Using GNU Fortran

For ccc version 4.8.3

(crosstool-NG linaro-1.13.1-4.8-2014.04 - Linaro GCC 4.8-2014.04)

The gfortran team

Published by the Free Software Foundation
51 Franklin Street, Fifth Floor
Boston, MA 02110-1301, USA

Copyright (© 1999-2013 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.3 or any later version published by the
Free Software Foundation; with the Invariant Sections being “Funding Free Software”, the
Front-Cover Texts being (a) (see below), and with the Back-Cover Texts being (b) (see
below). A copy of the license is included in the section entitled “GNU Free Documentation
License”.

(a) The FSF’s Front-Cover Text is:

A GNU Manual

(b) The FSF’s Back-Cover Text is:

You have freedom to copy and modify this GNU Manual, like GNU software. Copies
published by the Free Software Foundation raise funds for GNU development.

Short Contents

1 Introductioncov i 1

Invoking GNU Fortran
GNU Fortran Command Options 7
3 Runtime: Influencing runtime behavior with environment

variables . .. 27

Language Reference

4 Fortran 2003 and 2008 Status, 33
5 Compiler Characteristics, 37
6 EXtensions.iiiiii e 41
7 Mixed-Language Programming 53
8 Intrinsic Procedures 65
9 Intrinsic Modules 217
Contributingo 221
GNU General Public License. 225
GNU Free Documentation License 237
Funding Free Software i 245
Option Indexot e 247

Keyword Index i 249

Table of Contents

1 Introduction................. 1
1.1 About GNU Fortrano, 1
1.2 GNU Fortran and GCC i 2
1.3 Preprocessing and conditional compilation...................... 2
1.4 GNU Fortran and G77 ... e 3
1.5 Project Status ... 3
1.6 Standards.c..oiiii 4

1.6.1 Varying Length Character Strings 4

Part I: Invoking GNU Fortran 5

2 GNU Fortran Command Options 7
2.1 Option SUMMATY . .o vvt ittt ettt et e 7
2.2 Options controlling Fortran dialect 8
2.3 Enable and customize preprocessing...............c.ooiiian... 11
2.4 Options to request or suppress errors and warnings............ 14
2.5 Options for debugging your program or GNU Fortran.......... 18
2.6 Options for directory search............. 19
2.7 Influencing the linking step.............oo i 19
2.8 Influencing runtime behavior.......... 19
2.9 Options for code generation conventions....................... 20
2.10 Environment variables affecting gfortran.................... 26

3 Runtime: Influencing runtime behavior with

environment variables................. 27
3.1 TMPDIR—Directory for scratch files 27
3.2 GFORTRAN_STDIN_UNIT—Unit number for standard input 27
3.3 GFORTRAN_STDOUT_UNIT-—Unit number for standard output.... 27
3.4 GFORTRAN_STDERR_UNIT—Unit number for standard error...... 27

3.5 GFORTRAN_UNBUFFERED_ALL—Do not buffer I/O on all units.... 27
3.6 GFORTRAN_UNBUFFERED_PRECONNECTED—Do not buffer I/O on
preconnected UNItS. . ..o e 27
3.7 GFORTRAN_SHOW_LOCUS—Show location for runtime errors...... 27
3.8 GFORTRAN_OPTIONAL_PLUS—Print leading + where permitted .. 28
3.9 GFORTRAN_DEFAULT_RECL—Default record length for new files.. 28
3.10 GFORTRAN_LIST_SEPARATOR—Separator for list output........ 28
3.11 GFORTRAN_CONVERT_UNIT—Set endianness for unformatted I/0O
... 28
3.12 GFORTRAN_ERROR_BACKTRACE—Show backtrace on run-time errors
... 29

iii

iv The GNU Fortran Compiler

4 Fortran 2003 and 2008 Status................ 33
4.1 Fortran 2003 statuso 33
4.2 Fortran 2008 Status ...t 34
4.3 Technical Specification 29113 Status........................... 36

5 Compiler Characteristics 37
5.1 KIND Type Parameters.............cooiiiiiiiiiiiiiiiii... 37
5.2 Internal representation of LOGICAL variables................. 37
5.3 Thread-safety of the runtime library.............. 38
5.4 Data consistency and durability L 38

6 Extensions...................l 41
6.1 Extensions implemented in GNU Fortran...................... 41

6.1.1 Old-style kind specifications 41
6.1.2 Old-style variable initialization 41
6.1.3 Extensions to namelist il 42
6.1.4 X format descriptor without count field 43
6.1.5 Commas in FORMAT specifications......................... 43
6.1.6 Missing period in FORMAT specifications................... 43
6.1.7 I/Oitem listsoooiii 43
6.1.8 Qexponent-letter........... ... i 43
6.1.9 BOZ literal constants., 43
6.1.10 Real array indices.........ccviiiiiiiiiiiiiiiiiiii... 44
6.1.11 Unary operatorsceeeeeeiiiiiiiiiiiiiieeeennnn. 44
6.1.12 Implicitly convert LOGICAL and INTEGER values.......... 44
6.1.13 Hollerith constants support.................cooiiiiiian. 44
6.1.14 Cray pPoINtersottt 45
6.1.15 CONVERT specifier.ooiuuiiiii e 47
6.1.16 OpenMP 47
6.1.17 Argument list functions %VAL, %REF and %LOC............ 48
6.2 Extensions not implemented in GNU Fortran.................. 49
6.2.1 STRUCTURE and RECORDcvvuiieiritiiiiiiannnnn. 49
6.2.2 ENCODE and DECODE statements........................... 50
6.2.3 Variable FORMAT €XPreSSionsccoeeeeennnnniunnnneeen.. 51
6.2.4 Alternate complex function syntax........................ 51

7 Mixed-Language Programming............... 53

7.1 Interoperability with C........ i, 53
7.1.1 Intrinsic Types......coouuiimii i 53
7.1.2 Derived Types and struct.............oo .. 53
7.1.3 Interoperable Global Variables............................ 54
7.1.4 Interoperable Subroutines and Functions.................. 54
7.1.5 Working with Pointers L. 55
7.1.6 Further Interoperability of Fortran with C................ 58

7.2 GNU Fortran Compiler Directives.................ooooiia.. 59

7.3 Non-Fortran Main Program 59

7.3.1 _gfortran_set_args — Save command-line arguments... 60

7.3.2 _gfortran_set_options — Set library option flags....... 60
7.3.3 _gfortran_set_convert — Set endian conversion........ 61
7.3.4 _gfortran_set_record_marker — Set length of record

MATKETS . ..ttt 62
7.3.5 _gfortran_set_fpe — Enable floating point exception traps
.. 62

7.3.6 _gfortran_set_max_subrecord_length — Set subrecord
length ... 62
8 Intrinsic Procedures........................... 65
8.1 Introduction to intrinsic procedures 65
8.2 ABORT — Abort the program, 65
8.3 ABS — Absolute value.......... ... 66
8.4 ACCESS — Checks file access modes....................ooo... 66
8.5 ACHAR — Character in ASCII collating sequence................ 67
8.6 ACOS — Arccosine function......... 68
8.7 ACOSH — Inverse hyperbolic cosine function.................... 68
8.8 ADJUSTL — Left adjust a string ...t 69
8.9 ADJUSTR — Right adjust astring.............. 69
8.10 AIMAG — Imaginary part of complex number 70
8.11 AINT — Truncate to a whole number......................... 71
8.12 ALARM — Execute a routine after a given delay 71
8.13 ALL — All values in MASK along DIM are true.............. 72
8.14 ALLOCATED — Status of an allocatable entity 73
8.15 AND — Bitwise logical AND i 73
8.16 ANINT — Nearest whole number.............................. 74
8.17 ANY — Any value in MASK along DIM is true 75
8.18 ASIN — Arcsine function............ ..., 76
8.19 ASINH — Inverse hyperbolic sine function..................... 76
8.20 ASSOCIATED — Status of a pointer or pointer/target pair 7
8.21 ATAN — Arctangent function............ 78
8.22 ATAN2 — Arctangent function............... ..o . 79
8.23 ATANH — Inverse hyperbolic tangent function................. 79
8.24 ATOMIC_DEFINE — Setting a variable atomically 80
8.25 ATOMIC_REF — Obtaining the value of a variable atomically .. 80
8.26 BACKTRACE — Show a backtrace............... ...t 81
8.27 BESSEL_JO — Bessel function of the first kind of order O...... 81
8.28 BESSEL_J1 — Bessel function of the first kind of order 1...... 82
8.29 BESSEL_JN — Bessel function of the first kind 82
8.30 BESSEL_YO — Bessel function of the second kind of order 0... 83
8.31 BESSEL_Y1 — Bessel function of the second kind of order 1... 84
8.32 BESSEL_YN — Bessel function of the second kind 84
8.33 BGE — Bitwise greater than or equal to....................... 85
8.34 BGT — Bitwise greater than.......... 85
8.35 BIT_SIZE — Bit size inquiry function 86
8.36 BLE — Bitwise less thanorequal to.......................... 86
8.37 BLT — Bitwise less than................. .. . i .. 87
8.38 BTEST — Bit test function i 87

The GNU Fortran Compiler

8.39 C_ASSOCIATED — Status of a C pointer....................... 87
8.40 C_F_POINTER — Convert C into Fortran pointer.............. 88
8.41 C_F_PROCPOINTER — Convert C into Fortran procedure pointer
... 89
8.42 C_FUNLOC — Obtain the C address of a procedure............ 89
8.43 C_LOC — Obtain the C address of an object 90
8.44 C_SIZEOF — Size in bytes of an expression 91
8.45 CEILING — Integer ceiling function........................... 91
8.46 CHAR — Character conversion function 92
8.47 CHDIR — Change working directory 93
8.48 CHMOD — Change access permissions of files................... 93
8.49 CMPLX — Complex conversion function 94
8.50 COMMAND_ARGUMENT_COUNT — Get number of command line
ATGUINENIES . o oot 95
8.51 COMPILER_OPTIONS — Options passed to the compiler........ 95
8.52 COMPILER_VERSION — Compiler version string................ 96
8.53 COMPLEX — Complex conversion function..................... 96
8.54 CONJG — Complex conjugate function........................ 97
8.55 CO0S — Cosine function. ..., 98
8.56 COSH — Hyperbolic cosine function........................... 98
8.57 COUNT — Count function............oooviiiiiiiiinennnnn... 99
8.58 CPU_TIME — CPU elapsed time in seconds 100
8.59 CSHIFT — Circular shift elements of an array................ 100
8.60 CTIME — Convert a time into a string....................... 101
8.61 DATE_AND_TIME — Date and time subroutine................ 102
8.62 DBLE — Double conversion function......................... 103
8.63 DCMPLX — Double complex conversion function.............. 103
8.64 DIGITS — Significant binary digits function................. 104
8.65 DIM — Positive difference i 104
8.66 DOT_PRODUCT — Dot product function....................... 105
8.67 DPROD — Double product function 106
8.68 DREAL — Double real part function.......................... 106
8.69 DSHIFTL — Combined left shift 107
8.70 DSHIFTR — Combined right shift................., 107
8.71 DTIME — Execution time subroutine (or function)........... 108
8.72 EOSHIFT — End-off shift elements of an array 109
8.73 EPSILON — Epsilon function 110
8.74 ERF — Error function............ ..., 110
8.75 ERFC — Error function.......... ... i, 111
8.76 ERFC_SCALED — FError function 111
8.77 ETIME — Execution time subroutine (or function) 112
8.78 EXECUTE_COMMAND_LINE — Execute a shell command........ 113
8.79 EXIT — Exit the program with status. 114
8.80 EXP — Exponential functionl 114
8.81 EXPONENT — Exponent function............................. 115
8.82 EXTENDS_TYPE_OF — Query dynamic type for extension..... 115
8.83 FDATE — Get the current time as a string................... 116

