The Red Hat newlib C Library

Full Configuration

libc 2.1.0
December 2013

Steve Chamberlain
Roland Pesch

Red Hat Support
Jeff Johnston

sac@cygnus.com, pesch@cygnus.com, jjohnstn@redhat.com The Red Hat newlib C' Library
Copyright (© 1992, 1993, 1994-2004 Red Hat Inc.

‘libc’ includes software developed by the University of California, Berkeley and its contrib-
utors.

‘libc’ includes software developed by Martin Jackson, Graham Haley and Steve Chamber-
lain of Tadpole Technology and released to Cygnus.

‘libc’ uses floating-point conversion software developed at AT& T, which includes this copy-
right information:

(" 2
The author of this software is David M. Gay.

Copyright (c) 1991 by AT&T.

Permission to use, copy, modify, and distribute this software for any purpose without fee
is hereby granted, provided that this entire notice is included in all copies of any software
which is or includes a copy or modification of this software and in all copies of the supporting
documentation for such software.

THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
IMPLIED WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR AT&T
MAKES ANY REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING
THE MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PAR-

TICULAR PURPOSE.
N J

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the
conditions for verbatim copying, subject to the terms of the GNU General Public License,
which includes the provision that the entire resulting derived work is distributed under the
terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions.

Chapter 1: Introduction 1

1 Introduction

This reference manual describes the functions provided by the Red Hat “newlib” version of
the standard ANSI C library. This document is not intended as an overview or a tutorial for
the C library. Each library function is listed with a synopsis of its use, a brief description,
return values (including error handling), and portability issues.

Some of the library functions depend on support from the underlying operating system and
may not be available on every platform. For embedded systems in particular, many of these
underlying operating system services may not be available or may not be fully functional.
The specific operating system subroutines required for a particular library function are
listed in the “Portability” section of the function description. See Chapter 12 [Syscalls],
page 303, for a description of the relevant operating system calls.

Chapter 2: Standard Utility Functions (‘stdlib.h’) 3

2 Standard Utility Functions (‘stdlib.h’)

This chapter groups utility functions useful in a variety of programs. The corresponding
declarations are in the header file ‘std1ib.h’.

4 Red Hat newlib C Library, Full

2.1 _Exit—end program execution with no cleanup
processing
Synopsis

#include <stdlib.h>
void _Exit(int code);

Description

Use _Exit to return control from a program to the host operating environment. Use the
argument code to pass an exit status to the operating environment: two particular values,
EXIT_SUCCESS and EXIT_FAILURE, are defined in ‘stdlib.h’ to indicate success or failure
in a portable fashion.

_Exit differs from exit in that it does not run any application-defined cleanup functions
registered with atexit and it does not clean up files and streams. It is identical to _exit.

Returns
_Exit does not return to its caller.

Portability
_Exit is defined by the C99 standard.

Supporting OS subroutines required: _exit.

Chapter 2: Standard Utility Functions (‘stdlib.h’) 5

2.2 ab4l, 164a——convert between radix-64 ASCII string and
long

Synopsis
#include <stdlib.h>

long a64l(const char *input);
char *164a(long input);

Description

Conversion is performed between long and radix-64 characters. The 164a routine transforms
up to 32 bits of input value starting from least significant bits to the most significant bits.
The input value is split up into a maximum of 5 groups of 6 bits and possibly one group of
2 bits (bits 31 and 30).

Each group of 6 bits forms a value from 0-63 which is translated into a character as follows:
e 0=""
o 1=/
e 2-11 ="0"t0’9
e 12-37T="A"to 7’
e 3863 ="’a’ to’7’
When the remaining bits are zero or all bits have been translated, a null terminator is
appended to the string. An input value of 0 results in the empty string.

The a641 function performs the reverse translation. Each character is used to generate a
6-bit value for up to 30 bits and then a 2-bit value to complete a 32-bit result. The null
terminator means that the remaining digits are 0. An empty input string or NULL string
results in OL. An invalid string results in undefined behavior. If the size of a long is greater
than 32 bits, the result is sign-extended.

Returns
164a returns a null-terminated string of 0 to 6 characters. a641 returns the 32-bit translated
value from the input character string.

Portability
164a and a641 are non-ANSI and are defined by the Single Unix Specification.

Supporting OS subroutines required: None.

6 Red Hat newlib C Library, Full

2.3 abort—abnormal termination of a program
Synopsis

#include <stdlib.h>
void abort(void);

Description
Use abort to signal that your program has detected a condition it cannot deal with. Nor-
mally, abort ends your program’s execution.

Before terminating your program, abort raises the exception SIGABRT (using
‘raise (SIGABRT)’). If you have used signal to register an exception handler for this
condition, that handler has the opportunity to retain control, thereby avoiding program
termination.

In this implementation, abort does not perform any stream- or file-related cleanup (the
host environment may do so; if not, you can arrange for your program to do its own cleanup
with a SIGABRT exception handler).

Returns
abort does not return to its caller.

Portability
ANSI C requires abort.

Supporting OS subroutines required: _exit and optionally, write.

Chapter 2: Standard Utility Functions (‘stdlib.h’) 7

2.4 abs—integer absolute value (magnitude)
Synopsis

#include <stdlib.h>
int abs(int i);

Description
abs returns |z|, the absolute value of i (also called the magnitude of i). That is, if i is
negative, the result is the opposite of i, but if i is nonnegative the result is i.

The similar function labs uses and returns long rather than int values.

Returns
The result is a nonnegative integer.

Portability
abs is ANSI.

No supporting OS subroutines are required.

8 Red Hat newlib C Library, Full

2.5 assert—macro for debugging diagnostics
Synopsis

#include <assert.h>
void assert(int expression);

Description

Use this macro to embed debuggging diagnostic statements in your programs. The argument
expression should be an expression which evaluates to true (nonzero) when your program
is working as you intended.

When expression evaluates to false (zero), assert calls abort, after first printing a message
showing what failed and where:

Assertion failed: expression, file filename, line lineno, function: func
If the name of the current function is not known (for example, when using a C89 compiler
that does not understand __func__), the function location is omitted.
The macro is defined to permit you to turn off all uses of assert at compile time by defining
NDEBUG as a preprocessor variable. If you do this, the assert macro expands to

(void(0))

Returns
assert does not return a value.

Portability
The assert macro is required by ANSI, as is the behavior when NDEBUG is defined.

Supporting OS subroutines required (only if enabled): close, fstat, getpid, isatty, kill,
1seek, read, sbrk, write.

Chapter 2: Standard Utility Functions (‘stdlib.h’) 9

2.6 atexit—request execution of functions at program exit
Synopsis

#include <stdlib.h>
int atexit (void (*function) (void));

Description

You can use atexit to enroll functions in a list of functions that will be called when your
program terminates normally. The argument is a pointer to a user-defined function (which
must not require arguments and must not return a result).

The functions are kept in a LIFO stack; that is, the last function enrolled by atexit will
be the first to execute when your program exits.

There is no built-in limit to the number of functions you can enroll in this list; however,
after every group of 32 functions is enrolled, atexit will call malloc to get space for the
next part of the list. The initial list of 32 functions is statically allocated, so you can always
count on at least that many slots available.

Returns
atexit returns O if it succeeds in enrolling your function, -1 if it fails (possible only if no
space was available for malloc to extend the list of functions).

Portability
atexit is required by the ANSI standard, which also specifies that implementations must
support enrolling at least 32 functions.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

10 Red Hat newlib C Library, Full

2.7 atof, atoff—string to double or float
Synopsis
#include <stdlib.h>

double atof(const char *s);
float atoff(const char *s);

Description
atof converts the initial portion of a string to a double. atoff converts the initial portion
of a string to a float.

The functions parse the character string s, locating a substring which can be converted to
a floating-point value. The substring must match the format:

[+|-1digits[.1[digits][(elE) [+|-]1digits]
The substring converted is the longest initial fragment of s that has the expected format,
beginning with the first non-whitespace character. The substring is empty if str is empty,
consists entirely of whitespace, or if the first non-whitespace character is something other
than +, -, ., or a digit.
atof (s) is implemented as strtod(s, NULL). atoff(s) is implemented as strtof (s,
NULL).

Returns

atof returns the converted substring value, if any, as a double; or 0.0, if no conversion
could be performed. If the correct value is out of the range of representable values, plus
or minus HUGE_VAL is returned, and ERANGE is stored in errno. If the correct value would
cause underflow, 0.0 is returned and ERANGE is stored in errno.

atoff obeys the same rules as atof, except that it returns a float.

Portability

atof is ANSI C. atof, atoi, and atol are subsumed by strod and strol, but are used
extensively in existing code. These functions are less reliable, but may be faster if the
argument is verified to be in a valid range.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

Chapter 2: Standard Utility Functions (‘stdlib.h’) 11

2.8 atoi, atol—string to integer

Synopsis
#include <stdlib.h>
int atoi(const char *s);
long atol(const char *s);
int _atoi_r(struct _reent *ptr, const char *s);
long _atol_r(struct _reent *ptr, const char *s);

Description

atoi converts the initial portion of a string to an int. atol converts the initial portion of
a string to a long.

atoi(s) is implemented as (int)strtol(s, NULL, 10). atol(s) is implemented as
strtol(s, NULL, 10).

_atoi_r and _atol_r are reentrant versions of atoi and atol respectively, passing the
reentrancy struct pointer.

Returns
The functions return the converted value, if any. If no conversion was made, 0 is returned.

Portability
atoi, atol are ANSI.

No supporting OS subroutines are required.

12 Red Hat newlib C Library, Full

2.9 atoll—convert a string to a long long integer
Synopsis
#include <stdlib.h>

long long atoll(const char *str);
long long _atoll_r(struct _reent *ptr, const char *str);

Description

The function atoll converts the initial portion of the string pointed to by *str to a type
long long. A call to atoll(str) in this implementation is equivalent to strtoll(str, (char
*)NULL, 10) including behavior on error.

The alternate function _atoll_r is a reentrant version. The extra argument reent is a
pointer to a reentrancy structure.

Returns
The converted value.

Portability
atoll is ISO 9899 (C99) and POSIX 1003.1-2001 compatable.

No supporting OS subroutines are required.

Chapter 2: Standard Utility Functions (‘stdlib.h’) 13

2.10 bsearch—binary search
Synopsis
#include <stdlib.h>
void *bsearch(const void *key, const void *base,

size_t nmemb, size_t size,
int (*compar) (const void *, const void *));

Description
bsearch searches an array beginning at base for any element that matches key, using binary
search. nmemb is the element count of the array; size is the size of each element.

The array must be sorted in ascending order with respect to the comparison function compar
(which you supply as the last argument of bsearch).

You must define the comparison function (*compar) to have two arguments; its result must
be negative if the first argument is less than the second, zero if the two arguments match,
and positive if the first argument is greater than the second (where “less than” and “greater
than” refer to whatever arbitrary ordering is appropriate).

Returns
Returns a pointer to an element of array that matches key. If more than one matching
element is available, the result may point to any of them.

Portability
bsearch is ANSI.

No supporting OS subroutines are required.

14 Red Hat newlib C Library, Full

2.11 calloc—allocate space for arrays

Synopsis

#include <stdlib.h>

void *calloc(size_t n, size_t s);

void *_calloc_r(void *reent, size_t n, size_t s);
Description
Use calloc to request a block of memory sufficient to hold an array of n elements, each of
which has size s.
The memory allocated by calloc comes out of the same memory pool used by malloc, but
the memory block is initialized to all zero bytes. (To avoid the overhead of initializing the
space, use malloc instead.)
The alternate function _calloc_r is reentrant. The extra argument reent is a pointer to a
reentrancy structure.

Returns
If successful, a pointer to the newly allocated space.

If unsuccessful, NULL.

Portability
calloc is ANSIL

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

Chapter 2: Standard Utility Functions (‘stdlib.h’) 15

2.12 div—divide two integers
Synopsis

#include <stdlib.h>
div_t div(int n, int d);

Description
Divide n/d, returning quotient and remainder as two integers in a structure div_t.

Returns
The result is represented with the structure

typedef struct
{
int quot;
int rem;
} div_t;
where the quot field represents the quotient, and rem the remainder. For nonzero d, if ‘r =
div(a,d);’ then n equals ‘r.rem + d*r.quot’.

To divide long rather than int values, use the similar function 1div.

Portability
div is ANSL

No supporting OS subroutines are required.

