50000000
% export LDR_CNTRL

One can start with a pre-compiled version of GCC to build from sources. One may
delete GCC’s “fixed” header files when starting with a version of GCC built for an earlier
release of AIX.

To speed up the configuration phases of bootstrapping and installing GCC, one may use
GNU Bash instead of AIX /bin/sh, e.g.,
% CONFIG_SHELL=/opt/freeware/bin/bash
% export CONFIG_SHELL
and then proceed as described in the build instructions, where we strongly recommend
specifying an absolute path to invoke srcdir/configure.

Because GCC on AIX is built as a 32-bit executable by default, (although it can generate
64-bit programs) the GMP and MPFR libraries required by gfortran must be 32-bit libraries.
Building GMP and MPFR as static archive libraries works better than shared libraries.

Errors involving alloca when building GCC generally are due to an incorrect definition
of CC in the Makefile or mixing files compiled with the native C compiler and GCC. During
the stagel phase of the build, the native AIX compiler must be invoked as cc (not x1lc).
Once configure has been informed of x1c, one needs to use ‘make distclean’ to remove the
configure cache files and ensure that CC environment variable does not provide a definition
that will confuse configure. If this error occurs during stage2 or later, then the problem
most likely is the version of Make (see above).

The native as and 14 are recommended for bootstrapping on AIX. The GNU Assembler,
GNU Linker, and GNU Binutils version 2.20 is the minimum level that supports bootstrap
on AIX 5. The GNU Assembler has not been updated to support AIX 6 or AIX 7. The
native AIX tools do interoperate with GCC.

AIX 5.3 TL10, AIX 6.1 TL05 and AIX 7.1 TLOO introduced an AIX assembler change
that sometimes produces corrupt assembly files causing AIX linker errors. The bug breaks
GCC bootstrap on AIX and can cause compilation failures with existing GCC installations.
An AIX iFix for AIX 5.3 is available (APAR 1798385 for AIX 5.3 TL10, APAR 1798477
for AIX 5.3 TL11 and 1798134 for AIX 5.3 TL12). AIX 5.3 TL11 SP8, AIX 5.3 TL12 SP5,
AIX 6.1 TL04 SP11, AIX 6.1 TL0O5 SP7, AIX 6.1 TL06 SP6, AIX 6.1 TLO7 and AIX 7.1
TLO1 should include the fix.

Building ‘libstdc++.a’ requires a fix for an AIX Assembler bug APAR 1Y26685 (AIX
4.3) or APAR 1Y25528 (AIX 5.1). It also requires a fix for another AIX Assembler bug
and a co-dependent AIX Archiver fix referenced as APAR 1Y53606 (AIX 5.2) or as APAR
IY54774 (AIX 5.1)

‘libstdc++’ in GCC 3.4 increments the major version number of the shared object and
GCC installation places the ‘libstdc++.a’ shared library in a common location which will
overwrite the and GCC 3.3 version of the shared library. Applications either need to be

build.html

Chapter 9: Host/target specific installation notes for GCC 57

re-linked against the new shared library or the GCC 3.1 and GCC 3.3 versions of the
‘libstdc++’ shared object needs to be available to the AIX runtime loader. The GCC
3.1 ‘1ibstdc++.s0.4’, if present, and GCC 3.3 ‘libstdc++.s0.5’ shared objects can be
installed for runtime dynamic loading using the following steps to set the ‘F_LOADONLY’ flag
in the shared object for each multilib ‘libstdc++.a’ installed:

Extract the shared objects from the currently installed ‘libstdc++.a’ archive:

% ar -x libstdc++.a libstdc++.s0.4 libstdc++.s0.5

Enable the ‘F_LOADONLY’ flag so that the shared object will be available for runtime
dynamic loading, but not linking:
% strip -e libstdc++.so0.4 libstdc++.s0.5

Archive the runtime-only shared object in the GCC 3.4 ‘1ibstdc++.a’ archive:

% ar -q libstdc++.a libstdc++.s0.4 libstdc++.s0.5

Linking executables and shared libraries may produce warnings of duplicate symbols.
The assembly files generated by GCC for AIX always have included multiple symbol def-
initions for certain global variable and function declarations in the original program. The
warnings should not prevent the linker from producing a correct library or runnable exe-
cutable.

AIX 4.3 utilizes a “large format” archive to support both 32-bit and 64-bit object mod-
ules. The routines provided in AIX 4.3.0 and AIX 4.3.1 to parse archive libraries did not
handle the new format correctly. These routines are used by GCC and result in error mes-
sages during linking such as “not a COFF file”. The version of the routines shipped with
AIX 4.3.1 should work for a 32-bit environment. The ‘-g’ option of the archive command
may be used to create archives of 32-bit objects using the original “small format”. A correct
version of the routines is shipped with AIX 4.3.2 and above.