8.84 FGET — Read a single character in stream mode from stdin.. 117

8.85 FGETC — Read a single character in stream mode............ 117
8.86 FLOOR — Integer floor function.............. 118
8.87 FLUSH — Flush I/O unit(s) ..o, 119
8.88 FNUM — File number function.........................oo... 120
8.89 FPUT — Write a single character in stream mode to stdout... 120
8.90 FPUTC — Write a single character in stream mode........... 121
8.91 FRACTION — Fractional part of the model representation 122
8.92 FREE — Frees memorycovviiniiieeennnnnnnnn. 122
8.93 FSEEK — Low level file positioning subroutine............... 123
8.94 FSTAT — Get filestatus........cooiiiii i, 124
8.95 FTELL — Current stream position........................... 124
8.96 GAMMA — Gamma function.............. L. 125
8.97 GERROR — Get last system error message.................... 125
8.98 GETARG — Get command line arguments 126
8.99 GET_COMMAND — Get the entire command line............... 127
8.100 GET_COMMAND_ARGUMENT — Get command line arguments. .. 127
8.101 GETCWD — Get current working directory................... 128
8.102 GETENV — Get an environmental variable 129
8.103 GET_ENVIRONMENT_VARIABLE — Get an environmental variable
.. 129
8.104 GETGID — Group ID function.............................. 130
8.105 GETLOG — Get loginname, 131
8.106 GETPID — Process ID function................... 131
8.107 GETUID — User ID function................ ..o, 131
8.108 GMTIME — Convert time to GMT info...................... 132
8.109 HOSTNM — Get system host name 133
8.110 HUGE — Largest number of a kind.......................... 133
8.111 HYPOT — Euclidean distance function 133
8.112 TACHAR — Code in ASCII collating sequence................ 134
8.113 TIALL — Bitwise AND of array elements.................... 134
8.114 TIAND — Bitwise logical and 135
8.115 TIANY — Bitwise OR of array elements...................... 136
8.116 TIARGC — Get the number of command line arguments. 137
8.117 IBCLR — Clear bit...... .o 137
8.118 IBITS — Bit extraction.............coooiiiiiiiiiiiiii... 138
8.119 IBSET — Set bit.. ..ot 138
8.120 ICHAR — Character-to-integer conversion function.......... 138
8.121 IDATE — Get current local time subroutine (day/month/year)
.. 139
8.122 IEOR — Bitwise logical exclusive or 140
8.123 IERRNO — Get the last system error number 140
8.124 IMAGE_INDEX — Function that converts a cosubscript to an
IMage INAeXottt 141
8.125 INDEX — Position of a substring within a string............ 141
8.126 INT — Convert to integer type........ccoviviiiieininn..n. 142
8.127 INT2 — Convert to 16-bit integer type..................... 143
8.128 INT8 — Convert to 64-bit integer type 143
8.129 IOR — Bitwise logical or........... ... o i 143

vii

viii The GNU Fortran Compiler

8.130 IPARITY — Bitwise XOR of array elements................. 144
8.131 IRAND — Integer pseudo-random number................... 145
8.132 IS_IOSTAT_END — Test for end-of-file value 145
8.133 IS_IOSTAT_EOR — Test for end-of-record value............. 146
8.134 ISATTY — Whether a unit is a terminal device.............. 146
8.135 ISHFT — Shift bits 147
8.136 ISHFTC — Shift bits circularly 147
8.137 TISNAN — Test fora NaN..........oooiiiii ... 148
8.138 ITIME — Get current local time subroutine
(hour/minutes/seconds) 148
8.139 KILL — Send a signal to & processcooviuve..n. 149
8.140 KIND — Kind of anentity..............cooiiiiiiiiiiiin 149
8.141 LBOUND — Lower dimension bounds of an array 150
8.142 LCOBOUND — Lower codimension bounds of an array........ 150
8.143 LEADZ — Number of leading zero bits of an integer......... 151
8.144 LEN — Length of a character entity 151
8.145 LEN_TRIM — Length of a character entity without trailing blank
characters 152
8.146 LGE — Lexical greater than or equal 152
8.147 LGT — Lexical greater than................. 153
8.148 LINK — Create a hard link................ 153
8.149 LLE — Lexical less than or equal........................... 154
8.150 LLT — Lexical less than............ o iii.. 154
8.151 LNBLNK — Index of the last non-blank character in a string.. 155
8.152 LOC — Returns the address of a variable 156
8.1563 LOG — Natural logarithm function 156
8.154 LOG10 — Base 10 logarithm function....................... 157
8.155 LOG_GAMMA — Logarithm of the Gamma function........... 157
8.156 LOGICAL — Convert to logical type..................oo.... 158
8.157 LONG — Convert to integer type.........cooveiieiiiani... 158
8.158 LSHIFT — Left shift bits...........o L. 159
8.159 LSTAT — Get file status. ..., 159
8.160 LTIME — Convert time to local time info................... 160
8.161 MALLOC — Allocate dynamic memory 160
8.162 MASKL — Left justified mask 161
8.163 MASKR — Right justified mask.............. L 162
8.164 MATMUL — matrix multiplication 162
8.165 MAX — Maximum value of an argument list................. 162
8.166 MAXEXPONENT — Maximum exponent of a real kind......... 163
8.167 MAXLOC — Location of the maximum value within an array.. 163
8.168 MAXVAL — Maximum value of an array 164
8.169 MCLOCK — Time functioncooiiiiiiiiin... 165
8.170 MCLOCK8 — Time function (64-bit)......................... 165
8.171 MERGE — Merge variables ..., 166
8.172 MERGE_BITS — Merge of bits under mask 166
8.173 MIN — Minimum value of an argument list................. 167
8.174 MINEXPONENT — Minimum exponent of a real kind 167

8.175 MINLOC — Location of the minimum value within an array.. 167

8.176 MINVAL — Minimum value of an array 168
8.177 MOD — Remainder functiono i... 169
8.178 MODULO — Modulo function.............. 170
8.179 MOVE_ALLOC — Move allocation from one object to another
.. 170
8.180 MVBITS — Move bits from one integer to another........... 171
8.181 NEAREST — Nearest representable number.................. 171
8.182 NEW_LINE — New line character................. 172
8.183 NINT — Nearest whole number............................. 172
8.184 NORM2 — Euclidean vector normscooouu... 173
8.185 NOT — Logical negation............ ..., 174
8.186 NULL — Function that returns an disassociated pointer..... 174
8.187 NUM_IMAGES — Function that returns the number of images
.. 175
8.188 OR — Bitwise logical OR...........o it 175
8.189 PACK — Pack an array into an array of rank one............ 176
8.190 PARITY — Reduction with exclusive OR.................... 177
8.191 PERROR — Print system error message............c....ouunn. 177
8.192 POPCNT — Number of bits set............ ... it 177
8.193 POPPAR — Parity of the number of bitsset 178
8.194 PRECISION — Decimal precision of a real kind.............. 178
8.195 PRESENT — Determine whether an optional dummy argument is
specifiedo 179
8.196 PRODUCT — Product of array elements...................... 180
8.197 RADIX — Base of a model number.......................... 180
8.198 RAN — Real pseudo-random number........................ 181
8.199 RAND — Real pseudo-random number 181
8.200 RANDOM_NUMBER — Pseudo-random number................. 182
8.201 RANDOM_SEED — Initialize a pseudo-random number sequence
.. 182
8.202 RANGE — Decimal exponent range...............ccovuuuo... 184
8.203 RANK — Rank of a data object............ 184
8.204 REAL — Convert toreal type.... ..., 185
8.205 RENAME — Rename afile................ it 185
8.206 REPEAT — Repeated string concatenation 186
8.207 RESHAPE — Function to reshape an array................... 186
8.208 RRSPACING — Reciprocal of the relative spacing............ 187
8.209 RSHIFT — Right shift bitso i i, 187
8.210 SAME_TYPE_AS — Query dynamic types for equality 188
8.211 SCALE — Scaleareal value i, 188
8.212 SCAN — Scan a string for the presence of a set of characters
.. 189
8.213 SECNDS — Time functionoooiiiieeenniinnn. 189
8.214 SECOND — CPU time function....................covi.... 190
8.215 SELECTED_CHAR_KIND — Choose character kind 190
8.216 SELECTED_INT_KIND — Choose integer kind................ 191
8.217 SELECTED_REAL_KIND — Choose real kind.................. 192
8.218 SET_EXPONENT — Set the exponent of the model 193

ix

The GNU Fortran Compiler

8.219 SHAPE — Determine the shape of an array.................. 193
8.220 SHIFTA — Right shift with fill 194
8.221 SHIFTL — Left shift 194
8.222 SHIFTR — Right shift............. i i 195
8.223 SIGN — Sign copying function 195
8.224 SIGNAL — Signal handling subroutine (or function)......... 196
8.225 SIN — Sine function............. ..ottt 196
8.226 SINH — Hyperbolic sine function........................... 197
8.227 SIZE — Determine the size of an array..................... 198
8.228 SIZEOF — Size in bytes of an expression 198
8.229 SLEEP — Sleep for the specified number of seconds 199
8.230 SPACING — Smallest distance between two numbers of a given
15072 1< P 199
8.231 SPREAD — Add a dimension to an array 200
8.232 SQRT — Square-root functionoi..n. 200
8.233 SRAND — Reinitialize the random number generator........ 201
8.234 STAT — Get filestatus. ..., 201
8.235 STORAGE_SIZE — Storage size in bits....................... 203
8.236 SUM — Sum of array elements............. 203
8.237 SYMLNK — Create a symbolic link, 204
8.238 SYSTEM — Execute a shell command 204
8.239 SYSTEM_CLOCK — Time functioncouvviie... 205
8.240 TAN — Tangent function............... 205
8.241 TANH — Hyperbolic tangent function....................... 206
8.242 THIS_IMAGE — Function that returns the cosubscript index of
this imageo 207
8.243 TIME — Time function............... 207
8.244 TIME8 — Time function (64-bit), 208
8.245 TINY — Smallest positive number of a real kind 208
8.246 TRAILZ — Number of trailing zero bits of an integer........ 209
8.247 TRANSFER — Transfer bit patterns 209
8.248 TRANSPOSE — Transpose an array of rank two.............. 210
8.249 TRIM — Remove trailing blank characters of a string 210
8.250 TTYNAM — Get the name of a terminal device............... 211
8.251 UBOUND — Upper dimension bounds of an array 211
8.252 UCOBOUND — Upper codimension bounds of an array........ 212
8.253 UMASK — Set the file creation mask 212
8.254 UNLINK — Remove a file from the file system............... 213
8.255 UNPACK — Unpack an array of rank one into an array 213
8.256 VERIFY — Scan a string for characters not a given set...... 214
8.257 XOR — Bitwise logical exclusive OR 214
Intrinsic Modules 217
9.1 ISO_FORTRAN _ENV.. ...ttt et et 217
9.2 IS0 _C_BINDINGtttietttin ettt ettt ee e iie e 218