16 Red Hat newlib C Library, Full

2.13 ecvt, ecvtf, fcvt, fcvtf—double or float to string
Synopsis
#include <stdlib.h>

char *ecvt(double val, int chars, int *decpt, int *sgn);
char xecvtf(float val, int chars, int *decpt, int *sgn);

char *fcvt(double val, int decimals,
int *decpt, int *sgn);

char *fcvtf(float val, int decimals,
int *decpt, int *sgn);

Description

ecvt and fcvt produce (null-terminated) strings of digits representating the double num-
ber val. ecvtf and fcvtf produce the corresponding character representations of float
numbers.

(The stdlib functions ecvtbuf and fcvtbuf are reentrant versions of ecvt and fcvt.)

The only difference between ecvt and fcvt is the interpretation of the second argument
(chars or decimals). For ecvt, the second argument chars specifies the total number of
characters to write (which is also the number of significant digits in the formatted string,
since these two functions write only digits). For fcvt, the second argument decimals speci-
fies the number of characters to write after the decimal point; all digits for the integer part
of val are always included.

Since ecvt and fcvt write only digits in the output string, they record the location of the
decimal point in *decpt, and the sign of the number in *sgn. After formatting a number,
xdecpt contains the number of digits to the left of the decimal point. *sgn contains 0 if
the number is positive, and 1 if it is negative.

Returns
All four functions return a pointer to the new string containing a character representation
of val.

Portability
None of these functions are ANSI C.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

Chapter 2: Standard Utility Functions (‘stdlib.h’) 17

2.14 gvcvt, gcvtf—+format double or float as string

Synopsis
#include <stdlib.h>

char *gcvt(double val, int precision, char *buf);
char *gcvtf(float val, int precision, char *buf);

Description
gevt writes a fully formatted number as a null-terminated string in the buffer xbuf. gdvtf
produces corresponding character representations of float numbers.

gcvt uses the same rules as the printf format ‘% . precisiong’—only negative values are
signed (with ‘=’), and either exponential or ordinary decimal-fraction format is chosen de-
pending on the number of significant digits (specified by precision).

Returns
The result is a pointer to the formatted representation of val (the same as the argument

buf).

Portability
Neither function is ANSI C.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

18 Red Hat newlib C Library, Full

2.15 ecvtbuf, fcvtbuf—double or float to string
Synopsis
#include <stdio.h>

char *ecvtbuf (double val, int chars, int *decpt,
int *sgn, char *buf);

char *fcvtbuf(double val, int decimals, int *decpt,
int *sgn, char *buf);

Description
ecvtbuf and fcvtbuf produce (null-terminated) strings of digits representating the double
number val.

The only difference between ecvtbuf and fcvtbuf is the interpretation of the second ar-
gument (chars or decimals). For ecvtbuf, the second argument chars specifies the total
number of characters to write (which is also the number of significant digits in the format-
ted string, since these two functions write only digits). For fcvtbuf, the second argument
decimals specifies the number of characters to write after the decimal point; all digits for
the integer part of val are always included.

Since ecvtbuf and fcvtbuf write only digits in the output string, they record the location
of the decimal point in *decpt, and the sign of the number in *sgn. After formatting
a number, *decpt contains the number of digits to the left of the decimal point. *sgn
contains 0 if the number is positive, and 1 if it is negative. For both functions, you supply
a pointer buf to an area of memory to hold the converted string.

Returns
Both functions return a pointer to buf, the string containing a character representation of
val.

Portability
Neither function is ANSI C.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

Chapter 2: Standard Utility Functions (‘stdlib.h’) 19

2.16 __env_lock env_unlock—Ilock environ variable

- P R——

Synopsis
#include <envlock.h>

void __env_lock (struct _reent *reent);
void __env_unlock (struct _reent *reent);

Description

The setenv family of routines call these functions when they need to modify the environ
variable. The version of these routines supplied in the library use the lock API defined
in sys/lock.h. If multiple threads of execution can call setenv, or if setenv can be called
reentrantly, then you need to define your own versions of these functions in order to safely
lock the memory pool during a call. If you do not, the memory pool may become corrupted.

A call to setenv may call __env_lock recursively; that is, the sequence of calls may go
__env_lock, __env_lock env_unlock env_unlock. Any implementation of these
routines must be careful to avoid causing a thread to wait for a lock that it already holds.

) ——) ——

20 Red Hat newlib C Library, Full

2.17 exit—end program execution
Synopsis

#include <stdlib.h>
void exit(int code);

Description

Use exit to return control from a program to the host operating environment. Use the
argument code to pass an exit status to the operating environment: two particular values,
EXIT_SUCCESS and EXIT_FAILURE, are defined in ‘stdlib.h’ to indicate success or failure
in a portable fashion.

exit does two kinds of cleanup before ending execution of your program. First, it calls
all application-defined cleanup functions you have enrolled with atexit. Second, files and
streams are cleaned up: any pending output is delivered to the host system, each open file
or stream is closed, and files created by tmpfile are deleted.

Returns
exit does not return to its caller.

Portability
ANSI C requires exit, and specifies that EXIT_SUCCESS and EXIT_FAILURE must be defined.

Supporting OS subroutines required: _exit.

Chapter 2: Standard Utility Functions (‘stdlib.h’) 21

2.18 getenv—Ilook up environment variable

Synopsis
#include <stdlib.h>
char *getenv(const char *name);

Description

getenv searches the list of environment variable names and values (using the global pointer
“char **environ”) for a variable whose name matches the string at name. If a variable
name matches, getenv returns a pointer to the associated value.

Returns
A pointer to the (string) value of the environment variable, or NULL if there is no such
environment variable.

Portability
getenv is ANSI, but the rules for properly forming names of environment variables vary
from one system to another.

getenv requires a global pointer environ.

22 Red Hat newlib C Library, Full

2.19 labs—Ilong integer absolute value
Synopsis

#include <stdlib.h>
long labs(long 1i);

Description
labs returns |z|, the absolute value of i (also called the magnitude of i). That is, if i is
negative, the result is the opposite of i, but if i is nonnegative the result is i.

The similar function abs uses and returns int rather than long values.

Returns
The result is a nonnegative long integer.

Portability
labs is ANSI.

No supporting OS subroutine calls are required.

Chapter 2: Standard Utility Functions (‘stdlib.h’) 23

2.20 ldiv—divide two long integers
Synopsis

#include <stdlib.h>
ldiv_t 1div(long n, long d);

Description
Divide n/d, returning quotient and remainder as two long integers in a structure 1div_t.

Returns
The result is represented with the structure

typedef struct
{
long quot;
long rem;
} 1ldiv_t;
where the quot field represents the quotient, and rem the remainder. For nonzero d, if ‘r =
1div(n,d);’ then n equals ‘r.rem + d*r.quot’.

To divide int rather than long values, use the similar function div.

Portability
1div is ANSI.

No supporting OS subroutines are required.

24 Red Hat newlib C Library, Full

2.21 1llabs——compute the absolute value of an long long
integer.
Synopsis

#include <stdlib.h>
long long llabs(long long j);

Description
The 1labs function computes the absolute value of the long long integer argument j (also
called the magnitude of j).

The similar function labs uses and returns long rather than long long values.

Returns
A nonnegative long long integer.

Portability
1labs is ISO 9899 (C99) compatable.

No supporting OS subroutines are required.

Chapter 2: Standard Utility Functions (‘stdlib.h’) 25

2.22 11div—divide two long long integers
Synopsis

#include <stdlib.h>
11div_t 11div(long long n, long long d);

Description
Divide n/d, returning quotient and remainder as two long long integers in a structure
11div_t.

Returns
The result is represented with the structure

typedef struct

{

long long quot;

long long rem;

} 1ldiv_t;
where the quot field represents the quotient, and rem the remainder. For nonzero d, if ‘r =
1div(n,d);’ then n equals ‘r.rem + d*r.quot’.

To divide long rather than long long values, use the similar function 1div.

Portability
11div is ISO 9899 (C99) compatable.

No supporting OS subroutines are required.

26 Red Hat newlib C Library, Full

2.23 malloc, realloc, free—manage memory
Synopsis

#include <stdlib.h>

void #*malloc(size_t nbytes);

void *realloc(void *aptr, size_t nbytes);
void *reallocf(void *aptr, size_t nbytes);
void free(void *aptr);

void #*memalign(size_t align, size_t nbytes);
size_t malloc_usable_size(void *aptr);

void *_malloc_r(void *reent, size_t nbytes);
void *_realloc_r(void *reent,
void *aptr, size_t nbytes);
void *_reallocf_r(void *reent,
void *aptr, size_t nbytes);
void _free_r(void *reent, void *aptr);

void *_memalign r(void *reent,
size_t align, size_t nbytes);

size_t _malloc_usable_size_r(void *reent, void *aptr);

Description
These functions manage a pool of system memory.

Use malloc to request allocation of an object with at least nbytes bytes of storage available.
If the space is available, malloc returns a pointer to a newly allocated block as its result.

If you already have a block of storage allocated by malloc, but you no longer need all the
space allocated to it, you can make it smaller by calling realloc with both the object
pointer and the new desired size as arguments. realloc guarantees that the contents of
the smaller object match the beginning of the original object.

Similarly, if you need more space for an object, use realloc to request the larger size; again,
realloc guarantees that the beginning of the new, larger object matches the contents of
the original object.

When you no longer need an object originally allocated by malloc or realloc (or the
related function calloc), return it to the memory storage pool by calling free with the
address of the object as the argument. You can also use realloc for this purpose by calling
it with 0 as the nbytes argument.

The reallocf function behaves just like realloc except if the function is required to
allocate new storage and this fails. In this case reallocf will free the original object
passed in whereas realloc will not.

The memalign function returns a block of size nbytes aligned to a align boundary. The
align argument must be a power of two.

Chapter 2: Standard Utility Functions (‘stdlib.h’) 27

The malloc_usable_size function takes a pointer to a block allocated by malloc. It
returns the amount of space that is available in the block. This may or may not be more
than the size requested from malloc, due to alignment or minimum size constraints.

The alternate functions _malloc_r, _realloc_r, _reallocf_r, _free_r, _memalign_r,
and _malloc_usable_size_r are reentrant versions. The extra argument reent is a pointer
to a reentrancy structure.

If you have multiple threads of execution which may call any of these routines, or if any
of these routines may be called reentrantly, then you must provide implementations of the
__malloc_lock and __malloc_unlock functions for your system. See the documentation
for those functions.

These functions operate by calling the function _sbrk_r or sbrk, which allocates space.
You may need to provide one of these functions for your system. _sbrk_r is called with
a positive value to allocate more space, and with a negative value to release previously
allocated space if it is no longer required. See Section 12.1 [Stubs|, page 303.

Returns
malloc returns a pointer to the newly allocated space, if successful; otherwise it returns
NULL. If your application needs to generate empty objects, you may use malloc(0) for this
purpose.

realloc returns a pointer to the new block of memory, or NULL if a new block could not
be allocated. NULL is also the result when you use ‘realloc(aptr,0)’ (which has the
same effect as ‘free(aptr)’). You should always check the result of realloc; successful
reallocation is not guaranteed even when you request a smaller object.

free does not return a result.
memalign returns a pointer to the newly allocated space.

malloc_usable_size returns the usable size.

Portability
malloc, realloc, and free are specified by the ANSI C standard, but other conforming
implementations of malloc may behave differently when nbytes is zero.

memalign is part of SVRA.
malloc_usable_size is not portable.

Supporting OS subroutines required: sbrk.

28 Red Hat newlib C Library, Full

2.24 mallinfo, malloc_stats, mallopt—malloc support
Synopsis

#include <malloc.h>

struct mallinfo mallinfo(void);

void malloc_stats(void);
int mallopt(int parameter, value);

struct mallinfo _mallinfo_r(void *reent);
void _malloc_stats_r(void *reent);
int _mallopt_r(void *reent, int parameter, value);

Description

mallinfo returns a structure describing the current state of memory allocation. The struc-
ture is defined in malloc.h. The following fields are defined: arena is the total amount of
space in the heap; ordblks is the number of chunks which are not in use; uordblks is the
total amount of space allocated by malloc; fordblks is the total amount of space not in
use; keepcost is the size of the top most memory block.

malloc_stats print some statistics about memory allocation on standard error.

mallopt takes a parameter and a value. The parameters are defined in malloc.h, and may
be one of the following: M_TRIM_THRESHOLD sets the maximum amount of unused space in
the top most block before releasing it back to the system in free (the space is released by
calling _sbrk_r with a negative argument); M_TOP_PAD is the amount of padding to allocate
whenever _sbrk_r is called to allocate more space.

The alternate functions _mallinfo_r, _malloc_stats_r, and _mallopt_r are reentrant
versions. The extra argument reent is a pointer to a reentrancy structure.