Some versions of the AIX binder (linker) can fail with a relocation overflow severe error
when the ‘-bbigtoc’ option is used to link GCC-produced object files into an executable
that overflows the TOC. A fix for APAR IX75823 (OVERFLOW DURING LINK WHEN

USING GCC AND -BBIGTOC) is available from IBM Customer Support and from its
techsupport.services.ibm.com website as PTF U455193.

The AIX 4.3.2.1 linker (bos.rte.bind_cmds Level 4.3.2.1) will dump core with a segmen-
tation fault when invoked by any version of GCC. A fix for APAR IX87327 is available
from IBM Customer Support and from its techsupport.services.ibm.com website as PTF
U461879. This fix is incorporated in AIX 4.3.3 and above.

The initial assembler shipped with AIX 4.3.0 generates incorrect object files. A
fix for APAR 1X74254 (64BIT DISASSEMBLED OUTPUT FROM COMPILER
FAILS TO ASSEMBLE/BIND) is available from IBM Customer Support and from its
techsupport.services.ibm.com website as PTF U453956. This fix is incorporated in AIX
4.3.1 and above.

AIX provides National Language Support (NLS). Compilers and assemblers use NLS to
support locale-specific representations of various data formats including floating-point num-
bers (e.g., ‘.” vs ‘,’ for separating decimal fractions). There have been problems reported
where GCC does not produce the same floating-point formats that the assembler expects.
If one encounters this problem, set the LANG environment variable to ‘C’ or ‘En_US’.

A default can be specified with the ‘-mcpu=cpu_type’ switch and using the configure
option ‘--with-cpu-cpu_type’.

http://techsupport.services.ibm.com/
http://techsupport.services.ibm.com/
http://techsupport.services.ibm.com/

58 Installing GCC

iq2000-*-elf

Vitesse IQ2000 processors. These are used in embedded applications. There are no standard
Unix configurations.

Im32-*-elf

Lattice Mico32 processor. This configuration is intended for embedded systems.

Im32-*-uclinux

Lattice Mico32 processor. This configuration is intended for embedded systems running
uClinux.

m32c-*-elf

Renesas M32C processor. This configuration is intended for embedded systems.

m32r-*-elf

Renesas M32R, processor. This configuration is intended for embedded systems.

mo68k-*-*

By default, ‘m68k-*-elf*’, ‘m68k-*-rtems’, ‘m68k-*-uclinux’ and ‘m68k-*-linux’ build
libraries for both M680x0 and ColdFire processors. If you only need the M680x0 libraries,
you can omit the ColdFire ones by passing ‘--with-arch=m68k’ to configure. Alterna-
tively, you can omit the M680x0 libraries by passing ‘~-with-arch=cf’ to configure. These
targets default to 5206 or 5475 code as appropriate for the target system when configured
with ‘--with-arch=cf’ and 68020 code otherwise.

The ‘m68k-*-netbsd’ and ‘m68k-*-openbsd’ targets also support the ‘--with-arch’
option. They will generate ColdFire CFV4e code when configured with ‘--with-arch=cf’
and 68020 code otherwise.

You can override the default processors listed above by configuring with
‘-—with-cpu=target’. This target can either be a ‘-mcpu’ argument or one of the
following values: ‘m68000’, ‘m68010’, ‘m68020°, ‘m68030’, ‘m68040’, ‘m68060’, ‘m68020-40’
and ‘m68020-60’.

GCC requires at least binutils version 2.17 on these targets.

m68k-*-uclinux

GCC 4.3 changed the uClinux configuration so that it uses the ‘m68k-linux-gnu’ ABI
rather than the ‘m68k-elf’ ABI. It also added improved support for C++ and flat shared
libraries, both of which were ABI changes.

mep-*-elf

Toshiba Media embedded Processor. This configuration is intended for embedded systems.

Chapter 9: Host/target specific installation notes for GCC 59

microblaze-*-elf

Xilinx MicroBlaze processor. This configuration is intended for embedded systems.

mips-*-*

If on a MIPS system you get an error message saying “does not have gp sections for all
it’s [sic] sectons [sic]”, don’t worry about it. This happens whenever you use GAS with the
MIPS linker, but there is not really anything wrong, and it is okay to use the output file.
You can stop such warnings by installing the GNU linker.

It would be nice to extend GAS to produce the gp tables, but they are optional, and
there should not be a warning about their absence.