9.3 OpenMP Modules OMP_LIB and OMP_LIB_KINDS.............. 220

Contributors to GNU Fortran o i, 221
Projects ... 222
Proposed Extensionso 222
Compiler extensions:oiuttteni i 222
Environment Optionso 223
GNU General Public License 225
GNU Free Documentation License 237
ADDENDUM: How to use this License for your documents 244
Funding Free Software........................... 245
Option Index, 247

Keyword Index................................... 249

Chapter 1: Introduction 1

1

Introduction

This manual documents the use of gfortran, the GNU Fortran compiler. You can find in
this manual how to invoke gfortran, as well as its features and incompatibilities.

The GNU Fortran compiler front end was designed initially as a free replacement for,

or alternative to, the Unix £95 command; gfortran is the command you will use to invoke
the compiler.

1.1 About GNU Fortran

The GNU Fortran compiler supports the Fortran 77, 90 and 95 standards completely, parts
of the Fortran 2003 and Fortran 2008 standards, and several vendor extensions. The devel-
opment goal is to provide the following features:

Read a user’s program, stored in a file and containing instructions written in Fortran
77, Fortran 90, Fortran 95, Fortran 2003 or Fortran 2008. This file contains source
code.

Translate the user’s program into instructions a computer can carry out more quickly
than it takes to translate the instructions in the first place. The result after compilation
of a program is machine code, code designed to be efficiently translated and processed
by a machine such as your computer. Humans usually are not as good writing machine
code as they are at writing Fortran (or C++, Ada, or Java), because it is easy to make
tiny mistakes writing machine code.

Provide the user with information about the reasons why the compiler is unable to
create a binary from the source code. Usually this will be the case if the source code
is flawed. The Fortran 90 standard requires that the compiler can point out mistakes
to the user. An incorrect usage of the language causes an error message.

The compiler will also attempt to diagnose cases where the user’s program contains a
correct usage of the language, but instructs the computer to do something questionable.
This kind of diagnostics message is called a warning message.

Provide optional information about the translation passes from the source code to
machine code. This can help a user of the compiler to find the cause of certain bugs
which may not be obvious in the source code, but may be more easily found at a lower
level compiler output. It also helps developers to find bugs in the compiler itself.

Provide information in the generated machine code that can make it easier to find bugs
in the program (using a debugging tool, called a debugger, such as the GNU Debugger
gdb).

Locate and gather machine code already generated to perform actions requested by
statements in the user’s program. This machine code is organized into modules and is
located and linked to the user program.

The GNU Fortran compiler consists of several components:

A version of the gcc command (which also might be installed as the system’s cc com-
mand) that also understands and accepts Fortran source code. The gcc command is
the driver program for all the languages in the GNU Compiler Collection (GCC); With
gcc, you can compile the source code of any language for which a front end is available
in GCC.

2 The GNU Fortran Compiler

e The gfortran command itself, which also might be installed as the system’s £95 com-
mand. gfortran is just another driver program, but specifically for the Fortran com-
piler only. The difference with gcc is that gfortran will automatically link the correct
libraries to your program.

e A collection of run-time libraries. These libraries contain the machine code needed
to support capabilities of the Fortran language that are not directly provided by the
machine code generated by the gfortran compilation phase, such as intrinsic functions
and subroutines, and routines for interaction with files and the operating system.

e The Fortran compiler itself, (£951). This is the GNU Fortran parser and code generator,
linked to and interfaced with the GCC backend library. £951 “translates” the source
code to assembler code. You would typically not use this program directly; instead,
the gcc or gfortran driver programs will call it for you.

1.2 GNU Fortran and GCC

GNU Fortran is a part of GCC, the GNU Compiler Collection. GCC consists of a collec-
tion of front ends for various languages, which translate the source code into a language-
independent form called GENERIC. This is then processed by a common middle end which
provides optimization, and then passed to one of a collection of back ends which generate
code for different computer architectures and operating systems.

Functionally, this is implemented with a driver program (gcc) which provides the
command-line interface for the compiler. It calls the relevant compiler front-end program
(e.g., £951 for Fortran) for each file in the source code, and then calls the assembler and
linker as appropriate to produce the compiled output. In a copy of GCC which has been
compiled with Fortran language support enabled, gcc will recognize files with ‘. £’ ‘. for’,
‘.ftn’, ©.£90°, .£95’, ‘.03’ and ‘.f08’ extensions as Fortran source code, and compile it
accordingly. A gfortran driver program is also provided, which is identical to gcc except
that it automatically links the Fortran runtime libraries into the compiled program.

Source files with ‘.f’, ‘.for’, ‘.fpp’, ‘.ftn’, *.F’, *.FOR’, ‘*.FPP’, and ‘.FTN’ extensions
are treated as fixed form. Source files with *.£90°, ‘.£95’, *.£f03’, ‘.£08’, ‘.F90’, ‘.F95’,
‘.F03’ and ‘.F08’ extensions are treated as free form. The capitalized versions of either
form are run through preprocessing. Source files with the lower case ‘.fpp’ extension are
also run through preprocessing.

This manual specifically documents the Fortran front end, which handles the program-
ming language’s syntax and semantics. The aspects of GCC which relate to the optimization
passes and the back-end code generation are documented in the GCC manual; see Section
“Introduction” in Using the GNU Compiler Collection (GCC). The two manuals together
provide a complete reference for the GNU Fortran compiler.

1.3 Preprocessing and conditional compilation

Many Fortran compilers including GNU Fortran allow passing the source code through a
C preprocessor (CPP; sometimes also called the Fortran preprocessor, FPP) to allow for
conditional compilation. In the case of GNU Fortran, this is the GNU C Preprocessor
in the traditional mode. On systems with case-preserving file names, the preprocessor is
automatically invoked if the filename extension is ‘.F’, *.FOR’, ‘.FIN’, ‘. fpp’, ‘.FPP’, ‘.F90’,

Chapter 1: Introduction 3

‘.F95’, *.F03’ or ‘.F08’. To manually invoke the preprocessor on any file, use ‘~cpp’, to

disable preprocessing on files where the preprocessor is run automatically, use ‘-nocpp’.

If a preprocessed file includes another file with the Fortran INCLUDE statement, the in-
cluded file is not preprocessed. To preprocess included files, use the equivalent preprocessor
statement #include.

If GNU Fortran invokes the preprocessor, __GFORTRAN__ is defined and __GNUC
_GNUC_MINOR__ and __GNUC_PATCHLEVEL__ can be used to determine the version of the

compiler. See Section “Overview” in The C Preprocessor for details.

- -

While CPP is the de-facto standard for preprocessing Fortran code, Part 3 of the Fortran
95 standard (ISO/IEC 1539-3:1998) defines Conditional Compilation, which is not widely
used and not directly supported by the GNU Fortran compiler. You can use the program
coco to preprocess such files (http://www.daniellnagle.com/coco.html).

1.4 GNU Fortran and G77

The GNU Fortran compiler is the successor to g77, the Fortran 77 front end included in GCC
prior to version 4. It is an entirely new program that has been designed to provide Fortran
95 support and extensibility for future Fortran language standards, as well as providing
backwards compatibility for Fortran 77 and nearly all of the GNU language extensions
supported by g77.

1.5 Project Status

As soon as gfortran can parse all of the statements correctly, it will be in the
“larva” state. When we generate code, the “puppa” state. When gfortran is
done, we’ll see if it will be a beautiful butterfly, or just a big bug....

—Andy Vaught, April 2000
The start of the GNU Fortran 95 project was announced on the GCC homepage in March
18, 2000 (even though Andy had already been working on it for a while, of course).

The GNU Fortran compiler is able to compile nearly all standard-compliant Fortran 95,
Fortran 90, and Fortran 77 programs, including a number of standard and non-standard
extensions, and can be used on real-world programs. In particular, the supported extensions
include OpenMP, Cray-style pointers, and several Fortran 2003 and Fortran 2008 features,
including TR 15581. However, it is still under development and has a few remaining rough
edges.

At present, the GNU Fortran compiler passes the NIST Fortran 77 Test Suite, and
produces acceptable results on the LAPACK Test Suite. It also provides respectable per-
formance on the Polyhedron Fortran compiler benchmarks and the Livermore Fortran Ker-
nels test. It has been used to compile a number of large real-world programs, including the
HIRLAM weather-forecasting code and the Tonto quantum chemistry package; see http://
gcc.gnu.org/wiki/GfortranApps for an extended list.

Among other things, the GNU Fortran compiler is intended as a replacement for G77.
At this point, nearly all programs that could be compiled with G77 can be compiled with
GNU Fortran, although there are a few minor known regressions.

The primary work remaining to be done on GNU Fortran falls into three categories:
bug fixing (primarily regarding the treatment of invalid code and providing useful error

http://www.daniellnagle.com/coco.html
http://www.fortran-2000.com/ArnaudRecipes/fcvs21_f95.html
http://www.netlib.org/lapack/faq.html#1.21
http://www.polyhedron.com/pb05.html
http://www.llnl.gov/asci_benchmarks/asci/limited/lfk/README.html
http://www.llnl.gov/asci_benchmarks/asci/limited/lfk/README.html
http://mysite.verizon.net/serveall/moene.pdf
http://mysite.verizon.net/serveall/moene.pdf
http://www.theochem.uwa.edu.au/tonto/
http://gcc.gnu.org/wiki/GfortranApps
http://gcc.gnu.org/wiki/GfortranApps

4 The GNU Fortran Compiler

messages), improving the compiler optimizations and the performance of compiled code,
and extending the compiler to support future standards—in particular, Fortran 2003 and
Fortran 2008.