Returns
mallinfo returns a mallinfo structure. The structure is defined in malloc.h.

malloc_stats does not return a result.

mallopt returns zero if the parameter could not be set, or non-zero if it could be set.

Portability
mallinfo and mallopt are provided by SVR4, but mallopt takes different parameters on
different systems. malloc_stats is not portable.

Chapter 2: Standard Utility Functions (‘stdlib.h’) 29

2.25 __malloc_lock

malloc_unlock—Ilock malloc pool

[J——
Synopsis
#include <malloc.h>

void __malloc_lock (struct _reent *reent);
void __malloc_unlock (struct _reent *reent);

Description

The malloc family of routines call these functions when they need to lock the memory pool.
The version of these routines supplied in the library use the lock API defined in sys/lock.h.
If multiple threads of execution can call malloc, or if malloc can be called reentrantly, then
you need to define your own versions of these functions in order to safely lock the memory
pool during a call. If you do not, the memory pool may become corrupted.

A call tomalloc may call __malloc_lock recursively; that is, the sequence of calls may go __
malloc_lock, __malloc_lock, __malloc_unlock, __malloc_unlock. Any implementation
of these routines must be careful to avoid causing a thread to wait for a lock that it already
holds.

) ——) ——

30 Red Hat newlib C Library, Full

2.26 mblen—minimal multibyte length function

Synopsis
#include <stdlib.h>
int mblen(const char *s, size_t n);

Description

When _.MB_CAPABLE is not defined, this is a minimal ANSI-conforming implementation
of mblen. In this case, the only “multi-byte character sequences” recognized are single
bytes, and thus 1 is returned unless s is the null pointer or has a length of 0 or is the empty
string.

When -MB_CAPABLE is defined, this routine calls _mbtowc_r to perform the conversion,
passing a state variable to allow state dependent decoding. The result is based on the locale
setting which may be restricted to a defined set of locales.

Returns

This implementation of mblen returns O if s is NULL or the empty string; it returns 1 if not
_MB_CAPABLE or the character is a single-byte character; it returns -1 if the multi-byte
character is invalid; otherwise it returns the number of bytes in the multibyte character.

Portability
mblen is required in the ANSI C standard. However, the precise effects vary with the locale.

mblen requires no supporting OS subroutines.

Chapter 2: Standard Utility Functions (‘stdlib.h’) 31

2.27 mbsrtowcs, mbsnrtowcs—convert a character string to a
wide-character string

Synopsis

#include <wchar.h>

size_t mbsrtowcs(wchar_t *__restrict dst,
const char **__restrict src,
size_t len,
mbstate_t *__restrict ps);

#include <wchar.h>

size_t _mbsrtowcs_r(struct _reent *ptr, wchar_t *dst,
const char **src, size_t len,
mbstate_t *ps);

#include <wchar.h>
size_t mbsnrtowcs(wchar_t *__ restrict dst,
const char **__restrict src, size_t nms,

size_t len, mbstate_t *__restrict ps);

#include <wchar.h>

size_t _mbsnrtowcs_r(struct _reent *ptr, wchar_t *dst,
const char **src, size_t nms,
size_t len, mbstate_t *ps);

Description

The mbsrtowcs function converts a sequence of multibyte characters pointed to indirectly
by src into a sequence of corresponding wide characters and stores at most len of them in
the wchar_t array pointed to by dst, until it encounters a terminating null character ("\0’).

If dst is NULL, no characters are stored.

If dst is not NULL, the pointer pointed to by src is updated to point to the character
after the one that conversion stopped at. If conversion stops because a null character is
encountered, *src is set to NULL.

The mbstate_t argument, ps, is used to keep track of the shift state. If it is NULL,
mbsrtowcs uses an internal, static mbstate_t object, which is initialized to the initial con-
version state at program startup.

The mbsnrtowcs function behaves identically to mbsrtowcs, except that conversion stops
after reading at most nms bytes from the buffer pointed to by src.

Returns
The mbsrtowcs and mbsnrtowcs functions return the number of wide characters stored in
the array pointed to by dst if successful, otherwise it returns (size_t)-1.

Portability
mbsrtowcs is defined by the C99 standard. mbsnrtowcs is defined by the POSIX.1-2008
standard.

32

Red Hat newlib C Library, Full

Chapter 2: Standard Utility Functions (‘stdlib.h’) 33

2.28 mbstowcs—minimal multibyte string to wide char
converter

Synopsis
#include <stdlib.h>
int mbstowcs(wchar_t *restrict pwc, const char *restrict s, size_t n);

Description

When _.MB_CAPABLE is not defined, this is a minimal ANSI-conforming implementation
of mbstowcs. In this case, the only “multi-byte character sequences” recognized are single
bytes, and they are “converted” to wide-char versions simply by byte extension.

When _-MB_CAPABLE is defined, this routine calls _mbstowcs_r to perform the conversion,
passing a state variable to allow state dependent decoding. The result is based on the locale
setting which may be restricted to a defined set of locales.

Returns

This implementation of mbstowcs returns 0 if s is NULL or is the empty string; it returns -1 if
_MB_CAPABLE and one of the multi-byte characters is invalid or incomplete; otherwise it
returns the minimum of: n or the number of multi-byte characters in s plus 1 (to compensate
for the nul character). If the return value is -1, the state of the pwc string is indeterminate.
If the input has a length of 0, the output string will be modified to contain a wchar_t nul
terminator.

Portability
mbstowcs is required in the ANSI C standard. However, the precise effects vary with the
locale.

mbstowcs requires no supporting OS subroutines.

34 Red Hat newlib C Library, Full

2.29 mbtowc—minimal multibyte to wide char converter
Synopsis

#include <stdlib.h>
int mbtowc(wchar_t *restrict pwc, const char *restrict s, size_t n);

Description

When _.MB_CAPABLE is not defined, this is a minimal ANSI-conforming implementation
of mbtowc. In this case, only “multi-byte character sequences” recognized are single bytes,
and they are “converted” to themselves. Each call to mbtowc copies one character from *s
to *pwc, unless s is a null pointer. The argument n is ignored.

When -MB_CAPABLE is defined, this routine calls _mbtowc_r to perform the conversion,
passing a state variable to allow state dependent decoding. The result is based on the locale
setting which may be restricted to a defined set of locales.

Returns

This implementation of mbtowc returns 0 if s is NULL or is the empty string; it returns 1 if
not _-MB_CAPABLE or the character is a single-byte character; it returns -1 if n is 0 or the
multi-byte character is invalid; otherwise it returns the number of bytes in the multibyte
character. If the return value is -1, no changes are made to the pwc output string. If the
input is the empty string, a wchar_t nul is placed in the output string and 0 is returned. If
the input has a length of 0, no changes are made to the pwc output string.

Portability
mbtowc is required in the ANSI C standard. However, the precise effects vary with the
locale.

mbtowc requires no supporting OS subroutines.

Chapter 2: Standard Utility Functions (‘stdlib.h’) 35

2.30 on_exit—request execution of function with argument
at program exit

Synopsis

#include <stdlib.h>
int on_exit (void (*function) (int, void *), void *arg);

Description

You can use on_exit to enroll functions in a list of functions that will be called when your
program terminates normally. The argument is a pointer to a user-defined function which
takes two arguments. The first is the status code passed to exit and the second argument is
of type pointer to void. The function must not return a result. The value of arg is registered
and passed as the argument to function.

The functions are kept in a LIFO stack; that is, the last function enrolled by atexit or
on_exit will be the first to execute when your program exits. You can intermix functions
using atexit and on_exit.

There is no built-in limit to the number of functions you can enroll in this list; however,
after every group of 32 functions is enrolled, atexit/on_exit will call malloc to get space
for the next part of the list. The initial list of 32 functions is statically allocated, so you
can always count on at least that many slots available.

Returns
on_exit returns 0 if it succeeds in enrolling your function, -1 if it fails (possible only if no
space was available for malloc to extend the list of functions).

Portability
on_exit is a non-standard glibc extension

Supporting OS subroutines required: None

36 Red Hat newlib C Library, Full

2.31 gsort—sort an array
Synopsis
#include <stdlib.h>

void gsort(void *base, size_t nmemb, size_t size,
int (*compar) (const void *, const void *));

Description
gsort sorts an array (beginning at base) of nmemb objects. size describes the size of each
element of the array.

You must supply a pointer to a comparison function, using the argument shown as compar.
(This permits sorting objects of unknown properties.) Define the comparison function to
accept two arguments, each a pointer to an element of the array starting at base. The result
of (xcompar) must be negative if the first argument is less than the second, zero if the two
arguments match, and positive if the first argument is greater than the second (where “less
than” and “greater than” refer to whatever arbitrary ordering is appropriate).

The array is sorted in place; that is, when gsort returns, the array elements beginning at
base have been reordered.

Returns
gsort does not return a result.

Portability
gsort is required by ANSI (without specifying the sorting algorithm).

Chapter 2: Standard Utility Functions (‘stdlib.h’) 37

2.32 rand, srand—pseudo-random numbers

Synopsis
#include <stdlib.h>
int rand(void);
void srand(unsigned int seed);
int rand_r(unsigned int *seed);

Description

rand returns a different integer each time it is called; each integer is chosen by an algorithm
designed to be unpredictable, so that you can use rand when you require a random number.
The algorithm depends on a static variable called the “random seed”; starting with a given
value of the random seed always produces the same sequence of numbers in successive calls
to rand.

You can set the random seed using srand; it does nothing beyond storing its argument in the
static variable used by rand. You can exploit this to make the pseudo-random sequence less
predictable, if you wish, by using some other unpredictable value (often the least significant
parts of a time-varying value) as the random seed before beginning a sequence of calls to
rand; or, if you wish to ensure (for example, while debugging) that successive runs of your
program use the same “random” numbers, you can use srand to set the same random seed
at the outset.

Returns
rand returns the next pseudo-random integer in sequence; it is a number between 0 and
RAND_MAX (inclusive).

srand does not return a result.

Portability

rand is required by ANSI, but the algorithm for pseudo-random number generation is not
specified; therefore, even if you use the same random seed, you cannot expect the same
sequence of results on two different systems.

rand requires no supporting OS subroutines.

38 Red Hat newlib C Library, Full

2.33 rand48, drand48, erand48, lrand48, nrand48, mrand43,
jrand48, srand48, seed48, lcong48—pseudo-random

number generators and initialization routines

Synopsis

#include <stdlib.h>

double drand48(void);

double erand48(unsigned short xseed[3]);

long lrand48(void);

long nrand48(unsigned short xseed [3]);

long mrand48(void);

long jrand48(unsigned short xseed[3]);

void srand48(long seed);

unsigned short *seed48(unsigned short xseed[3]);

void lcong48(unsigned short p[7]);

Description

The rand48 family of functions generates pseudo-random numbers using a linear congruen-
tial algorithm working on integers 48 bits in size. The particular formula employed is r(n+1)
= (a * r(n) + ¢) mod m where the default values are for the multiplicand a = Oxfdeece66d
= 25214903917 and the addend ¢ = Oxb = 11. The modulo is always fixed at m = 2 ** 48,
r(n) is called the seed of the random number generator.

For all the six generator routines described next, the first computational step is to perform
a single iteration of the algorithm.

drand48 and erand48 return values of type double. The full 48 bits of r(n+1) are loaded
into the mantissa of the returned value, with the exponent set such that the values produced
lie in the interval [0.0, 1.0].

1rand48 and nrand48 return values of type long in the range [0, 2**31-1]. The high-order
(31) bits of r(n+1) are loaded into the lower bits of the returned value, with the topmost
(sign) bit set to zero.

mrand48 and jrand48 return values of type long in the range [-2**31, 2**31-1]. The high-
order (32) bits of r(n+1) are loaded into the returned value.

drand48, 1rand48, and mrand48 use an internal buffer to store r(n). For these functions
the initial value of r(0) = 0x1234abcd330e = 20017429951246.

On the other hand, erand48, nrand48, and jrand48 use a user-supplied buffer to store the
seed r(n), which consists of an array of 3 shorts, where the zeroth member holds the least
significant bits.

All functions share the same multiplicand and addend.

srand48 is used to initialize the internal buffer r(n) of drand48, 1rand48, and mrand48 such
that the 32 bits of the seed value are copied into the upper 32 bits of r(n), with the lower
16 bits of r(n) arbitrarily being set to 0x330e. Additionally, the constant multiplicand and
addend of the algorithm are reset to the default values given above.

seed48 also initializes the internal buffer r(n) of drand48, 1rand48, and mrand48, but here
all 48 bits of the seed can be specified in an array of 3 shorts, where the zeroth member
specifies the lowest bits. Again, the constant multiplicand and addend of the algorithm are
reset to the default values given above. seed48 returns a pointer to an array of 3 shorts

Chapter 2: Standard Utility Functions (‘stdlib.h’) 39

which contains the old seed. This array is statically allocated, thus its contents are lost
after each new call to seed48.