The libstde++ atomic locking routines for MIPS targets requires MIPS II and later. A
patch went in just after the GCC 3.3 release to make ‘mips*-*—*’ use the generic im-
plementation instead. You can also configure for ‘mipsel-elf’ as a workaround. The
‘mips*-*-linux*’ target continues to use the MIPS II routines. More work on this is
expected in future releases.

ers that support the ‘11’; ‘sc” and ‘sync’ instructions. This can be overridden by passing
‘——with-11sc’ or ‘--without-1lsc’ when configuring GCC. Since the Linux kernel em-
ulates these instructions if they are missing, the default for ‘mips*-*-linux*’ targets is
‘~-with-1l1lsc’. The ‘--with-1lsc’ and ‘--without-11lsc’ configure options may be over-
ridden at compile time by passing the ‘-ml1lsc’ or ‘-mno-11lsc’ options to the compiler.

The built-in __sync_* functions are available on MIPS II and later systems and oth-

MIPS systems check for division by zero (unless ‘-mno-check-zero-division’ is passed
to the compiler) by generating either a conditional trap or a break instruction. Using
trap results in smaller code, but is only supported on MIPS II and later. Also, some
versions of the Linux kernel have a bug that prevents trap from generating the proper
signal (SIGFPE). To enable the use of break, use the ‘--with-divide=breaks’ configure
option when configuring GCC. The default is to use traps on systems that support them.

The assembler from GNU binutils 2.17 and earlier has a bug in the way it sorts relocations
for REL targets (032, 064, EABI). This can cause bad code to be generated for simple
C++ programs. Also the linker from GNU binutils versions prior to 2.17 has a bug which
causes the runtime linker stubs in very large programs, like ‘1ibgcj.so’, to be incorrectly
generated. GNU Binutils 2.18 and later (and snapshots made after Nov. 9, 2006) should
be free from both of these problems.

mips-sgi-irix5
Support for IRIX 5 has been removed in GCC 4.6.

mips-sgi-irix6

Support for IRIX 6.5 has been removed in GCC 4.8. Support for IRIX 6 releases before 6.5
has been removed in GCC 4.6, as well as support for the 032 ABI.

moxie-*-elf

The moxie processor.

60 Installing GCC

powerpc-*-*

4

You can specify a default version for the
option ‘--with-cpu-cpu_type’.

-mcpu=cpu_type’ switch by using the configure
You will need binutils 2.15 or newer for a working GCC.

powerpc-*-darwin*
PowerPC running Darwin (Mac OS X kernel).

Pre-installed versions of Mac OS X may not include any developer tools, meaning that
you will not be able to build GCC from source. Tool binaries are available at http://
opensource.apple.com/.

This version of GCC requires at least cctools-590.36. The cctools-590.36 package ref-
erenced from http://gcc.gnu.org/ml/gcc/2006-03/msg00507 . html will not work on
systems older than 10.3.9 (aka darwin7.9.0).
powerpc-*-elf

PowerPC system in big endian mode, running System V.4.

powerpc*-*-linux-gnu*

PowerPC system in big endian mode running Linux.

powerpc-*-netbsd*

PowerPC system in big endian mode running NetBSD.

powerpc-*-eabisim

Embedded PowerPC system in big endian mode for use in running under the PSIM simu-
lator.

powerpc-*-eabi

Embedded PowerPC system in big endian mode.

powerpcle-*-elf

PowerPC system in little endian mode, running System V.4.

powerpcle-*-eabisim

Embedded PowerPC system in little endian mode for use in running under the PSIM sim-
ulator.

powerpcle-*-eabi

Embedded PowerPC system in little endian mode.

ftp://ftp.kernel.org/pub/linux/devel/binutils
http://opensource.apple.com/
http://opensource.apple.com/
http://gcc.gnu.org/ml/gcc/2006-03/msg00507.html

Chapter 9: Host/target specific installation notes for GCC 61

rl78-*-elf

The Renesas RL78 processor. This configuration is intended for embedded systems.
rx-*-elf

The Renesas RX processor. See http: / / eu . renesas . com / fmwk . jsp 7

cnt=rx600_series_landing. jsp&fp=/products/mpumcu/rx_family/rx600_series for
more information about this processor.

s390-*-linux*

S/390 system running GNU/Linux for S/390.

s390x-*-linux*

zSeries system (64-bit) running GNU /Linux for zSeries.

$390x-ibm-tpf*

zSeries system (64-bit) running TPF. This platform is supported as cross-compilation target
only.

*_*_golaris2*

Support for Solaris 8 has removed in GCC 4.8. Support for Solaris 7 has been removed in
GCC 4.6.

Sun does not ship a C compile