1.6 Standards

The GNU Fortran compiler implements ISO/TEC 1539:1997 (Fortran 95). As such, it can
also compile essentially all standard-compliant Fortran 90 and Fortran 77 programs. It also
supports the ISO/IEC TR~15581 enhancements to allocatable arrays.

GNU Fortran also have a partial support for ISO/IEC 1539-1:2004 (Fortran
2003), ISO/IEC 1539-1:2010 (Fortran 2008), the Technical Specification Further
Interoperability of Fortran with C (ISO/IEC TS 29113:2012). Full support of those
standards and future Fortran standards is planned. The current status of the support is
can be found in the Section 4.1 [Fortran 2003 status|, page 33, Section 4.2 [Fortran 2008
status|, page 34 and Section 4.3 [TS 29113 status], page 36 sections of the documentation.

Additionally, the GNU Fortran compilers supports the OpenMP specification (version
3.1, http://openmp.org/wp/openmp-specifications/).

1.6.1 Varying Length Character Strings

The Fortran 95 standard specifies in Part 2 (ISO/IEC 1539-2:2000) varying length character
strings. While GNU Fortran currently does not support such strings directly, there exist
two Fortran implementations for them, which work with GNU Fortran. They can be found
at http://www.fortran.com/iso_varying_string.f95 and at ftp://ftp.nag.co.uk/
sc22wgh5/ISO0_VARYING_STRING/.

Deferred-length character strings of Fortran 2003 supports part of the features of I80_
VARYING_STRING and should be considered as replacement. (Namely, allocatable or pointers
of the type character(len=:).)

http://openmp.org/wp/openmp-specifications/
http://www.fortran.com/iso_varying_string.f95
ftp://ftp.nag.co.uk/sc22wg5/ISO_VARYING_STRING/
ftp://ftp.nag.co.uk/sc22wg5/ISO_VARYING_STRING/

Chapter 1: Introduction

Part I: Invoking GNU Fortran

Chapter 2: GNU Fortran Command Options 7

2 GNU Fortran Command Options

The gfortran command supports all the options supported by the gcc command. Only
options specific to GNU Fortran are documented here.

See Section “GCC Command Options” in Using the GNU Compiler Collection (GCC),
for information on the non-Fortran-specific aspects of the gcc command (and, therefore,
the gfortran command).

All GCC and GNU Fortran options are accepted both by gfortran and by gcc (as well
as any other drivers built at the same time, such as g++), since adding GNU Fortran to the
GCC distribution enables acceptance of GNU Fortran options by all of the relevant drivers.

In some cases, options have positive and negative forms; the negative form of ‘-ffoo’
would be ‘~fno-foo’. This manual documents only one of these two forms, whichever one
is not the default.

2.1 Option summary

Here is a summary of all the options specific to GNU Fortran, grouped by type. Explanations
are in the following sections.

Fortran Language Options
See Section 2.2 [Options controlling Fortran dialect], page 8.

-fall-intrinsics -fbackslash -fcray-pointer -fd-lines-as-code
-fd-lines-as-comments -fdefault-double-8 -fdefault-integer-8
-fdefault-real-8 -fdollar-ok -ffixed-line-length-n
-ffixed-line-length-none -ffree-form -ffree-line-length-n
-ffree-line-length-none -fimplicit-none -finteger-4-integer-8
-fmax-identifier-length -fmodule-private -fno-fixed-form -fno-range-check
-fopenmp -freal-4-real-10 -freal-4-real-16 -freal-4-real-8
-freal-8-real-10 -freal-8-real-16 -freal-8-real-4 -std=std

Preprocessing Options
See Section 2.3 [Enable and customize preprocessing|, page 11.

-A-question[=answer] -Aquestion=answer -C -CC -Dmacro[=defn| -H -P
-Umacro -cpp -dD -dI -dM -dN -dU -fworking-directory -imultilib dir
-iprefix file -iquote -isysroot dir -isystem dir -nocpp -nostdinc
-undef

Error and Warning Options
See Section 2.4 [Options to request or suppress errors and warnings|, page 14.

-Waliasing -Wall -Wampersand -Warray-bounds -Wc-binding-type -Wcharacter-
truncation

-Wconversion -Wfunction-elimination -Wimplicit-interface

-Wimplicit-procedure -Wintrinsic-shadow -Wintrinsics-std

-Wline-truncation -Wno-align-commons -Wno-tabs -Wreal-g-constant

-Wsurprising -Wunderflow -Wunused-parameter -Wrealloc-lhs Wrealloc-lhs-all |}

-Wtarget-lifetime -fmax-errors=n -fsyntax-only -pedantic -pedantic-errors

Debugging Options
See Section 2.5 [Options for debugging your program or GNU Fortran|, page 18.

-fbacktrace -fdump-fortran-optimized -fdump-fortran-original
-fdump-parse-tree -ffpe-trap=Ilist

8 The GNU Fortran Compiler

Directory Options
See Section 2.6 [Options for directory search|, page 19.

-Idir -Jdir -fintrinsic-modules-path dir

Link Options
See Section 2.7 [Options for influencing the linking step], page 19.

)

-static-libgfortran

Runtime Options
See Section 2.8 [Options for influencing runtime behavior], page 19.

-fconvert=conversion -fmax-subrecord-length=length
-frecord-marker=length -fsign-zero

Code Generation Options

See Section 2.9 [Options for code generation conventions], page 20.
-faggressive-function-elimination -fblas-matmul-limit=n
-fbounds-check -fcheck-array-temporaries
-fcheck=<alll|array-temps|bounds|do|mem|pointer|recursion>
-fcoarray=<none|single|1ib> -fexternal-blas -ff2c -ffrontend-optimize
-finit-character=n -finit-integer=n -finit-local-zero
-finit-logical=<true|false> -finit-real=<zero|inf|-inf|nan|snan>
-fmax-array-constructor=n -fmax-stack-var-size=n -fno-align-commons
-fno-automatic -fno-protect-parens -fno-underscoring -fno-whole-file
-fsecond-underscore -fpack-derived -frealloc-lhs -frecursive
-frepack-arrays -fshort-enums -fstack-arrays

2.2 Options controlling Fortran dialect
The following options control the details of the Fortran dialect accepted by the compiler:

—-ffree-form

-ffixed-form
Specify the layout used by the source file. The free form layout was introduced
in Fortran 90. Fixed form was traditionally used in older Fortran programs.
When neither option is specified, the source form is determined by the file
extension.

-fall-intrinsics
This option causes all intrinsic procedures (including the GNU-specific exten-
sions) to be accepted. This can be useful with ‘-std=£95’ to force standard-
compliance but get access to the full range of intrinsics available with gfortran.
As a consequence, ‘-Wintrinsics-std’ will be ignored and no user-defined pro-
cedure with the same name as any intrinsic will be called except when it is
explicitly declared EXTERNAL.

-fd-lines-as-code

-fd-lines-as—-comments
Enable special treatment for lines beginning with d or D in fixed form sources. If
the ‘-fd-lines-as-code’ option is given they are treated as if the first column
contained a blank. If the ‘-fd-lines-as-comments’ option is given, they are
treated as comment lines.

Chapter 2: GNU Fortran Command Options 9

-fdefault-double-8
Set the DOUBLE PRECISION type to an 8 byte wide type. If ‘-fdefault-real-8’
is given, DOUBLE PRECISION would instead be promoted to 16 bytes if possible,
and ‘-fdefault-double-8’ can be used to prevent this. The kind of real con-
stants like 1.d0 will not be changed by ‘-fdefault-real-8’ though, so also
‘~-fdefault-double-8’ does not affect it.

-fdefault-integer-8
Set the default integer and logical types to an 8 byte wide type. Do nothing if
this is already the default. This option also affects the kind of integer constants
like 42.

-fdefault-real-8
Set the default real type to an 8 byte wide type. Do nothing if this is already
the default. This option also affects the kind of non-double real constants like
1.0, and does promote the default width of DOUBLE PRECISION to 16 bytes if
possible, unless ~-fdefault-double-8 is given, too.

-fdollar-ok
Allow ‘$’ as a valid non-first character in a symbol name. Symbols that start
with ‘¢’ are rejected since it is unclear which rules to apply to implicit typing as
different vendors implement different rules. Using ‘¢’ in IMPLICIT statements
is also rejected.

-fbackslash

Change the interpretation of backslashes in string literals from a single back-
slash character to “C-style” escape characters. The following combinations are
expanded \a, \b, \f, \n, \r, \t, \v, \\, and \0 to the ASCII characters alert,
backspace, form feed, newline, carriage return, horizontal tab, vertical tab,
backslash, and NUL, respectively. Additionally, \xnn, \unnnn and \Unnnnnnnn
(where each n is a hexadecimal digit) are translated into the Unicode charac-
ters corresponding to the specified code points. All other combinations of a
character preceded by \ are unexpanded.

-fmodule-private
Set the default accessibility of module entities to PRIVATE. Use-associated en-
tities will not be accessible unless they are explicitly declared as PUBLIC.

-ffixed-line-length-n
Set column after which characters are ignored in typical fixed-form lines in the
source file, and through which spaces are assumed (as if padded to that length)
after the ends of short fixed-form lines.

Popular values for n include 72 (the standard and the default), 80 (card im-
age), and 132 (corresponding to “extended-source” options in some popular
compilers). n may also be ‘none’, meaning that the entire line is meaningful
and that continued character constants never have implicit spaces appended to
them to fill out the line. ‘~ffixed-line-length-0’ means the same thing as
‘~ffixed-line-length-none’.

10 The GNU Fortran Compiler

-ffree-line-length-n
Set column after which characters are ignored in typical free-form lines in the
source file. The default value is 132. n may be ‘none’, meaning that the
entire line is meaningful. ‘-ffree-line-length-0’ means the same thing as
‘~ffree-line-length-none’.

-fmax-identifier-length=n
Specify the maximum allowed identifier length. Typical values are 31 (Fortran
95) and 63 (Fortran 2003 and Fortran 2008).

-fimplicit-none
Specify that no implicit typing is allowed, unless overridden by explicit
IMPLICIT statements. This is the equivalent of adding implicit none to the
start of every procedure.

-finteger—-4-integer-8

Promote all INTEGER(KIND=4) entities to an INTEGER(KIND=8) entities. If
KIND=8 is unavailable, then an error will be issued. This option should be
used with care and may not be suitable for your codes. Areas of possible con-
cern include calls to external procedures, alignment in EQUIVALENCE and/or
COMMON, generic interfaces, BOZ literal constant conversion, and I/O. Inspec-
tion of the intermediate representation of the translated Fortran code, produced
by ‘-fdump-tree-original’, is suggested.