Finally, 1cong48 allows full control over the multiplicand and addend used in drand48,
erand48, lrand48, nrand48, mrand48, and jrand48, and the seed used in drand48,
lrand48, and mrand48. An array of 7 shorts is passed as parameter; the first three shorts
are used to initialize the seed; the second three are used to initialize the multiplicand; and
the last short is used to initialize the addend. It is thus not possible to use values greater
than Oxffff as the addend.

Note that all three methods of seeding the random number generator always also set the
multiplicand and addend for any of the six generator calls.

For a more powerful random number generator, see random.

Portability
SUS requires these functions.

No supporting OS subroutines are required.

40 Red Hat newlib C Library, Full

2.34 strtod, strtof—string to double or float
Synopsis
#include <stdlib.h>

double strtod(const char *restrict str, char **restrict tail);
float strtof(const char *restrict str, char **restrict tail);

double _strtod_r(void *reent,
const char *restrict str, char **restrict tail);

Description
The function strtod parses the character string str, producing a substring which can be
converted to a double value. The substring converted is the longest initial subsequence of
str, beginning with the first non-whitespace character, that has one of these formats:

[+1-1digits[.[digits]][(elE) [+]|-]digits]

[+1-1.digits[(e|E) [+|-1digits]

H-1GEID @I EIR [GEID @I GID 1T (yI)]

[+1-1(nIN) (alA) (nIN) [<(>[hexdigits]<)>]

[+1-10(x|X)hexdigits [. [hexdigits]] [(p|P) [+|-]digits]

[+1-10(x|X) .hexdigits [(p|P) [+|-]digits]
The substring contains no characters if str is empty, consists entirely of whitespace, or if
the first non-whitespace character is something other than +, -, ., or a digit, and cannot
be parsed as infinity or NaN. If the platform does not support NaN, then NaN is treated as
an empty substring. If the substring is empty, no conversion is done, and the value of str
is stored in *tail. Otherwise, the substring is converted, and a pointer to the final string
(which will contain at least the terminating null character of str) is stored in *tail. If you
want no assignment to *tail, pass a null pointer as tail. strtof is identical to strtod
except for its return type.

This implementation returns the nearest machine number to the input decimal string. Ties
are broken by using the IEEE round-even rule. However, strtof is currently subject to
double rounding errors.

The alternate function _strtod_r is a reentrant version. The extra argument reent is a
pointer to a reentrancy structure.

Returns

strtod returns the converted substring value, if any. If no conversion could be performed,
0 is returned. If the correct value is out of the range of representable values, plus or minus
HUGE_VAL is returned, and ERANGE is stored in errno. If the correct value would cause
underflow, 0 is returned and ERANGE is stored in errno.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

Chapter 2: Standard Utility Functions (‘stdlib.h’) 41

2.35 strtol—string to long
Synopsis

#include <stdlib.h>
long strtol(const char *restrict s, char **restrict ptr,int base);

long _strtol_r(void *reent,
const char *restrict s, char **restrict ptr,int base);

Description

The function strtol converts the string *s to a long. First, it breaks down the string into
three parts: leading whitespace, which is ignored; a subject string consisting of characters
resembling an integer in the radix specified by base; and a trailing portion consisting of
zero or more unparseable characters, and always including the terminating null character.
Then, it attempts to convert the subject string into a long and returns the result.

If the value of base is 0, the subject string is expected to look like a normal C integer
constant: an optional sign, a possible ‘0x’ indicating a hexadecimal base, and a number.
If base is between 2 and 36, the expected form of the subject is a sequence of letters and
digits representing an integer in the radix specified by base, with an optional plus or minus
sign. The letters a—z (or, equivalently, A-Z) are used to signify values from 10 to 35; only
letters whose ascribed values are less than base are permitted. If base is 16, a leading 0x is
permitted.

The subject sequence is the longest initial sequence of the input string that has the expected
form, starting with the first non-whitespace character. If the string is empty or consists
entirely of whitespace, or if the first non-whitespace character is not a permissible letter or
digit, the subject string is empty.

If the subject string is acceptable, and the value of base is zero, strtol attempts to deter-
mine the radix from the input string. A string with a leading 0x is treated as a hexadecimal
value; a string with a leading 0 and no x is treated as octal; all other strings are treated as
decimal. If base is between 2 and 36, it is used as the conversion radix, as described above.
If the subject string begins with a minus sign, the value is negated. Finally, a pointer to
the first character past the converted subject string is stored in ptr, if ptr is not NULL.

If the subject string is empty (or not in acceptable form), no conversion is performed and
the value of s is stored in ptr (if ptr is not NULL).

The alternate function _strtol_r is a reentrant version. The extra argument reent is a
pointer to a reentrancy structure.

Returns
strtol returns the converted value, if any. If no conversion was made, 0 is returned.

strtol returns LONG_MAX or LONG_MIN if the magnitude of the converted value is too large,
and sets errno to ERANGE.

Portability
strtol is ANSL

No supporting OS subroutines are required.

42

Red Hat newlib C Library, Full

Chapter 2: Standard Utility Functions (‘stdlib.h’) 43

2.36 strtoll—string to long long

Synopsis
#include <stdlib.h>
long long strtoll(const char *restrict s, char **restrict ptr,int base);

long long _strtoll_r(void *reent,
const char *restrict s, char **restrict ptr,int base);

Description

The function strtoll converts the string *s to a long long. First, it breaks down the
string into three parts: leading whitespace, which is ignored; a subject string consisting
of characters resembling an integer in the radix specified by base; and a trailing portion
consisting of zero or more unparseable characters, and always including the terminating null
character. Then, it attempts to convert the subject string into a long long and returns the
result.

If the value of base is 0, the subject string is expected to look like a normal C integer
constant: an optional sign, a possible ‘Ox’ indicating a hexadecimal base, and a number.
If base is between 2 and 36, the expected form of the subject is a sequence of letters and
digits representing an integer in the radix specified by base, with an optional plus or minus
sign. The letters a—z (or, equivalently, A-Z) are used to signify values from 10 to 35; only
letters whose ascribed values are less than base are permitted. If base is 16, a leading Ox is
permitted.

The subject sequence is the longest initial sequence of the input string that has the expected
form, starting with the first non-whitespace character. If the string is empty or consists
entirely of whitespace, or if the first non-whitespace character is not a permissible letter or
digit, the subject string is empty.

If the subject string is acceptable, and the value of base is zero, strtoll attempts to
determine the radix from the input string. A string with a leading 0x is treated as a
hexadecimal value; a string with a leading 0 and no x is treated as octal; all other strings
are treated as decimal. If base is between 2 and 36, it is used as the conversion radix,
as described above. If the subject string begins with a minus sign, the value is negated.
Finally, a pointer to the first character past the converted subject string is stored in ptr, if
ptr is not NULL.

If the subject string is empty (or not in acceptable form), no conversion is performed and
the value of s is stored in ptr (if ptr is not NULL).

The alternate function _strtoll_r is a reentrant version. The extra argument reent is a
pointer to a reentrancy structure.

Returns

strtoll returns the converted value, if any. If no conversion was made, 0 is returned.
strtoll returns LONG_LONG_MAX or LONG_LONG_MIN if the magnitude of the converted value
is too large, and sets errno to ERANGE.

Portability
strtoll is ANSL

44 Red Hat newlib C Library, Full

No supporting OS subroutines are required.

Chapter 2: Standard Utility Functions (‘stdlib.h’) 45

2.37 strtoul—string to unsigned long
Synopsis
#include <stdlib.h>

unsigned long strtoul(const char *restrict s, char **restrict ptr,
int base);

unsigned long _strtoul_r(void *reent, const char *restrict s,
char **restrict ptr, int base);

Description

The function strtoul converts the string *s to an unsigned long. First, it breaks down
the string into three parts: leading whitespace, which is ignored; a subject string consisting
of the digits meaningful in the radix specified by base (for example, 0 through 7 if the value
of base is 8); and a trailing portion consisting of one or more unparseable characters, which
always includes the terminating null character. Then, it attempts to convert the subject
string into an unsigned long integer, and returns the result.

If the value of base is zero, the subject string is expected to look like a normal C integer
constant (save that no optional sign is permitted): a possible 0x indicating hexadecimal
radix, and a number. If base is between 2 and 36, the expected form of the subject is
a sequence of digits (which may include letters, depending on the base) representing an
integer in the radix specified by base. The letters a—z (or A-Z) are used as digits valued
from 10 to 35. If base is 16, a leading Ox is permitted.

The subject sequence is the longest initial sequence of the input string that has the expected
form, starting with the first non-whitespace character. If the string is empty or consists
entirely of whitespace, or if the first non-whitespace character is not a permissible digit, the
subject string is empty.

If the subject string is acceptable, and the value of base is zero, strtoul attempts to
determine the radix from the input string. A string with a leading 0x is treated as a
hexadecimal value; a string with a leading 0 and no x is treated as octal; all other strings
are treated as decimal. If base is between 2 and 36, it is used as the conversion radix, as
described above. Finally, a pointer to the first character past the converted subject string
is stored in ptr, if ptr is not NULL.

If the subject string is empty (that is, if *s does not start with a substring in acceptable
form), no conversion is performed and the value of s is stored in ptr (if ptr is not NULL).

The alternate function _strtoul_r is a reentrant version. The extra argument reent is a
pointer to a reentrancy structure.

Returns
strtoul returns the converted value, if any. If no conversion was made, 0 is returned.

strtoul returns ULONG_MAX if the magnitude of the converted value is too large, and sets
errno to ERANGE.

Portability
strtoul is ANSIL

46

strtoul requires no supporting OS subroutines.

Red Hat newlib C Library, Full

Chapter 2: Standard Utility Functions (‘stdlib.h’) 47

2.38 strtoull—string to unsigned long long
Synopsis
#include <stdlib.h>

unsigned long long strtoull(const char *restrict s, char **restrict ptr,
int base);

unsigned long long _strtoull_r(void *reent, const char *restrict s,
char **restrict ptr, int base);

Description

The function strtoull converts the string *s to an unsigned long long. First, it breaks
down the string into three parts: leading whitespace, which is ignored; a subject string
consisting of the digits meaningful in the radix specified by base (for example, 0 through
7 if the value of base is 8); and a trailing portion consisting of one or more unparseable
characters, which always includes the terminating null character. Then, it attempts to
convert the subject string into an unsigned long long integer, and returns the result.

If the value of base is zero, the subject string is expected to look like a normal C integer
constant (save that no optional sign is permitted): a possible 0x indicating hexadecimal
radix, and a number. If base is between 2 and 36, the expected form of the subject is
a sequence of digits (which may include letters, depending on the base) representing an
integer in the radix specified by base. The letters a—z (or A-Z) are used as digits valued
from 10 to 35. If base is 16, a leading Ox is permitted.

The subject sequence is the longest initial sequence of the input string that has the expected
form, starting with the first non-whitespace character. If the string is empty or consists
entirely of whitespace, or if the first non-whitespace character is not a permissible digit, the
subject string is empty.

If the subject string is acceptable, and the value of base is zero, strtoull attempts to
determine the radix from the input string. A string with a leading 0x is treated as a
hexadecimal value; a string with a leading 0 and no x is treated as octal; all other strings
are treated as decimal. If base is between 2 and 36, it is used as the conversion radix, as
described above. Finally, a pointer to the first character past the converted subject string
is stored in ptr, if ptr is not NULL.

If the subject string is empty (that is, if *s does not start with a substring in acceptable
form), no conversion is performed and the value of s is stored in ptr (if ptr is not NULL).

The alternate function _strtoull_r is a reentrant version. The extra argument reent is a
pointer to a reentrancy structure.

Returns
strtoull returns the converted value, if any. If no conversion was made, 0 is returned.

strtoull returns ULONG_LONG_MAX if the magnitude of the converted value is too large, and
sets errno to ERANGE.

Portability
strtoull is ANSI.

48

strtoull requires no supporting OS subroutines.