—-fcray-pointer
Enable the Cray pointer extension, which provides C-like pointer functionality.

-fopenmp Enable the OpenMP extensions. This includes OpenMP !$omp directives in
free form and c$omp, *$omp and !$omp directives in fixed form, !'$ conditional
compilation sentinels in free form and c$, *$ and !'$ sentinels in fixed form, and
when linking arranges for the OpenMP runtime library to be linked in. The
option ‘~fopenmp’ implies ‘~frecursive’.

-fno-range-check

Disable range checking on results of simplification of constant expressions during
compilation. For example, GNU Fortran will give an error at compile time when
simplifying a = 1. / 0. With this option, no error will be given and a will be
assigned the value +Infinity. If an expression evaluates to a value outside of
the relevant range of [-HUGE () :HUGE ()], then the expression will be replaced by
-Inf or +Inf as appropriate. Similarly, DATA i/Z’FFFFFFFF’/ will result in an
integer overflow on most systems, but with ‘~fno-range-check’ the value will
“wrap around” and i will be initialized to —1 instead.

-freal-4-real-8

-freal-4-real-10

-freal-8-real-4

-freal-8-real-10

-freal-8-real-16
Promote all REAL (KIND=M) entities to REAL(KIND=N) entities. If REAL (KIND=N)
is unavailable, then an error will be issued. All other real kind types are un-
affected by this option. These options should be used with care and may not

Chapter 2: GNU Fortran Command Options 11

be suitable for your codes. Areas of possible concern include calls to external
procedures, alignment in EQUIVALENCE and/or COMMON, generic interfaces, BOZ
literal constant conversion, and I/0. Inspection of the intermediate representa-
tion of the translated Fortran code, produced by ‘-fdump-tree-original’, is
suggested.

-std=std Specify the standard to which the program is expected to conform, which may
be one of ‘€95’ ‘£2003’, ‘£2008’, ‘gnu’, or ‘legacy’. The default value for std
is ‘gnu’, which specifies a superset of the Fortran 95 standard that includes all
of the extensions supported by GNU Fortran, although warnings will be given
for obsolete extensions not recommended for use in new code. The ‘legacy’
value is equivalent but without the warnings for obsolete extensions, and may
be useful for old non-standard programs. The ‘£95’, ‘£2003’ and ‘£2008’ values
specify strict conformance to the Fortran 95, Fortran 2003 and Fortran 2008
standards, respectively; errors are given for all extensions beyond the relevant
language standard, and warnings are given for the Fortran 77 features that
are permitted but obsolescent in later standards. ‘-std=£2008ts’ allows the
Fortran 2008 standard including the additions of the Technical Specification
(TS) 29113 on Further Interoperability of Fortran with C.

2.3 Enable and customize preprocessing

Preprocessor related options. See section Section 1.3 [Preprocessing and conditional com-
pilation], page 2 for more detailed information on preprocessing in gfortran.

—Ccpp

-nocpp Enable preprocessing. The preprocessor is automatically invoked if the file
extension is ‘.fpp’, ‘.FPP’, *.F’, *.FOR’, ‘*.FIN’, ‘.F90’, *.F95’, ‘.F03’ or ‘.F08’.
Use this option to manually enable preprocessing of any kind of Fortran file.
To disable preprocessing of files with any of the above listed extensions, use the
negative form: ‘-nocpp’.

The preprocessor is run in traditional mode. Any restrictions of the file-
format, especially the limits on line length, apply for preprocessed output
as well, so it might be advisable to use the ‘-ffree-line-length-none’ or
‘~ffixed-line-length-none’ options.

-dM Instead of the normal output, generate a list of >#define’ directives for all the
macros defined during the execution of the preprocessor, including predefined
macros. This gives you a way of finding out what is predefined in your version
of the preprocessor. Assuming you have no file ‘foo.f90’, the command

touch fo0o0.£90; gfortran -cpp -E -dM foo0.£90

will show all the predefined macros.

-dD Like ‘-dM’ except in two respects: it does not include the predefined macros, and
it outputs both the #define directives and the result of preprocessing. Both
kinds of output go to the standard output file.

-dN Like ‘-dD’, but emit only the macro names, not their expansions.

-dU Like ‘dD’ except that only macros that are expanded, or whose definedness is
tested in preprocessor directives, are output; the output is delayed until the use

12

-dI

-fworking-

The GNU Fortran Compiler

or test of the macro; and ’#undef’ directives are also output for macros tested
but undefined at the time.

Output ’#include’ directives in addition to the result of preprocessing.

directory

Enable generation of linemarkers in the preprocessor output that will let the
compiler know the current working directory at the time of preprocessing.
When this option is enabled, the preprocessor will emit, after the initial line-
marker, a second linemarker with the current working directory followed by
two slashes. GCC will use this directory, when it is present in the prepro-
cessed input, as the directory emitted as the current working directory in some
debugging information formats. This option is implicitly enabled if debug-
ging information is enabled, but this can be inhibited with the negated form
‘~fno-working-directory’. If the ‘-P’ flag is present in the command line,
this option has no effect, since no #line directives are emitted whatsoever.

—-idirafter dir

Search dir for include files, but do it after all directories specified with ‘-I’
and the standard system directories have been exhausted. dir is treated as a
system include directory. If dir begins with =, then the = will be replaced by
the sysroot prefix; see ‘--sysroot’ and ‘-~isysroot’.

-imultilib dir

Use dir as a subdirectory of the directory containing target-specific C++ headers.

—-iprefix prefix

Specify prefix as the prefix for subsequent ‘-iwithprefix’ options. If the prefix
represents a directory, you should include the final * /.

-isysroot dir

This option is like the ‘--sysroot’ option, but applies only to header files. See
the ‘--sysroot’ option for more information.

-iquote dir

Search dir only for header files requested with #include "file"; they are not
searched for #include <file>, before all directories specified by ‘-I’ and before
the standard system directories. If dir begins with =, then the = will be replaced
by the sysroot prefix; see ‘--sysroot’ and ‘~isysroot’.

-isystem dir

-nostdinc

Search dir for header files, after all directories specified by ‘-I’ but before the
standard system directories. Mark it as a system directory, so that it gets the
same special treatment as is applied to the standard system directories. If dir
begins with =, then the = will be replaced by the sysroot prefix; see ‘--sysroot’
and ‘-isysroot’.

Do not search the standard system directories for header files. Only the direc-
tories you have specified with ‘-I’ options (and the directory of the current file,
if appropriate) are searched.

Chapter 2: GNU Fortran Command Options 13

—undef

Do not predefine any system-specific or GCC-specific macros. The standard
predefined macros remain defined.

-Apredicate=answer

Make an assertion with the predicate predicate and answer answer. This form
is preferred to the older form -A predicate(answer), which is still supported,
because it does not use shell special characters.

-A-predicate=answer

-C

-CC

-Dname

Cancel an assertion with the predicate predicate and answer answer.

Do not discard comments. All comments are passed through to the output file,
except for comments in processed directives, which are deleted along with the
directive.

You should be prepared for side effects when using ‘-C’; it causes the prepro-
cessor to treat comments as tokens in their own right. For example, comments
appearing at the start of what would be a directive line have the effect of turn-
ing that line into an ordinary source line, since the first token on the line is no
longer a #°.

Warning: this currently handles C-Style comments only. The preprocessor does
not yet recognize Fortran-style comments.

Do not discard comments, including during macro expansion. This is like ‘-C’,
except that comments contained within macros are also passed through to the
output file where the macro is expanded.

In addition to the side-effects of the ‘-C’ option, the ‘-CC’ option causes all
C++-style comments inside a macro to be converted to C-style comments. This
is to prevent later use of that macro from inadvertently commenting out the
remainder of the source line. The ‘-CC’ option is generally used to support lint
cominents.

Warning: this currently handles C- and C++-Style comments only. The prepro-
cessor does not yet recognize Fortran-style comments.

Predefine name as a macro, with definition 1.

-Dname=definition

The contents of definition are tokenized and processed as if they appeared
during translation phase three in a ’#define’ directive. In particular, the
definition will be truncated by embedded newline characters.

If you are invoking the preprocessor from a shell or shell-like program you may
need to use the shell’s quoting syntax to protect characters such as spaces that
have a meaning in the shell syntax.

If you wish to define a function-like macro on the command line, write its
argument list with surrounding parentheses before the equals sign (if any).
Parentheses are meaningful to most shells, so you will need to quote the option.
With sh and csh, -D’name(args...)=definition’ works.

‘-D’ and ‘-U’ options are processed in the order they are given on the command
line. All -imacros file and -include file options are processed after all -D and -U
options.

14 The GNU Fortran Compiler

-H Print the name of each header file used, in addition to other normal activities.
Each name is indented to show how deep in the ’#include’ stack it is.

-P Inhibit generation of linemarkers in the output from the preprocessor. This
might be useful when running the preprocessor on something that is not C code,
and will be sent to a program which might be confused by the linemarkers.

-Uname Cancel any previous definition of name, either built in or provided with a ‘-D’
option.

2.4 Options to request or suppress errors and warnings

Errors are diagnostic messages that report that the GNU Fortran compiler cannot compile
the relevant piece of source code. The compiler will continue to process the program in an
attempt to report further errors to aid in debugging, but will not produce any compiled
output.

Warnings are diagnostic messages that report constructions which are not inherently
erroneous but which are risky or suggest there is likely to be a bug in the program. Unless
‘-Werror’ is specified, they do not prevent compilation of the program.

You can request many specific warnings with options beginning ‘-W’, for example
‘~Wimplicit’ to request warnings on implicit declarations. Each of these specific warning
options also has a negative form beginning ‘-Wno-’" to turn off warnings; for example,
‘-Wno-implicit’. This manual lists only one of the two forms, whichever is not the
default.

These options control the amount and kinds of errors and warnings produced by GNU
Fortran:

-fmax-errors=n
Limits the maximum number of error messages to n, at which point GNU
Fortran bails out rather than attempting to continue processing the source
code. If n is 0, there is no limit on the number of error messages produced.

-fsyntax-only
Check the code for syntax errors, but do not actually compile it. This will
generate module files for each module present in the code, but no other output
file.

-pedantic
Issue warnings for uses of extensions to Fortran 95. ‘-pedantic’ also applies to
C-language constructs where they occur in GNU Fortran source files, such as
use of ‘\e’ in a character constant within a directive like #include.
Valid Fortran 95 programs should compile properly with or without this option.
However, without this option, certain GNU extensions and traditional Fortran
features are supported as well. With this option, many of them are rejected.

Some users try to use ‘-pedantic’ to check programs for conformance. They
soon find that it does not do quite what they want—it finds some nonstandard
practices, but not all. However, improvements to GNU Fortran in this area are
welcome.

This should be wused in conjunction with ‘-std=£f95’, ‘-std=£2003" or
‘-std=£2008’.

Chapter 2: GNU Fortran Command Options 15

-pedantic-errors
Like ‘-pedantic’, except that errors are produced rather than warnings.

-Wall Enables commonly used warning options pertaining to usage that we
recommend avoiding and that we believe are easy to avoid. This
currently includes ‘-Waliasing’, ‘~Wampersand’, ‘~Wconversion’,
‘~Wsurprising’, ‘-Wc-binding-type’, ‘-Wintrinsics-std’, ‘-Wno-tabs’,
‘~Wintrinsic-shadow’, ‘~Wline-truncation’, ‘~Wtarget-lifetime’,
‘-Wreal-g-constant’ and ‘~Wunused’.

-Waliasing
Warn about possible aliasing of dummy arguments. Specifically, it warns if the

same actual argument is associated with a dummy argument with INTENT (IN)
and a dummy argument with INTENT (OUT) in a call with an explicit interface.

The following example will trigger the warning.

interface
subroutine bar(a,b)
integer, intent(in) :: a
integer, intent(out) :: b

end subroutine
end interface
integer :: a

call bar(a,a)

-Wampersand
Warn about missing ampersand in continued character constants. The
warning is given with ‘-Wampersand’, ‘-pedantic’, ‘-std=£95’, ‘-std=£2003’
and ‘-std=£2008’. Note: With no ampersand given in a continued character
constant, GNU Fortran assumes continuation at the first non-comment,
non-whitespace character after the ampersand that initiated the continuation.

-Warray-temporaries
Warn about array temporaries generated by the compiler. The information
generated by this warning is sometimes useful in optimization, in order to avoid
such temporaries.

-Wc-binding-type
Warn if the a variable might not be C interoperable. In particular, warn if the
variable has been declared using an intrinsic type with default kind instead of
using a kind parameter defined for C interoperability in the intrinsic IS0_C_
Binding module. This option is implied by ‘-Wall’.

-Wcharacter-truncation
Warn when a character assignment will truncate the assigned string.

-Wline-truncation
Warn when a source code line will be truncated. This option is implied by
‘~Wall’.

-Wconversion
Warn about implicit conversions that are likely to change the value of the
expression after conversion. Implied by ‘-Wall’.

16 The GNU Fortran Compiler

-Wconversion-extra
Warn about implicit conversions between different types and kinds.

-Wextra Enables some warning options for usages of language features which
may be problematic. This currently includes ‘-Wcompare-reals’ and
‘~Wunused-parameter’.

-Wimplicit-interface
Warn if a procedure is called without an explicit interface. Note this only
checks that an explicit interface is present. It does not check that the declared
interfaces are consistent across program units.

-Wimplicit-procedure
Warn if a procedure is called that has neither an explicit interface nor has been
declared as EXTERNAL.

-Wintrinsics-std
Warn if gfortran finds a procedure named like an intrinsic not available in the
currently selected standard (with ‘-std’) and treats it as EXTERNAL procedure
because of this. ‘-fall-intrinsics’ can be used to never trigger this behavior
and always link to the intrinsic regardless of the selected standard.

-Wreal-q-constant
Produce a warning if a real-literal-constant contains a q exponent-letter.

-Wsurprising
Produce a warning when “suspicious” code constructs are encountered. While
technically legal these usually indicate that an error has been made.

This currently produces a warning under the following circumstances:

e An INTEGER SELECT construct has a CASE that can never be matched
as its lower value is greater than its upper value.

e A LOGICAL SELECT construct has three CASE statements.
e A TRANSFER specifies a source that is shorter than the destination.

e The type of a function result is declared more than once with the same
type. If ‘-pedantic’ or standard-conforming mode is enabled, this is an
error.

A CHARACTER variable is declared with negative length.

-Wtabs By default, tabs are accepted as whitespace, but tabs are not members of the
Fortran Character Set. For continuation lines, a tab followed by a digit be-
tween 1 and 9 is supported. ‘-Wno-tabs’ will cause a warning to be issued if
a tab is encountered. Note, ‘~Wno-tabs’ is active for ‘-pedantic’, ‘-std=£95’,
‘-std=f2003’, ‘-std=f2008" and ‘-Wall’.

-Wunderflow
Produce a warning when numerical constant expressions are encountered, which
yield an UNDERFLOW during compilation.

-Wintrinsic-shadow
Warn if a user-defined procedure or module procedure has the same name
as an intrinsic; in this case, an explicit interface or EXTERNAL or INTRINSIC

Chapter 2: GNU Fortran Command Options 17

declaration might be needed to get calls later resolved to the desired intrin-
sic/procedure. This option is implied by ‘-Wall’.

-Wunused-dummy-argument
Warn about unused dummy arguments. This option is implied by ‘-Wall’.

-Wunused-parameter
Contrary to gcc’s meaning of ‘-Wunused-parameter’, gfortran’s imple-
mentation of this option does not warn about unused dummy arguments
(see ‘-Wunused-dummy-argument’), but about unused PARAMETER values.
‘~Wunused-parameter’ is not included in ‘-Wall’ but is implied by ‘-Wall
-Wextra’.

-Walign-commons
By default, gfortran warns about any occasion of variables being padded for
proper alignment inside a COMMON block. This warning can be turned off via
‘~Wno-align-commons’. See also ‘-falign-commons’.

-Wfunction-elimination
Warn if any calls to functions are eliminated by the optimizations enabled by
the ‘-ffrontend-optimize’ option.

-Wrealloc-1lhs

Warn when the compiler might insert code to for allocation or reallocation of
an allocatable array variable of intrinsic type in intrinsic assignments. In hot
loops, the Fortran 2003 reallocation feature may reduce the performance. If
the array is already allocated with the correct shape, consider using a whole-
array array-spec (e.g. (:,:,:)) for the variable on the left-hand side to prevent
the reallocation check. Note that in some cases the warning is shown, even if
the compiler will optimize reallocation checks away. For instance, when the
right-hand side contains the same variable multiplied by a scalar. See also
‘~frealloc-1lhs’.

-Wrealloc-lhs-all
Warn when the compiler inserts code to for allocation or reallocation of an
allocatable variable; this includes scalars and derived types.

-Wcompare-reals
Warn when comparing real or complex types for equality or inequality. This
option is implied by ‘-Wextra’.

-Wtarget-lifetime
Warn if the pointer in a pointer assignment might be longer than the its target.
This option is implied by ‘-Wall’.

-Werror Turns all warnings into errors.

See Section “Options to Request or Suppress Errors and Warnings” in Using the GNU
Compiler Collection (GCC), for information on more options offered by the GBE shared by
gfortran, gcc and other GNU compilers.

Some of these have no effect when compiling programs written in Fortran.

18 The GNU Fortran Compiler

2.5 Options for debugging your program or GNU Fortran

GNU Fortran has various special options that are used for debugging either your program
or the GNU Fortran compiler.

—fdump-fortran-original
Output the internal parse tree after translating the source program into internal
representation. Only really useful for debugging the GNU Fortran compiler
itself.

-fdump-fortran-optimized
Output the parse tree after front-end optimization. Only really useful for de-
bugging the GNU Fortran compiler itself.

-fdump-parse-tree
Output the internal parse tree after translating the source program into internal
representation. Only really useful for debugging the GNU Fortran compiler
itself. This option is deprecated; use ~-fdump-fortran-original instead.

-ffpe-trap=1list

Specify a list of floating point exception traps to enable. On most systems, if
a floating point exception occurs and the trap for that exception is enabled, a
SIGFPE signal will be sent and the program being aborted, producing a core
file useful for debugging. list is a (possibly empty) comma-separated list of
the following exceptions: ‘invalid’ (invalid floating point operation, such as
SQRT(-1.0)), ‘zero’ (division by zero), ‘overflow’ (overflow in a floating point
operation), ‘underflow’ (underflow in a floating point operation), ‘inexact’
(loss of precision during operation), and ‘denormal’ (operation performed on
a denormal value). The first five exceptions correspond to the five IEEE 754
exceptions, whereas the last one (‘denormal’) is not part of the IEEE 754
standard but is available on some common architectures such as x86.

The first three exceptions (‘invalid’, ‘zero’, and ‘overflow’) often indicate
serious errors, and unless the program has provisions for dealing with these
exceptions, enabling traps for these three exceptions is probably a good idea.

Many, if not most, floating point operations incur loss of precision due to round-
ing, and hence the ffpe-trap=inexact is likely to be uninteresting in practice.

By default no exception traps are enabled.

-fno-backtrace
When a serious runtime error is encountered or a deadly signal is emitted (seg-
mentation fault, illegal instruction, bus error, floating-point exception, and the
other POSIX signals that have the action ‘core’), the Fortran runtime library
tries to output a backtrace of the error. -fno-backtrace disables the backtrace
generation. This option only has influence for compilation of the Fortran main
program.

See Section “Options for Debugging Your Program or GCC” in Using the GNU Compiler
Collection (GCC), for more information on debugging options.

Chapter 2: GNU Fortran Command Options 19

2.6 Options for directory search

These options affect how GNU Fortran searches for files specified by the INCLUDE directive
and where it searches for previously compiled modules.

It also affects the search paths used by cpp when used to preprocess Fortran source.

-Idir These affect interpretation of the INCLUDE directive (as well as of the #include
directive of the cpp preprocessor).

Also note that the general behavior of ‘-~I’ and INCLUDE is pretty much the
same as of ‘-1’ with #include in the cpp preprocessor, with regard to looking
for ‘header.gcc’ files and other such things.

This path is also used to search for ‘.mod’ files when previously compiled mod-
ules are required by a USE statement.

See Section “Options for Directory Search” in Using the GNU Compiler Col-
lection (GCC), for information on the ‘~I’ option.

-Jdir This option specifies where to put ‘.mod’ files for compiled modules. It is also
added to the list of directories to searched by an USE statement.

The default is the current directory.

-fintrinsic-modules-path dir
This option specifies the location of pre-compiled intrinsic modules, if they are
not in the default location expected by the compiler.

2.7 Influencing the linking step

These options come into play when the compiler links object files into an executable output
file. They are meaningless if the compiler is not doing a link step.

-static-libgfortran
On systems that provide ‘libgfortran’ as a shared and a static library, this
option forces the use of the static version. If no shared version of ‘libgfortran’
was built when the compiler was configured, this option has no effect.

2.8 Influencing runtime behavior
These options affect the runtime behavior of programs compiled with GNU Fortran.

-fconvert=conversion
Specify the representation of data for unformatted files. Valid values
for conversion are: ‘native’, the default; ‘swap’, swap between big- and
little-endian; ‘big-endian’, use big-endian representation for unformatted
files; ‘little-endian’, use little-endian representation for unformatted files.