Red Hat newlib C Library, Full

Chapter 2: Standard Utility Functions (‘stdlib.h’) 49

2.39 wcsrtombs, wcsnrtombs—convert a wide-character string
to a character string

Synopsis

#include <wchar.h>

size_t wcsrtombs(char *__restrict dst,
const wchar_t **__restrict src, size_t len,
mbstate_t *__restrict ps);

#include <wchar.h>

size_t _wcsrtombs_r(struct _reent *ptr, char xdst,
const wchar_t **src, size_t len,
mbstate_t *ps);

#include <wchar.h>
size_t wcsnrtombs(char *__restrict dst,
const wchar_t **__restrict src,
size_t nwc, size_t len,
mbstate_t *__restrict ps);
#include <wchar.h>
size_t _wcsnrtombs_r(struct _reent *ptr, char *dst,
const wchar_t **src, size_t nwc,

size_t len, mbstate_t *ps);

Description

The wecsrtombs function converts a string of wide characters indirectly pointed to by src to
a corresponding multibyte character string stored in the array pointed to by dst>. No more
than len bytes are written to dst>.

If dst> is NULL, no characters are stored.

If dst> is not NULL, the pointer pointed to by src is updated to point to the character
after the one that conversion stopped at. If conversion stops because a null character is
encountered, *src is set to NULL.

The mbstate_t argument, ps, is used to keep track of the shift state. If it is NULL,
wcsrtombs uses an internal, static mbstate_t object, which is initialized to the initial con-
version state at program startup.

The wcsnrtombs function behaves identically to wesrtombs, except that conversion stops
after reading at most nwc characters from the buffer pointed to by src.

Returns

The wcsrtombs and wesnrtombs functions return the number of bytes stored in the array
pointed to by dst (not including any terminating null), if successful, otherwise it returns
(size_t)-1.

Portability
wesrtombs is defined by C99 standard. wesnrtombs is defined by the POSIX.1-2008 stan-
dard.

50

Red Hat newlib C Library, Full

Chapter 2: Standard Utility Functions (‘stdlib.h’) 51

2.40 wcstod, wcstof—wide char string to double or float
Synopsis
#include <stdlib.h>
double wcstod(const wchar_t *__
wchar_t **__restrict tail);

float wcstof(const wchar_t *__restrict str,
wchar_t **__restrict tail);

restrict str,

double _wcstod_r(void *reent,

const wchar_t *str, wchar_t **xtail);
float _wcstof_r(void *reent,

const wchar_t *str, wchar_t **xtail);

Description
The function westod parses the wide character string str, producing a substring which can
be converted to a double value. The substring converted is the longest initial subsequence
of str, beginning with the first non-whitespace character, that has one of these formats:

[+|-1digits[.[digits]][(elE) [+|-]digits]

[+]-].digits [(e|E) [+|-1digits]

[+1-1GID @I EIF) [EID MIN) GD EIT) (yI1Y)]

[+1-1(IN) (alA) (n|N) [<(>[hexdigits]<)>]

[+]-]0(x|X)hexdigits [. [hexdigits]] [(p|P) [+|-]digits]

[+1-10(x|X) .hexdigits [(p|P) [+|-]digits]
The substring contains no characters if str is empty, consists entirely of whitespace, or if
the first non-whitespace character is something other than +, -, ., or a digit, and cannot
be parsed as infinity or NaN. If the platform does not support NaN, then NaN is treated as
an empty substring. If the substring is empty, no conversion is done, and the value of str
is stored in *tail. Otherwise, the substring is converted, and a pointer to the final string
(which will contain at least the terminating null character of str) is stored in *tail. If you
want no assignment to *tail, pass a null pointer as tail. wcstof is identical to wcstod
except for its return type.

This implementation returns the nearest machine number to the input decimal string. Ties
are broken by using the IEEE round-even rule. However, wcstof is currently subject to
double rounding errors.

The alternate functions _wcstod_r and _wcstof_r are reentrant versions of wcstod and
wcstof, respectively. The extra argument reent is a pointer to a reentrancy structure.

Returns

Return the converted substring value, if any. If no conversion could be performed, 0 is
returned. If the correct value is out of the range of representable values, plus or minus
HUGE_VAL is returned, and ERANGE is stored in errno. If the correct value would cause
underflow, 0 is returned and ERANGE is stored in errno.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

52 Red Hat newlib C Library, Full

2.41 wcstol—wide string to long

Synopsis
#include <wchar.h>
long wcstol(const wchar_t *__restrict s,
wchar_t **__restrict ptr,int base);

long _wcstol_r(void *reent,
const wchar_t *s, wchar_t **ptr,int base);

Description

The function wcstol converts the wide string *s to a long. First, it breaks down the
string into three parts: leading whitespace, which is ignored; a subject string consisting
of characters resembling an integer in the radix specified by base; and a trailing portion
consisting of zero or more unparseable characters, and always including the terminating
null character. Then, it attempts to convert the subject string into a long and returns the
result.

If the value of base is 0, the subject string is expected to look like a normal C integer
constant: an optional sign, a possible ‘0x’ indicating a hexadecimal base, and a number.
If base is between 2 and 36, the expected form of the subject is a sequence of letters and
digits representing an integer in the radix specified by base, with an optional plus or minus
sign. The letters a—z (or, equivalently, A-Z) are used to signify values from 10 to 35; only
letters whose ascribed values are less than base are permitted. If base is 16, a leading 0x is
permitted.

The subject sequence is the longest initial sequence of the input string that has the expected
form, starting with the first non-whitespace character. If the string is empty or consists
entirely of whitespace, or if the first non-whitespace character is not a permissible letter or
digit, the subject string is empty.

If the subject string is acceptable, and the value of base is zero, wcstol attempts to deter-
mine the radix from the input string. A string with a leading 0x is treated as a hexadecimal
value; a string with a leading 0 and no x is treated as octal; all other strings are treated as
decimal. If base is between 2 and 36, it is used as the conversion radix, as described above.
If the subject string begins with a minus sign, the value is negated. Finally, a pointer to
the first character past the converted subject string is stored in ptr, if ptr is not NULL.

If the subject string is empty (or not in acceptable form), no conversion is performed and
the value of s is stored in ptr (if ptr is not NULL).

The alternate function _wcstol_r is a reentrant version. The extra argument reent is a
pointer to a reentrancy structure.

Returns

wcstol returns the converted value, if any. If no conversion was made, 0 is returned.
wcstol returns LONG_MAX or LONG_MIN if the magnitude of the converted value is too large,
and sets errno to ERANGE.

Portability
westol is ANSI.

Chapter 2: Standard Utility Functions (‘stdlib.h’)

No supporting OS subroutines are required.

593

54 Red Hat newlib C Library, Full

2.42 wcstoll—wide string to long long
Synopsis

#include <wchar.h>
long long wcstoll(const wchar_t *__restrict s,
wchar_t **__restrict ptr,int base);

long long _wcstoll_r(void *reent,
const wchar_t *s, wchar_t **ptr,int base);

Description

The function wcstoll converts the wide string *s to a long long. First, it breaks down
the string into three parts: leading whitespace, which is ignored; a subject string consisting
of characters resembling an integer in the radix specified by base; and a trailing portion
consisting of zero or more unparseable characters, and always including the terminating null
character. Then, it attempts to convert the subject string into a long long and returns the
result.

If the value of base is 0, the subject string is expected to look like a normal C integer
constant: an optional sign, a possible ‘0x’ indicating a hexadecimal base, and a number.
If base is between 2 and 36, the expected form of the subject is a sequence of letters and
digits representing an integer in the radix specified by base, with an optional plus or minus
sign. The letters a—z (or, equivalently, A-Z) are used to signify values from 10 to 35; only
letters whose ascribed values are less than base are permitted. If base is 16, a leading 0x is
permitted.

The subject sequence is the longest initial sequence of the input string that has the expected
form, starting with the first non-whitespace character. If the string is empty or consists
entirely of whitespace, or if the first non-whitespace character is not a permissible letter or
digit, the subject string is empty.

If the subject string is acceptable, and the value of base is zero, wcstoll attempts to
determine the radix from the input string. A string with a leading 0x is treated as a
hexadecimal value; a string with a leading 0 and no x is treated as octal; all other strings
are treated as decimal. If base is between 2 and 36, it is used as the conversion radix,
as described above. If the subject string begins with a minus sign, the value is negated.
Finally, a pointer to the first character past the converted subject string is stored in ptr, if
ptr is not NULL.

If the subject string is empty (or not in acceptable form), no conversion is performed and
the value of s is stored in ptr (if ptr is not NULL).

The alternate function _wcstoll_r is a reentrant version. The extra argument reent is a
pointer to a reentrancy structure.

Returns
wcstoll returns the converted value, if any. If no conversion was made, 0 is returned.

wcstoll returns LONG_LONG_MAX or LONG_LONG_MIN if the magnitude of the converted value
is too large, and sets errno to ERANGE.

Chapter 2: Standard Utility Functions (‘stdlib.h’)

Portability
westoll is ANSI.

No supporting OS subroutines are required.

95

56 Red Hat newlib C Library, Full

2.43 wcstoul—wide string to unsigned long
Synopsis
#include <wchar.h>

unsigned long wcstoul(const wchar_t *__restrict s,
wchar_t **__restrict ptr, int base);

unsigned long _wcstoul_r(void *reent, const wchar_t *s,
wchar_t **ptr, int base);

Description

The function wcstoul converts the wide string *s to an unsigned long. First, it breaks
down the string into three parts: leading whitespace, which is ignored; a subject string
consisting of the digits meaningful in the radix specified by base (for example, 0 through
7 if the value of base is 8); and a trailing portion consisting of one or more unparseable
characters, which always includes the terminating null character. Then, it attempts to
convert the subject string into an unsigned long integer, and returns the result.

If the value of base is zero, the subject string is expected to look like a normal C integer
constant (save that no optional sign is permitted): a possible 0x indicating hexadecimal
radix, and a number. If base is between 2 and 36, the expected form of the subject is
a sequence of digits (which may include letters, depending on the base) representing an
integer in the radix specified by base. The letters a—z (or A-Z) are used as digits valued
from 10 to 35. If base is 16, a leading Ox is permitted.

The subject sequence is the longest initial sequence of the input string that has the expected
form, starting with the first non-whitespace character. If the string is empty or consists
entirely of whitespace, or if the first non-whitespace character is not a permissible digit, the
subject string is empty.

If the subject string is acceptable, and the value of base is zero, wcstoul attempts to
determine the radix from the input string. A string with a leading 0x is treated as a
hexadecimal value; a string with a leading 0 and no x is treated as octal; all other strings
are treated as decimal. If base is between 2 and 36, it is used as the conversion radix, as
described above. Finally, a pointer to the first character past the converted subject string
is stored in ptr, if ptr is not NULL.

If the subject string is empty (that is, if *s does not start with a substring in acceptable
form), no conversion is performed and the value of s is stored in ptr (if ptr is not NULL).

The alternate function _wcstoul_r is a reentrant version. The extra argument reent is a
pointer to a reentrancy structure.

Returns
wcstoul returns the converted value, if any. If no conversion was made, O is returned.

wcstoul returns ULONG_MAX if the magnitude of the converted value is too large, and sets
errno to ERANGE.

Portability
westoul is ANSI.

Chapter 2: Standard Utility Functions (‘stdlib.h’)

wcstoul requires no supporting OS subroutines.

o7

58 Red Hat newlib C Library, Full

2.44 wcstoull—wide string to unsigned long long
Synopsis

#include <wchar.h>
unsigned long long wcstoull(const wchar_t *__restrict s,
wchar_t **__restrict ptr, int base);

unsigned long long _wcstoull_r(void *reent, const wchar_t *s,
wchar_t **ptr, int base);

Description

The function westoull converts the wide string *s to an unsigned long long. First,
it breaks down the string into three parts: leading whitespace, which is ignored; a sub-
ject string consisting of the digits meaningful in the radix specified by base (for example,
0 through 7 if the value of base is 8); and a trailing portion consisting of one or more
unparseable characters, which always includes the terminating null character. Then, it at-
tempts to convert the subject string into an unsigned long long integer, and returns the
result.

If the value of base is zero, the subject string is expected to look like a normal C integer
constant: an optional sign (+ or -), a possible 0x indicating hexadecimal radix or a possible
<0> indicating octal radix, and a number. If base is between 2 and 36, the expected form
of the subject is a sequence of digits (which may include letters, depending on the base)
representing an integer in the radix specified by base. The letters a—z (or A-Z) are used as
digits valued from 10 to 35. If base is 16, a leading Ox is permitted.

The subject sequence is the longest initial sequence of the input string that has the expected
form, starting with the first non-whitespace character. If the string is empty or consists
entirely of whitespace, or if the first non-whitespace character is not a permissible digit, the
subject string is empty.