This option has an effect only when used in the main program. The CONVERT

specifier and the GFORTRAN_CONVERT_UNIT environment variable over-
ride the default specified by “~fconvert’.

-frecord-marker=length
Specify the length of record markers for unformatted files. Valid values for
length are 4 and 8. Default is 4. This is different from previous versions of

20 The GNU Fortran Compiler

gfortran, which specified a default record marker length of 8 on most systems.
If you want to read or write files compatible with earlier versions of gfortran,
use ‘-frecord-marker=8’.

-fmax-subrecord-length=length
Specify the maximum length for a subrecord. The maximum permitted value
for length is 2147483639, which is also the default. Only really useful for use
by the gfortran testsuite.

-fsign-zero
When enabled, floating point numbers of value zero with the sign bit set are
written as negative number in formatted output and treated as negative in the
SIGN intrinsic. ‘~fno-sign-zero’ does not print the negative sign of zero values
(or values rounded to zero for I/O) and regards zero as positive number in the
SIGN intrinsic for compatibility with Fortran 77. The default is ‘-fsign-zero’.

2.9 Options for code generation conventions

These machine-independent options control the interface conventions used in code genera-
tion.

Most of them have both positive and negative forms; the negative form of ‘~ffoo’ would
be ‘-fno-foo’. In the table below, only one of the forms is listed—the one which is not the
default. You can figure out the other form by either removing ‘no-’ or adding it.

-fno-automatic

Treat each program unit (except those marked as RECURSIVE) as if the
SAVE statement were specified for every local variable and array referenced
in it. Does not affect common blocks. (Some Fortran compilers provide
this option under the name ‘-static’ or ‘-save’.) The default, which is
‘~fautomatic’, uses the stack for local variables smaller than the value given
by ‘-fmax-stack-var-size’. Use the option ‘~frecursive’ to use no static
memory.

-ff2c Generate code designed to be compatible with code generated by g77 and f2c.

The calling conventions used by g77 (originally implemented in f2c¢) require
functions that return type default REAL to actually return the C type double,
and functions that return type COMPLEX to return the values via an extra
argument in the calling sequence that points to where to store the return
value. Under the default GNU calling conventions, such functions simply re-
turn their results as they would in GNU C—default REAL functions return
the C type float, and COMPLEX functions return the GNU C type complex.
Additionally, this option implies the ‘-fsecond-underscore’ option, unless
‘~fno-second-underscore’ is explicitly requested.

This does not affect the generation of code that interfaces with the 1ibgfortran
library.

Caution: Tt is not a good idea to mix Fortran code compiled with ‘-ff2c’
with code compiled with the default ‘~fno-f2c¢’ calling conventions as, calling
COMPLEX or default REAL functions between program parts which were compiled
with different calling conventions will break at execution time.

Chapter 2: GNU Fortran Command Options 21

Caution: This will break code which passes intrinsic functions of type default
REAL or COMPLEX as actual arguments, as the library implementations use the
‘~fno-f2c’ calling conventions.

-fno-underscoring
Do not transform names of entities specified in the Fortran source file by ap-
pending underscores to them.

With ‘~funderscoring’ in effect, GNU Fortran appends one underscore to
external names with no underscores. This is done to ensure compatibility with
code produced by many UNIX Fortran compilers.

Caution: The default behavior of GNU Fortran is incompatible with £2¢ and
g77, please use the ‘~ff£2c’ option if you want object files compiled with GNU
Fortran to be compatible with object code created with these tools.
Use of ‘~fno-underscoring’ is not recommended unless you are experimenting
with issues such as integration of GNU Fortran into existing system environ-
ments (vis-a-vis existing libraries, tools, and so on).
For example, with ‘-funderscoring’, and assuming other defaults like
‘~fcase-lower’ and that j() and max_count() are external functions while
my_var and lvar are local variables, a statement like

I =J0O + MAX_COUNT (MY_VAR, LVAR)
is implemented as something akin to:

i = j_(0O + max_count__(&my_var &lvar) ;

-

With ‘~fno-underscoring’, the same statement is implemented as:

i = j() + max_count(&my_var, &lvar);
Use of ‘~fno-underscoring’ allows direct specification of user-defined names
while debugging and when interfacing GNU Fortran code with other languages.
Note that just because the names match does not mean that the interface
implemented by GNU Fortran for an external name matches the interface im-
plemented by some other language for that same name. That is, getting code
produced by GNU Fortran to link to code produced by some other compiler
using this or any other method can be only a small part of the overall solution—
getting the code generated by both compilers to agree on issues other than
naming can require significant effort, and, unlike naming disagreements, linkers
normally cannot detect disagreements in these other areas.
Also, note that with ‘~fno-underscoring’, the lack of appended underscores in-
troduces the very real possibility that a user-defined external name will conflict
with a name in a system library, which could make finding unresolved-reference
bugs quite difficult in some cases—they might occur at program run time, and
show up only as buggy behavior at run time.
In future versions of GNU Fortran we hope to improve naming and linking
issues so that debugging always involves using the names as they appear in the
source, even if the names as seen by the linker are mangled to prevent accidental
linking between procedures with incompatible interfaces.

-fno-whole-file
This flag causes the compiler to resolve and translate each procedure in a file
separately.

22

The GNU Fortran Compiler

By default, the whole file is parsed and placed in a single front-end tree. During
resolution, in addition to all the usual checks and fixups, references to external
procedures that are in the same file effect resolution of that procedure, if not
already done, and a check of the interfaces. The dependences are resolved
by changing the order in which the file is translated into the backend tree.
Thus, a procedure that is referenced is translated before the reference and the
duplication of backend tree declarations eliminated.

The ‘-fno-whole-file’ option is deprecated and may lead to wrong code.

—-fsecond-underscore

By default, GNU Fortran appends an underscore to external names. If this
option is used GNU Fortran appends two underscores to names with underscores
and one underscore to external names with no underscores. GNU Fortran also
appends two underscores to internal names with underscores to avoid naming
collisions with external names.

This option has no effect if ‘~fno-underscoring’ is in effect. It is implied by
the ‘-ff2c¢’ option.

Otherwise, with this option, an external name such as MAX_COUNT is imple-
mented as a reference to the link-time external symbol max_count__, instead
of max_count_. This is required for compatibility with g77 and f2c, and is
implied by use of the ‘-ff2c’ option.

-fcoarray=<keyword>

‘none’ Disable coarray support; using coarray declarations and image-
control statements will produce a compile-time error. (Default)

‘single’ Single-image mode, i.e. num_images() is always one.

‘1ib’ Library-based coarray parallelization; a suitable GNU Fortran coar-
ray library needs to be linked.

-fcheck=<keyword>

Enable the generation of run-time checks; the argument shall be a comma-
delimited list of the following keywords.

‘all’ Enable all run-time test of ‘~fcheck’.

‘array-temps’
Warns at run time when for passing an actual argument a tempo-
rary array had to be generated. The information generated by this
warning is sometimes useful in optimization, in order to avoid such
temporaries.

Note: The warning is only printed once per location.

‘bounds’ Enable generation of run-time checks for array subscripts and
against the declared minimum and maximum values. It also
checks array indices for assumed and deferred shape arrays against
the actual allocated bounds and ensures that all string lengths
are equal for character array constructors without an explicit

typespec.

Chapter 2: GNU Fortran Command Options 23

Some checks require that ‘-~fcheck=bounds’ is set for the compila-
tion of the main program.

Note: In the future this may also include other forms of checking,
e.g., checking substring references.

‘do’ Enable generation of run-time checks for invalid modification of
loop iteration variables.

Enable generation of run-time checks for memory allocation. Note:
This option does not affect explicit allocations using the ALLOCATE
statement, which will be always checked.

‘pointer’ Enable generation of run-time checks for pointers and allocatables.

‘recursion’
Enable generation of run-time checks for recursively called sub-
routines and functions which are not marked as recursive. See
also ‘~frecursive’. Note: This check does not work for OpenMP
programs and is disabled if used together with ‘~frecursive’ and
‘~fopenmp’.

-fbounds-check
Deprecated alias for ‘-~fcheck=bounds’.

-fcheck-array-temporaries
Deprecated alias for ‘-fcheck=array-temps’.

-fmax-array-constructor=n
This option can be used to increase the upper limit permitted in array con-
structors. The code below requires this option to expand the array at compile
time.

program test

implicit none

integer j

integer, parameter :: n = 100000

integer, parameter :: i(n) = (/ (2%j, j =1, n) /)
print ’(10(I0,1X))’, i

end program test

Caution: This option can lead to long compile times and excessively large object

files.
The default value for n is 65535.

-fmax-stack-var-size=n
This option specifies the size in bytes of the largest array that will be put on
the stack; if the size is exceeded static memory is used (except in procedures
marked as RECURSIVE). Use the option ‘~frecursive’ to allow for recursive
procedures which do not have a RECURSIVE attribute or for parallel programs.
Use ‘~fno-automatic’ to never use the stack.

This option currently only affects local arrays declared with constant bounds,
and may not apply to all character variables. Future versions of GNU Fortran
may improve this behavior.

The default value for n is 32768.

24 The GNU Fortran Compiler

-fstack-arrays
Adding this option will make the Fortran compiler put all local arrays, even
those of unknown size onto stack memory. If your program uses very large
local arrays it is possible that you will have to extend your runtime limits for
stack memory on some operating systems. This flag is enabled by default at
optimization level ‘-0Ofast’.

-fpack-derived
This option tells GNU Fortran to pack derived type members as closely as
possible. Code compiled with this option is likely to be incompatible with code
compiled without this option, and may execute slower.

-frepack-arrays
In some circumstances GNU Fortran may pass assumed shape array sections
via a descriptor describing a noncontiguous area of memory. This option adds
code to the function prologue to repack the data into a contiguous block at
runtime.

This should result in faster accesses to the array. However it can introduce
significant overhead to the function call, especially when the passed data is
noncontiguous.

-fshort-enums
This option is provided for interoperability with C code that was compiled with
the ‘~fshort-enums’ option. It will make GNU Fortran choose the smallest
INTEGER kind a given enumerator set will fit in, and give all its enumerators

this kind.

-fexternal-blas
This option will make gfortran generate calls to BLAS functions for some
matrix operations like MATMUL, instead of using our own algorithms, if the size of
the matrices involved is larger than a given limit (see ‘~fblas-matmul-limit’).
This may be profitable if an optimized vendor BLAS library is available. The
BLAS library will have to be specified at link time.