If the subject string is acceptable, and the value of base is zero, wcstoull attempts to
determine the radix from the input string. A string with a leading 0x is treated as a
hexadecimal value; a string with a leading 0 and no x is treated as octal; all other strings
are treated as decimal. If base is between 2 and 36, it is used as the conversion radix, as
described above. Finally, a pointer to the first character past the converted subject string
is stored in ptr, if ptr is not NULL.

If the subject string is empty (that is, if *s does not start with a substring in acceptable
form), no conversion is performed and the value of s is stored in ptr (if ptr is not NULL).

The alternate function _wcstoull_r is a reentrant version. The extra argument reent is a
pointer to a reentrancy structure.

Returns
wcstoull returns 0 and sets errno to EINVAL if the value of base is not supported.

wcstoull returns the converted value, if any. If no conversion was made, 0 is returned.

wcstoull returns ULLONG_MAX if the magnitude of the converted value is too large, and sets
errno to ERANGE.

Chapter 2: Standard Utility Functions (‘stdlib.h’)

Portability
wcstoull is ANSI.

wcstoull requires no supporting OS subroutines.

99

60 Red Hat newlib C Library, Full

2.45 system—execute command string
Synopsis

#include <stdlib.h>
int system(char *s);

int _system_r(void *reent, char *s);
Description

Use system to pass a command string *s to /bin/sh on your system, and wait for it to
finish executing.

Use “system(NULL)” to test whether your system has /bin/sh available.

The alternate function _system_r is a reentrant version. The extra argument reent is a
pointer to a reentrancy structure.

Returns
system(NULL) returns a non-zero value if /bin/sh is available, and 0 if it is not.

With a command argument, the result of system is the exit status returned by /bin/sh.

Portability

ANSI C requires system, but leaves the nature and effects of a command processor unde-
fined. ANSI C does, however, specify that system(NULL) return zero or nonzero to report
on the existence of a command processor.

POSIX.2 requires system, and requires that it invoke a sh. Where sh is found is left
unspecified.

Supporting OS subroutines required: _exit, _execve, _fork_r, _wait_r.

Chapter 2: Standard Utility Functions (‘stdlib.h’) 61

2.46 wcstombs—minimal wide char string to multibyte string
converter

Synopsis
#include <stdlib.h>
size_t wcstombs(char *restrict s, const wchar_t *restrict pwc, size_t n);

Description

When _.MB_CAPABLE is not defined, this is a minimal ANSI-conforming implementation
of westombs. In this case, all wide-characters are expected to represent single bytes and so
are converted simply by casting to char.

When _-MB_CAPABLE is defined, this routine calls _wcstombs_r to perform the conversion,
passing a state variable to allow state dependent decoding. The result is based on the locale
setting which may be restricted to a defined set of locales.

Returns

This implementation of wcstombs returns 0 if s is NULL or is the empty string; it returns
-1 if _"MB_CAPABLE and one of the wide-char characters does not represent a valid multi-
byte character; otherwise it returns the minimum of: n or the number of bytes that are
transferred to s, not including the nul terminator.

If the return value is -1, the state of the pwc string is indeterminate. If the input has a
length of 0, the output string will be modified to contain a wchar_t nul terminator if n > 0.

Portability
wcstombs is required in the ANSI C standard. However, the precise effects vary with the
locale.

wcstombs requires no supporting OS subroutines.

62 Red Hat newlib C Library, Full

2.47 wctomb—minimal wide char to multibyte converter
Synopsis

#include <stdlib.h>
int wctomb(char *s, wchar_t wchar);

Description

When _.MB_CAPABLE is not defined, this is a minimal ANSI-conforming implementation
of wetomb. The only “wide characters” recognized are single bytes, and they are “converted”
to themselves.

When _-MB_CAPABLE is defined, this routine calls _wctomb_r to perform the conversion,
passing a state variable to allow state dependent decoding. The result is based on the locale
setting which may be restricted to a defined set of locales.

Each call to wctomb modifies *s unless s is a null pointer or _-MB_CAPABLE is defined and
wchar is invalid.

Returns

This implementation of wctomb returns O if s is NULL; it returns -1 if _MB_CAPABLE is
enabled and the wchar is not a valid multi-byte character, it returns 1 if _MB_CAPABLE
is not defined or the wchar is in reality a single byte character, otherwise it returns the
number of bytes in the multi-byte character.

Portability
wctomb is required in the ANSI C standard. However, the precise effects vary with the
locale.

wctomb requires no supporting OS subroutines.

Chapter 3: Character Type Macros and Functions (‘ctype.h’) 63

3 Character Type Macros and Functions
(‘ctype.h’)

This chapter groups macros (which are also available as subroutines) to classify characters
into several categories (alphabetic, numeric, control characters, whitespace, and so on), or
to perform simple character mappings.

The header file ‘ctype.h’ defines the macros.

64 Red Hat newlib C Library, Full

3.1 isalnum—alphanumeric character predicate
Synopsis

#include <ctype.h>
int isalnum(int c);

Description

isalnum is a macro which classifies ASCII integer values by table lookup. It is a predicate
returning non-zero for alphabetic or numeric ASCII characters, and 0 for other arguments.
It is defined only if ¢ is representable as an unsigned char or if ¢ is EOF.

You can use a compiled subroutine instead of the macro definition by undefining the macro
using ‘#undef isalnum’.

Returns
isalnum returns non-zero if c¢ is a letter (a—z or A-Z) or a digit (0-9).

Portability
isalnum is ANSI C.

No OS subroutines are required.

Chapter 3: Character Type Macros and Functions (‘ctype.h’) 65

3.2 isalpha—alphabetic character predicate
Synopsis

#include <ctype.h>
int isalpha(int c);

Description

isalpha is a macro which classifies ASCII integer values by table lookup. It is a predicate
returning non-zero when c represents an alphabetic ASCII character, and 0 otherwise. It is
defined only if ¢ is representable as an unsigned char or if ¢ is EOF.

You can use a compiled subroutine instead of the macro definition by undefining the macro
using ‘#undef isalpha’.

Returns
isalpha returns non-zero if c is a letter (A-Z or a-z).

Portability
isalpha is ANSI C.

No supporting OS subroutines are required.

66 Red Hat newlib C Library, Full

3.3 isascii—ASCII character predicate
Synopsis

#include <ctype.h>
int isascii(int c¢);

Description
isascii is a macro which returns non-zero when c is an ASCII character, and 0 otherwise.
It is defined for all integer values.

You can use a compiled subroutine instead of the macro definition by undefining the macro
using ‘#undef isascii’.

Returns
isascii returns non-zero if the low order byte of ¢ is in the range 0 to 127 (0x00-0x7F).

Portability
isascii is ANSI C.

No supporting OS subroutines are required.

Chapter 3: Character Type Macros and Functions (‘ctype.h’) 67

3.4 iscntrl—control character predicate

Synopsis
#include <ctype.h>
int iscntrl(int c);

Description

iscntrl is a macro which classifies ASCII integer values by table lookup. It is a predicate
returning non-zero for control characters, and 0 for other characters. It is defined only if ¢
is representable as an unsigned char or if ¢ is EOF.

You can use a compiled subroutine instead of the macro definition by undefining the macro
using ‘#undef iscntrl’.

Returns
iscntrl returns non-zero if ¢ is a delete character or ordinary control character (0x7F or
0x00-0x1F).

Portability
iscntrl is ANSI C.

No supporting OS subroutines are required.

68 Red Hat newlib C Library, Full

3.5 isdigit—decimal digit predicate
Synopsis

#include <ctype.h>
int isdigit(int c);

Description

isdigit is a macro which classifies ASCII integer values by table lookup. It is a predicate
returning non-zero for decimal digits, and 0 for other characters. It is defined only if ¢ is
representable as an unsigned char or if ¢ is EOF.

You can use a compiled subroutine instead of the macro definition by undefining the macro
using ‘#undef isdigit’.

Returns
isdigit returns non-zero if c is a decimal digit (0-9).

Portability
isdigit is ANSI C.

No supporting OS subroutines are required.

Chapter 3: Character Type Macros and Functions (‘ctype.h’) 69

3.6 islower—lowercase character predicate
Synopsis

#include <ctype.h>
int islower(int c);

Description

islower is a macro which classifies ASCII integer values by table lookup. It is a predi-
cate returning non-zero for minuscules (lowercase alphabetic characters), and 0 for other
characters. It is defined only if ¢ is representable as an unsigned char or if ¢ is EOF.

You can use a compiled subroutine instead of the macro definition by undefining the macro
using ‘#undef islower’.

Returns
islower returns non-zero if c¢ is a lowercase letter (a—z).

Portability
islower is ANSI C.

No supporting OS subroutines are required.

70 Red Hat newlib C Library, Full

3.7 isprint, isgraph—printable character predicates

Synopsis
#include <ctype.h>
int isprint(int c);
int isgraph(int c);

Description

isprint is a macro which classifies ASCII integer values by table lookup. It is a predicate
returning non-zero for printable characters, and 0 for other character arguments. It is
defined only if ¢ is representable as an unsigned char or if ¢ is EOF.

You can use a compiled subroutine instead of the macro definition by undefining either
macro using ‘#undef isprint’ or ‘#undef isgraph’.

Returns
isprint returns non-zero if ¢ is a printing character, (0x20-0x7E). isgraph behaves iden-
tically to isprint, except that the space character (0x20) is excluded.

Portability
isprint and isgraph are ANSI C.

No supporting OS subroutines are required.

Chapter 3: Character Type Macros and Functions (‘ctype.h’) 71

3.8 ispunct—punctuation character predicate
Synopsis

#include <ctype.h>
int ispunct(int c);

Description

ispunct is a macro which classifies ASCII integer values by table lookup. It is a predicate
returning non-zero for printable punctuation characters, and 0 for other characters. It is
defined only if ¢ is representable as an unsigned char or if ¢ is EOF.

You can use a compiled subroutine instead of the macro definition by undefining the macro
using ‘#undef ispunct’.

Returns
ispunct returns non-zero if ¢ is a printable punctuation character (isgraph(c) &&
lisalnum(c)).

Portability
ispunct is ANSI C.

No supporting OS subroutines are required.

72 Red Hat newlib C Library, Full

3.9 isspace—whitespace character predicate

Synopsis
#include <ctype.h>
int isspace(int c);

Description

isspace is a macro which classifies ASCII integer values by table lookup. It is a predicate
returning non-zero for whitespace characters, and 0 for other characters. It is defined only
when isascii(c) is true or ¢ is EOF.

You can use a compiled subroutine instead of the macro definition by undefining the macro
using ‘#undef isspace’.

Returns
isspace returns non-zero if ¢ is a space, tab, carriage return, new line, vertical tab, or
formfeed (0x09-0x0D, 0x20).

Portability
isspace is ANSI C.

No supporting OS subroutines are required.

Chapter 3: Character Type Macros and Functions (‘ctype.h’) 73

3.10 isupper—uppercase character predicate
Synopsis

#include <ctype.h>
int isupper(int c);

Description

isupper is a macro which classifies ASCII integer values by table lookup. It is a predicate
returning non-zero for uppercase letters (A-Z), and 0 for other characters. It is defined only
when isascii(c) is true or ¢ is EOF.

You can use a compiled subroutine instead of the macro definition by undefining the macro
using ‘#undef isupper’.

Returns
isupper returns non-zero if ¢ is a uppercase letter (A-Z).

Portability
isupper is ANSI C.

No supporting OS subroutines are required.

74 Red Hat newlib C Library, Full

3.11 isxdigit—hexadecimal digit predicate
Synopsis

#include <ctype.h>
int isxdigit(int c);

Description

isxdigit is a macro which classifies ASCII integer values by table lookup. It is a predicate
returning non-zero for hexadecimal digits, and O for other characters. It is defined only if ¢
is representable as an unsigned char or if ¢ is EOF.

You can use a compiled subroutine instead of the macro definition by undefining the macro
using ‘#undef isxdigit’.

Returns
isxdigit returns non-zero if ¢ is a hexadecimal digit (0-9, a—f, or A-F).

Portability
isxdigit is ANSI C.

No supporting OS subroutines are required.

Chapter 3: Character Type Macros and Functions (‘ctype.h’) 75

3.12 toascii—force integers to ASCII range

Synopsis
#include <ctype.h>
int toascii(int c);

Description
toascii is a macro which coerces integers to the ASCII range (0-127) by zeroing any
higher-order bits.

You can use a compiled subroutine instead of the macro definition by undefining this macro
using ‘#undef toascii’.

Returns
toascii returns integers between 0 and 127.

Portability
toascii is not ANSI C.

No supporting OS subroutines are required.

76 Red Hat newlib C Library, Full

3.13 tolower—translate characters to lowercase

Synopsis
#include <ctype.h>
int tolower(int c);
int _tolower(int c);

Description

tolower is a macro which converts uppercase characters to lowercase, leaving all other
characters unchanged. It is only defined when c is an integer in the range EQF to 255.
You can use a compiled subroutine instead of the macro definition by undefining this macro
using ‘#undef tolower’.

_tolower performs the same conversion as tolower, but should only be used when c is
known to be an uppercase character (A-Z).

Returns
tolower returns the lowercase equivalent of ¢ when it is a character between A and Z, and
¢ otherwise.

_tolower returns the lowercase equivalent of ¢ when it is a character between A and Z. If
¢ is not one of these characters, the behaviour of _tolower is undefined.

Portability
tolower is ANSI C. _tolower is not recommended for portable programs.

No supporting OS subroutines are required.

Chapter 3: Character Type Macros and Functions (‘ctype.h’) 77

3.14 toupper—translate characters to uppercase
Synopsis
#include <ctype.h>

int toupper(int c);
int _toupper(int c);

Description

toupper is a macro which converts lowercase characters to uppercase, leaving all other
characters unchanged. It is only defined when c is an integer in the range EQF to 255.
You can use a compiled subroutine instead of the macro definition by undefining this macro
using ‘#undef toupper’.

_toupper performs the same conversion as toupper, but should only be used when c is
known to be a lowercase character (a—z).

Returns
toupper returns the uppercase equivalent of ¢ when it is a character between a and z, and
¢ otherwise.

_toupper returns the uppercase equivalent of ¢ when it is a character between a and z. If
c is not one of these characters, the behaviour of _toupper is undefined.

Portability
toupper is ANSI C. _toupper is not recommended for portable programs.

No supporting OS subroutines are required.

78 Red Hat newlib C Library, Full

3.15 iswalnum—alphanumeric wide character test
Synopsis

#include <wctype.h>
int iswalnum(wint_t c);

Description
iswalnum is a function which classifies wide-character values that are alphanumeric.

Returns
iswalnum returns non-zero if c¢ is a alphanumeric wide character.

Portability
iswalnum is C99.

No supporting OS subroutines are required.

Chapter 3: Character Type Macros and Functions (‘ctype.h’)

3.16 iswalpha—alphabetic wide character test
Synopsis

#include <wctype.h>
int iswalpha(wint_t c);

Description

iswalpha is a function which classifies wide-character values that are alphabetic.

Returns
iswalpha returns non-zero if ¢ is an alphabetic wide character.

Portability
iswalpha is C99.

No supporting OS subroutines are required.

79

80 Red Hat newlib C Library, Full

3.17 iswcntrl—control wide character test
Synopsis

#include <wctype.h>
int iswcntrl(wint_t c¢);

Description
iswcntrl is a function which classifies wide-character values that are categorized as control
characters.

Returns
iswentrl returns non-zero if ¢ is a control wide character.

Portability
iswentrl is C99.

No supporting OS subroutines are required.

Chapter 3: Character Type Macros and Functions (‘ctype.h’) 81

3.18 iswblank—blank wide character test
Synopsis

#include <wctype.h>
int iswblank(wint_t c¢);

Description
iswblank is a function which classifies wide-character values that are categorized as blank.

Returns
iswblank returns non-zero if ¢ is a blank wide character.

Portability
iswblank is C99.

No supporting OS subroutines are required.

82 Red Hat newlib C Library, Full

3.19 iswdigit—decimal digit wide character test
Synopsis

#include <wctype.h>
int iswdigit(wint_t c¢);

Description
iswdigit is a function which classifies wide-character values that are decimal digits.

Returns
iswdigit returns non-zero if ¢ is a decimal digit wide character.

Portability
iswdigit is C99.

No supporting OS subroutines are required.

Chapter 3: Character Type Macros and Functions (‘ctype.h’)

3.20 iswgraph—graphic wide character test
Synopsis

#include <wctype.h>
int iswgraph(wint_t c¢);

Description

iswgraph is a function which classifies wide-character values that are graphic.

Returns
iswgraph returns non-zero if ¢ is a graphic wide character.

Portability
iswgraph is C99.

No supporting OS subroutines are required.

83

84 Red Hat newlib C Library, Full

3.21 iswlower—lowercase wide character test
Synopsis

#include <wctype.h>
int iswlower(wint_t c¢);

Description
iswlower is a function which classifies wide-character values that have uppercase transla-
tions.

Returns
iswlower returns non-zero if ¢ is a lowercase wide character.

Portability
iswlower is C99.

No supporting OS subroutines are required.

Chapter 3: Character Type Macros and Functions (‘ctype.h’)

3.22 iswprint—printable wide character test
Synopsis

#include <wctype.h>
int iswprint(wint_t c);

Description

iswprint is a function which classifies wide-character values that are printable.

Returns
iswprint returns non-zero if ¢ is a printable wide character.

Portability
iswprint is C99.

No supporting OS subroutines are required.

85

86 Red Hat newlib C Library, Full

3.23 iswpunct—punctuation wide character test
Synopsis

#include <wctype.h>
int iswpunct(wint_t c);

Description
iswpunct is a function which classifies wide-character values that are punctuation.

Returns
iswpunct returns non-zero if ¢ is a punctuation wide character.

Portability
iswpunct is C99.

No supporting OS subroutines are required.

Chapter 3: Character Type Macros and Functions (‘ctype.h’) 87

3.24 iswspace—whitespace wide character test
Synopsis

#include <wctype.h>
int iswspace(wint_t c);

Description
iswspace is a function which classifies wide-character values that are categorized as white-
space.

Returns
iswspace returns non-zero if ¢ is a whitespace wide character.

Portability
iswspace is C99.

No supporting OS subroutines are required.

88 Red Hat newlib C Library, Full

3.25 iswupper—uppercase wide character test
Synopsis

#include <wctype.h>
int iswupper(wint_t c¢);

Description
iswupper is a function which classifies wide-character values that have uppercase transla-
tions.

Returns
iswupper returns non-zero if ¢ is a uppercase wide character.

Portability
iswupper is C99.

No supporting OS subroutines are required.

Chapter 3: Character Type Macros and Functions (‘ctype.h’) 89

3.26 iswxdigit—hexadecimal digit wide character test
Synopsis

#include <wctype.h>
int iswxdigit(wint_t c);

Description
iswxdigit is a function which classifies wide character values that are hexadecimal digits.

Returns
iswxdigit returns non-zero if ¢ is a hexadecimal digit wide character.

Portability
iswxdigit is C99.

No supporting OS subroutines are required.

90 Red Hat newlib C Library, Full

3.27 iswctype—extensible wide-character test
Synopsis

#include <wctype.h>
int iswctype(wint_t c, wctype_t desc);

Description
iswctype is a function which classifies wide-character values using the wide-character test
specified by desc.

Returns
iswctype returns non-zero if and only if ¢ matches the test specified by desc. If desc is
unknown, zero is returned.

Portability
iswctype is C99.

No supporting OS subroutines are required.

Chapter 3: Character Type Macros and Functions (‘ctype.h’) 91

3.28 wctype—get wide-character classification type

Synopsis
#include <wctype.h>
wctype_t wctype(const char *c);

Description

wctype is a function which takes a string ¢ and gives back the appropriate wetype_t type
value associated with the string, if one exists. The following values are guaranteed to
be recognized: "alnum", "alpha", "blank", "cntrl", "digit", "graph", "lower", "print",
"punct", "space", "upper", and "xdigit".

Returns
wctype returns 0 and sets errno to EINVAL if the given name is invalid. Otherwise, it
returns a valid non-zero wctype_t value.

Portability
wctype is C99.

No supporting OS subroutines are required.

92 Red Hat newlib C Library, Full

3.29 towlower—translate wide characters to lowercase
Synopsis

#include <wctype.h>
wint_t towlower (wint_t c¢);

Description
towlower is a function which converts uppercase wide characters to lowercase, leaving all
other characters unchanged.

Returns
towlower returns the lowercase equivalent of ¢ when it is a uppercase wide character;
otherwise, it returns the input character.

Portability
towlower is C99.

No supporting OS subroutines are required.

Chapter 3: Character Type Macros and Functions (‘ctype.h’) 93

3.30 towupper—translate wide characters to uppercase

Synopsis
#include <wctype.h>
wint_t towupper (wint_t c);

Description
towupper is a function which converts lowercase wide characters to uppercase, leaving all
other characters unchanged.

Returns
towupper returns the uppercase equivalent of ¢ when it is a lowercase wide character,
otherwise, it returns the input character.

Portability
towupper is C99.

No supporting OS subroutines are required.

94 Red Hat newlib C Library, Full

3.31 towctrans—extensible wide-character translation
Synopsis

#include <wctype.h>
wint_t towctrans(wint_t ¢, wctrans_t w);

Description

towctrans is a function which converts wide characters based on a specified translation
type w. If the translation type is invalid or cannot be applied to the current character, no
change to the character is made.

Returns
towctrans returns the translated equivalent of ¢ when it is a valid for the given translation,
otherwise, it returns the input character. When the translation type is invalid, errno is set
EINVAL.

Portability
towctrans is C99.

No supporting OS subroutines are required.

Chapter 3: Character Type Macros and Functions (‘ctype.h’) 95

3.32 wctrans—get wide-character translation type

Synopsis
#include <wctype.h>
wctrans_t wctrans(const char *c);

Description

wctrans is a function which takes a string ¢ and gives back the appropriate wctrans_t type
value associated with the string, if one exists. The following values are guaranteed to be
recognized: "tolower" and "toupper".

Returns
wctrans returns 0 and sets errno to EINVAL if the given name is invalid. Otherwise, it
returns a valid non-zero wctrans_t value.

Portability
wctrans is C99.

No supporting OS subroutines are required.

Chapter 4: Input and Output (‘stdio.h’) 97

4 Input and Output (‘stdio.h’)

This chapter comprises functions to manage files or other input/output streams. Among
these functions are subroutines to generate or scan strings according to specifications from
a format string.

The underlying facilities for input and output depend on the host system, but these functions
provide a uniform interface.

The corresponding declarations are in ‘stdio.h’.
The reentrant versions of these functions use macros

_stdin_r(reent)
_stdout_r(reent)
_stderr_r(reent)

instead of the globals stdin, stdout, and stderr. The argument <[reent]> is a pointer to
a reentrancy structure.

98 Red Hat newlib C Library, Full

4.1 clearerr—-—clear file or stream error indicator
Synopsis

#include <stdio.h>
void clearerr(FILE *fp);

Description

The stdio functions maintain an error indicator with each file pointer fp, to record whether
any read or write errors have occurred on the associated file or stream. Similarly, it main-
tains an end-of-file indicator to record whether there is no more data in the file.

Use clearerr to reset both of these indicators.

See ferror and feof to query the two indicators.

Returns
clearerr does not return a result.

Portability
ANSI C requires clearerr.

No supporting OS subroutines are required.

Chapter 4: Input and Output (‘stdio.h’) 99

4.2 diprintf, vdiprintf—print to a file descriptor (integer
only)
Synopsis
#include <stdio.h>
#include <stdarg.h>
int diprintf(int fd, const char *format, ...);
int vdiprintf (int fd, const char *format, va_list ap);
int _diprintf_r(struct _reent *ptr, int fd,
const char *format, ...);
int _vdiprintf_r(struct _reent *ptr, int fd,
const char *format, va_list ap);

Description

diprintf and vdiprintf are similar to dprintf and vdprintf, except that only integer
format specifiers are processed.

The functions _diprintf_r and _vdiprintf_r are simply reentrant versions of the func-
tions above.

Returns
Similar to dprintf and vdprintf.

Portability
This set of functions is an integer-only extension, and is not portable.

Supporting OS subroutines required: sbrk, write.

100 Red Hat newlib C Library, Full

4.3 dprintf, vdprintf—print to a file descriptor
Synopsis
#include <stdio.h>
#include <stdarg.h>
int dprintf(int fd, const char *restrict format, ...);
int vdprintf(int fd, const char *restrict format,
va_list ap);
int _dprintf_r(struct _reent *ptr, int fd,
const char *restrict format, ...);
int _vdprintf_r(struct _reent *ptr, int fd,
const char *restrict format, va_list ap);

Description
dprintf and vdprintf allow printing a format, similarly to printf, but write to a file
descriptor instead of to a FILE stream.

The functions _dprintf_r and _vdprintf_r are simply reentrant versions of the functions
above.

Returns
The return value and errors are exactly as for write, except that errno may also be set to
ENOMEM if the heap is exhausted.

Portability
This function is originally a GNU extension in glibc and is not portable.

Supporting OS subroutines required: sbrk, write.

Chapter 4: Input and Output (‘stdio.h’) 101

4.4 fclose——close a file
Synopsis
#include <stdio.h>

int fclose(FILE *fp);
int _fclose_r(struct _reent *reent, FILE *fp);

Description
If the file or stream identified by fp is open, fclose closes it, after first ensuring that any
pending data is written (by calling £flush(fp)).

The alternate function _fclose_r is a reentrant version. The extra argument reent is a
pointer to a reentrancy structure.

Returns
fclose returns 0 if successful (including when fp is NULL or not an open file); otherwise, it
returns EOF.

Portability
fclose is required by ANSI C.

Required OS subroutines: close, fstat, isatty, lseek, read, sbrk, write.

102 Red Hat newlib C Library, Full

4.5 fcloseall—-close all files
Synopsis
#include <stdio.h>

int fcloseall(void);
int _fcloseall_r (struct _reent *ptr);

Description

fcloseall closes all files in the current reentrancy struct’s domain. The function
_fcloseall_r is the same function, except the reentrancy struct is passed in as the ptr
argument.

This function is not recommended as it closes all streams, including the std streams.

Returns
fclose returns O if all closes are successful. Otherwise, EOF is returned.

Portability
fcloseall is a glibc extension.

Required OS subroutines: close, fstat, isatty, 1seek, read, sbrk, write.

Chapter 4: Input and Output (‘stdio.h’) 103

4.6 fdopen—turn open file into a stream
Synopsis

#include <stdio.h>

FILE *fdopen(int fd, const char *mode) ;

FILE *_fdopen_r(struct _reent *reent,
int fd, const char *mode);

Description

fdopen produces a file descriptor of type FILE *, from a descriptor for an already-open file
(returned, for example, by the system subroutine open rather than by fopen). The mode
argument has the same meanings as in fopen.

Returns
File pointer or NULL, as for fopen.

Portability
fdopen is ANSI.

104 Red Hat newlib C Library, Full

4.7 feof—test for end of file
Synopsis

#include <stdio.h>
int feof (FILE *fp);

Description
feof tests whether or not the end of the file identified by fp has been reached.

Returns
feof returns O if the end of file has not yet been reached; if at end of file, the result is
nonzero.

Portability
feof is required by ANSI C.

No supporting OS subroutines are required.

Chapter 4: Input and Output (‘stdio.h’) 105

4.8 ferror—test whether read/write error has occurred

Synopsis
#include <stdio.h>
int ferror(FILE *fp);

Description

The stdio functions maintain an error indicator with each file pointer fp, to record whether
any read or write errors have occurred on the associated file or stream. Use ferror to query
this indicator.

See clearerr to reset the error indicator.

Returns
ferror returns 0 if no errors have occurred; it returns a nonzero value otherwise.

Portability
ANSI C requires ferror.

No supporting OS subroutines are required.

106 Red Hat newlib C Library, Full

4.9 fflush—~flush buffered file output
Synopsis

#include <stdio.h>
int fflush(FILE *fp);

int _fflush_r(struct _reent *reent, FILE *fp);

Description

The stdio output functions can buffer output before delivering it to the host system, in
order to minimize the overhead of system calls.

Use fflush to deliver any such pending output (for the file or stream identified by fp) to
the host system.

If fp is NULL, £f1lush delivers pending output from all open files.

Additionally, if fp is a seekable input stream visiting a file descriptor, set the position of
the file descriptor to match next unread byte, useful for obeying POSIX semantics when
ending a process without consuming all input from the stream.
The alternate function _fflush_r is a reentrant version, where the extra argument reent is
a pointer to a reentrancy structure, and fp must not be NULL.

Returns
fflush returns 0 unless it encounters a write error; in that situation, it returns EOF.

Portability
ANSI C requires £flush. The behavior on input streams is only specified by POSIX, and
not all implementations follow POSIX rules.

No supporting OS subroutines are required.

Chapter 4: Input and Output (‘stdio.h’) 107

4.10 fgetc—get a character from a file or stream
Synopsis

#include <stdio.h>
int fgetc(FILE *fp);

#include <stdio.h>
int _fgetc_r(struct _reent *ptr, FILE *fp);

Description
Use fgetc to get the next single character from the file or stream identified by fp. As a
side effect, fgetc advances the file’s current position indicator.

For a macro version of this function, see getc.

The function _fgetc_r is simply a reentrant version of fgetc that is passed the additional
reentrant structure pointer argument: ptr.

Returns

The next character (read as an unsigned char, and cast to int), unless there is no more
data, or the host system reports a read error; in either of these situations, fgetc returns
EOQF.

You can distinguish the two situations that cause an EOF result by using the ferror and
feof functions.

Portability
ANSI C requires fgetc.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

108 Red Hat newlib C Library, Full

4.11 fgetpos—record position in a stream or file
Synopsis
#include <stdio.h>

int fgetpos(FILE *restrict fp, fpos_t *restrict pos);
int _fgetpos_r(struct _reent *ptr, FILE *restrict fp, fpos_t *restrict pos);

Description

Objects of type FILE can have a “position” that records how much of the file your program
has already read. Many of the stdio functions depend on this position, and many change
it as a side effect.

You can use fgetpos to report on the current position for a file identified by fp; fgetpos
will write a value representing that position at *pos. Later, you can use this value with
fsetpos to return the file to this position.

In the current implementation, fgetpos simply uses a character count to represent the file
position; this is the same number that would be returned by ftell.

Returns

fgetpos returns O when successful. If fgetpos fails, the result is 1. Failure occurs on
streams that do not support positioning; the global errno indicates this condition with the
value ESPIPE.

Portability

fgetpos is required by the ANSI C standard, but the meaning of the value it records is not
specified beyond requiring that it be acceptable as an argument to fsetpos. In particular,
other conforming C implementations may return a different result from ftell than what
fgetpos writes at *pos.

No supporting OS subroutines are required.

Chapter 4: Input and Output (‘stdio.h’) 109

4.12 fgets—get character string from a file or stream
Synopsis

#include <stdio.h>
char *fgets(char *restrict buf, int n, FILE *restrict fp);

#include <stdio.h>
char *_fgets_r(struct _reent *ptr, char *restrict buf, int n, FILE *restrict fp);

Description
Reads at most n-1 characters from fp until a newline is found. The characters including to
the newline are stored in buf. The buffer is terminated with a 0.

The _fgets_r function is simply the reentrant version of fgets and is passed an additional
reentrancy structure pointer: ptr.

Returns

fgets returns the buffer passed to it, with the data filled in. If end of file occurs with some
data already accumulated, the data is returned with no other indication. If no data are
read, NULL is returned instead.

Portability
fgets should replace all uses of gets. Note however that fgets returns all of the data,
while gets removes the trailing newline (with no indication that it has done so.)

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

110 Red Hat newlib C Library, Full

4.13 fgetwc, getwc—get a wide character from a file or
stream
Synopsis
#include <stdio.h>

#include <wchar.h>
wint_t fgetwc(FILE *fp);

#include <stdio.h>
#include <wchar.h>
wint_t _fgetwc_r(struct _reent *ptr, FILE xfp);

#include <stdio.h>
#include <wchar.h>
wint_t getwc(FILE *fp);

#include <stdio.h>
#include <wchar.h>
wint_t _getwc_r(struct _reent *ptr, FILE *fp);

Description
Use fgetwc to get the next wide character from the file or stream identified by fp. As a
side effect, fgetwc advances the file’s current position indicator.

The getwc function or macro functions identically to fgetwc. It may be implemented as a
macro, and may evaluate its argument more than once. There is no reason ever to use it.

_fgetwc_r and _getwc_r are simply reentrant versions of fgetwc and getwc that are passed
the additional reentrant structure pointer argument: ptr.

Returns
The next wide character cast to wint_t), unless there is no more data, or the host system
reports a read error; in either of these situations, fgetwc and getwc return WEQOF.

You can distinguish the two situations that cause an EOF result by using the ferror and
feof functions.

Portability
€99, POSIX.1-2001

Chapter 4: Input and Output (‘stdio.h’) 111

4.14 fgetws—get wide character string from a file or stream
Synopsis
#include <wchar.h>

wchar_t *fgetws(wchar_t *
FILE *__restrict fp);

_restrict ws, int n,

#include <wchar.h>
wchar_t *_fgetws_r(struct _reent *ptr, wchar_t *ws,
int n, FILE *fp);

Description
Reads at most n-1 wide characters from fp until a newline is found. The wide characters
including to the newline are stored in ws. The buffer is terminated with a 0.

The _fgetws_r function is simply the reentrant version of fgetws and is passed an addi-
tional reentrancy structure pointer: ptr.

Returns

fgetws returns the buffer passed to it, with the data filled in. If end of file occurs with
some data already accumulated, the data is returned with no other indication. If no data
are read, NULL is returned instead.

Portability
C99, POSIX.1-2001

112 Red Hat newlib C Library, Full

4.15 fileno—return file descriptor associated with stream

Synopsis
#include <stdio.h>
int fileno(FILE *fp);

Description
You can use fileno to return the file descriptor identified by fp.

Returns
fileno returns a non-negative integer when successful. If fp is not an open stream, fileno
returns -1.

Portability
fileno is not part of ANSI C. POSIX requires fileno.

Supporting OS subroutines required: none.

Chapter 4: Input and Output (‘stdio.h’) 113

4.16 fmemopen—open a stream around a fixed-length string
Synopsis
#include <stdio.h>

FILE *fmemopen(void *restrict buf, size_t size,
const char *restrict mode);

Description

fmemopen creates a seekable FILE stream that wraps a fixed-length buffer of size bytes
starting at buf. The stream is opened with mode treated as in fopen, where append mode
starts writing at the first NUL byte. If buf is NULL, then size bytes are automatically
provided as if by malloc, with the initial size of 0, and mode must contain + so that data
can be read after it is written.

The stream maintains a current position, which moves according to bytes read or written,
and which can be one past the end of the array. The stream also maintains a current file
size, which is never greater than size. If mode starts with r, the position starts at 0, and
file size starts at size if buf was provided. If mode starts with w, the position and file size
start at 0, and if buf was provided, the first byte is set to NUL. If mode starts with a,
the position and file size start at the location of the first NUL byte, or else size if buf was
provided.

When reading, NUL bytes have no significance, and reads cannot exceed the current file
size. When writing, the file size can increase up to size as needed, and NUL bytes may be
embedded in the stream (see open_memstrean for an alternative that automatically enlarges
the buffer). When the stream is flushed or closed after a write that changed the file size,
a NUL byte is written at the current position if there is still room; if the stream is not
also open for reading, a NUL byte is additionally written at the last byte of buf when the
stream has exceeded size, so that a write-only buf is always NUL-terminated when the
stream is flushed or closed (and the initial size should take this into account). It is not
possible to seek outside the bounds of size. A NUL byte written during a flush is restored
to its previous value when seeking elsewhere in the string.

Returns

The return value is an open FILE pointer on success. On error, NULL is returned, and errno
will be set to EINVAL if size is zero or mode is invalid, ENOMEM if buf was NULL and
memory could not be allocated, or EMFILE if too many streams are already open.

Portability
This function is being added to POSIX 200x, but is not in POSIX 2001.

Supporting OS subroutines required: sbrk.

114 Red Hat newlib C Library, Full

4.17 fopen—open a file

Synopsis
#include <stdio.h>
FILE *fopen(const char *xfile, const char *mode);

FILE *_fopen_r(struct _reent *reent,
const char *file, const char *mode);

Description
fopen initializes the data structures needed to read or write a file. Specify the file’s name
as the string at file, and the kind of access you need to the file with the string at mode.

The alternate function _fopen_r is a reentrant version. The extra argument reent is a
pointer to a reentrancy structure.

Three fundamental kinds of access are available: read, write, and append. *mode must

[i

begin with one of the three characters ‘r’; ‘w’; or ‘a’, to select one of these:

r Open the file for reading; the operation will fail if the file does not exist, or if
the host system does not permit you to read it.

W Open the file for writing from the beginning of the file: effectively, this always
creates a new file. If the file whose name you specified already existed, its old
contents are discarded.

a Open the file for appending data, that is writing from the end of file. When
you open a file this way, all data always goes to the current end of file; you
cannot change this using fseek.

Some host systems distinguish between “binary” and “text” files. Such systems may perform
data transformations on data written to, or