-fblas-matmul-limit=n
Only significant when ‘-fexternal-blas’ is in effect. Matrix multiplication
of matrices with size larger than (or equal to) n will be performed by calls to
BLAS functions, while others will be handled by gfortran internal algorithms.
If the matrices involved are not square, the size comparison is performed using
the geometric mean of the dimensions of the argument and result matrices.

4

The default value for n is 30.

—-frecursive
Allow indirect recursion by forcing all local arrays to be allocated on the
stack. This flag cannot be used together with ‘-fmax-stack-var-size=’ or
‘~fno-automatic’.

Chapter 2: GNU Fortran Command Options 25

-finit-local-zero

-finit-integer=n

-finit-real=<zero|inf|-inf|nan| snan>

-finit-logical=<truel|false>

—-finit-character=n
The ‘-finit-local-zero’ option instructs the compiler to initialize local
INTEGER, REAL, and COMPLEX variables to zero, LOGICAL variables to false,
and CHARACTER variables to a string of null bytes. Finer-grained initialization
options are provided by the ‘~-finit-integer=n’, ‘-finit-real=<zero|inf|-
inf|nan|snan> (which also initializes the real and imaginary parts
of local COMPLEX variables), ‘-finit-logical=<true|false>’, and
‘~finit-character=n’ (where n is an ASCII character value) options. These
options do not initialize

e allocatable arrays
e components of derived type variables
e variables that appear in an EQUIVALENCE statement.

(These limitations may be removed in future releases).

Note that the ‘-finit-real=nan’ option initializes REAL and COMPLEX variables
with a quiet NaN. For a signalling NaN use ‘~finit-real=snan’; note, however,
that compile-time optimizations may convert them into quiet NaN and that
trapping needs to be enabled (e.g. via ‘~ffpe-trap’).

Finally, note that enabling any of the ‘~finit-#*’ options will silence warn-
ings that would have been emitted by ‘-Wuninitialized’ for the affected local
variables.

-falign-commons

By default, gfortran enforces proper alignment of all variables in a COMMON
block by padding them as needed. On certain platforms this is mandatory,
on others it increases performance. If a COMMON block is not declared with
consistent data types everywhere, this padding can cause trouble, and
‘-fno-align-commons’ can be used to disable automatic alignment. The same
form of this option should be used for all files that share a COMMON block. To
avoid potential alignment issues in COMMON blocks, it is recommended to order
objects from largest to smallest.

—-fno-protect-parens

By default the parentheses in expression are honored for all optimization
levels such that the compiler does not do any re-association. Using
‘~fno-protect-parens’ allows the compiler to reorder REAL and COMPLEX
expressions to produce faster code. Note that for the re-association
optimization ‘-fno-signed-zeros’ and ‘-fno-trapping-math’ need to be in
effect. The parentheses protection is enabled by default, unless ‘-Ofast’ is
given.

-frealloc-1hs
An allocatable left-hand side of an intrinsic assignment is automatically
(re)allocated if it is either unallocated or has a different shape. The option is
enabled by default except when ‘-std=£95’ is given. See also ‘-Wrealloc-1hs’.

26 The GNU Fortran Compiler

-faggressive-function-elimination
Functions with identical argument lists are eliminated within statements, re-
gardless of whether these functions are marked PURE or not. For example, in
a = f(b,c) + f£(b,c)
there will only be a single call to f£f. This option only works if
‘~ffrontend-optimize’ is in effect.

-ffrontend-optimize
This option performs front-end optimization, based on manipulating parts the
Fortran parse tree. Enabled by default by any ‘-0’ option. Optimizations
enabled by this option include elimination of identical function calls within ex-
pressions, removing unnecessary calls to TRIM in comparisons and assignments
and replacing TRIM(a) with a(1:LEN_TRIM(a)). It can be deselected by spec-
ifying ‘-fno-frontend-optimize’.

See Section “Options for Code Generation Conventions” in Using the GNU Compiler
Collection (GCC), for information on more options offered by the GBE shared by gfortran,
gcc, and other GNU compilers.

2.10 Environment variables affecting gfortran

The gfortran compiler currently does not make use of any environment variables to control
its operation above and beyond those that affect the operation of gcc.

See Section “Environment Variables Affecting GCC” in Using the GNU Compiler Col-
lection (GCC), for information on environment variables.

See Chapter 3 [Runtime|, page 27, for environment variables that affect the run-time
behavior of programs compiled with GNU Fortran.

Chapter 3: Runtime: Influencing runtime behavior with environment variables 27

3 Runtime: Influencing runtime behavior with
environment variables

The behavior of the gfortran can be influenced by environment variables.

Malformed environment variables are silently ignored.

3.1 TMPDIR—Directory for scratch files
When opening a file with STATUS="SCRATCH’, GNU Fortran tries to create the file in one
of the potential directories by testing each directory in the order below.

1. The environment variable TMPDIR, if it exists.

2. On the MinGW target, the directory returned by the GetTempPath function. Alterna-
tively, on the Cygwin target, the TMP and TEMP environment variables, if they exist, in
that order.

3. The P_tmpdir macro if it is defined, otherwise the directory ‘/tmp’.

3.2 GFORTRAN_STDIN_UNIT—Unit number for standard input

This environment variable can be used to select the unit number preconnected to standard
input. This must be a positive integer. The default value is 5.

3.3 GFORTRAN_STDOUT_UNIT—Unit number for standard output

This environment variable can be used to select the unit number preconnected to standard
output. This must be a positive integer. The default value is 6.

3.4 GFORTRAN_STDERR_UNIT—Unit number for standard error

This environment variable can be used to select the unit number preconnected to standard
error. This must be a positive integer. The default value is 0.

3.5 GFORTRAN_UNBUFFERED_ALL—Do not buffer I/O on all units

This environment variable controls whether all I/O is unbuffered. If the first letter is ‘y’,
‘Y or ‘1’, all I/O is unbuffered. This will slow down small sequential reads and writes. If
the first letter is ‘n’, ‘N’ or ‘0’, I/O is buffered. This is the default.

3.6 GFORTRAN_UNBUFFERED_PRECONNECTED—Do not buffer I/O on
preconnected units

The environment variable named GFORTRAN_UNBUFFERED_PRECONNECTED controls whether

I/O on a preconnected unit (i.e. STDOUT or STDERR) is unbuffered. If the first letter is

‘y’, ‘Y’ or ‘1’ I/O is unbuffered. This will slow down small sequential reads and writes. If
the first letter is ‘n’, ‘N’ or ‘0’, I/O is buffered. This is the default.

3.7 GFORTRAN_SHQOW_LOCUS—Show location for runtime errors

If the first letter is ‘y’, ‘Y’ or ‘1’, filename and line numbers for runtime errors are printed.
If the first letter is ‘n’, ‘N’ or ‘0’, do not print filename and line numbers for runtime errors.
The default is to print the location.

28 The GNU Fortran Compiler

3.8 GFORTRAN_OPTIONAL_PLUS—Print leading + where
permitted
If the first letter is ‘y’, ‘Y’ or ‘1’; a plus sign is printed where permitted by the Fortran

standard. If the first letter is ‘n’, ‘N’ or ‘0’, a plus sign is not printed in most cases. Default
is not to print plus signs.

3.9 GFORTRAN_DEFAULT_RECL—Default record length for new
files

This environment variable specifies the default record length, in bytes, for files which are
opened without a RECL tag in the OPEN statement. This must be a positive integer. The
default value is 1073741824 bytes (1 GB).

3.10 GFORTRAN_LIST_SEPARATOR—Separator for list output

This environment variable specifies the separator when writing list-directed output. It may
contain any number of spaces and at most one comma. If you specify this on the command
line, be sure to quote spaces, as in
$ GFORTRAN_LIST_SEPARATOR=’ , ° ./a.out
when a.out is the compiled Fortran program that you want to run. Default is a single
space.

3.11 GFORTRAN_CONVERT_UNIT—Set endianness for unformatted
I/0

By setting the GFORTRAN_CONVERT_UNIT variable, it is possible to change the representation
of data for unformatted files. The syntax for the GFORTRAN_CONVERT_UNIT variable is:

GFORTRAN_CONVERT_UNIT: mode | mode ’;’ exception | exception ;
mode: ’native’ | ’swap’ | ’big_endian’ | ’little_endian’ ;
exception: mode ’:’ unit_list | unit_list ;

unit_list: unit_spec | unit_list unit_spec ;

unit_spec: INTEGER | INTEGER ’-’ INTEGER ;

The variable consists of an optional default mode, followed by a list of optional excep-
tions, which are separated by semicolons from the preceding default and each other. Each
exception consists of a format and a comma-separated list of units. Valid values for the
modes are the same as for the CONVERT specifier:

NATIVE Use the native format. This is the default.
SWAP Swap between little- and big-endian.
LITTLE_ENDIAN Use the little-endian format for unformatted files.
BIG_ENDIAN Use the big-endian format for unformatted files.
A missing mode for an exception is taken to mean BIG_ENDIAN. Examples of values for
GFORTRAN_CONVERT_UNIT are:
’big_endian’ Do all unformatted I/O in big_endian mode.

’little_endian;native:10-20,25’ Do all unformatted I/O in little_endian mode,
except for units 10 to 20 and 25, which are in native format.

?10-20° Units 10 to 20 are big-endian, the rest is native.

Chapter 3: Runtime: Influencing runtime behavior with environment variables 29

Setting the environment variables should be done on the command line or via the export
command for sh-compatible shells and via setenv for csh-compatible shells.

Example for sh:
$ gfortran foo.f90
$ GFORTRAN_CONVERT_UNIT=’big_endian;native:10-20’ ./a.out
Example code for csh:
% gfortran foo.f90
% setenv GFORTRAN_CONVERT_UNIT ’big_endian;native:10-20’
% ./a.out
Using anything but the native representation for unformatted data carries a significant
speed overhead. If speed in this area matters to you, it is best if you use this only for data
that needs to be portable.

See Section 6.1.15 [CONVERT specifier], page 47, for an alternative way to specify the
data representation for unformatted files. See Section 2.8 [Runtime Options|, page 19, for
setting a default data representation for the whole program. The CONVERT specifier overrides
the ‘~fconvert’ compile options.

Note that the values specified via the GFORTRAN_CONVERT_UNIT environment vari-
able will override the CONVERT specifier in the open statement. This is to give control
over data formats to users who do not have the source code of their program available.

3.12 GFORTRAN_ERROR_BACKTRACE—Show backtrace on run-time
errors

If the GFORTRAN_ERROR_BACKTRACE variable is set to ‘y’, ‘Y’ or ‘1’ (only the first letter
is relevant) then a backtrace is printed when a serious run-time error occurs. To disable
the backtracing, set the variable to ‘n’, ‘N’; ‘0’. Default is to print a backtrace unless the
‘~fno-backtrace’ compile option was used.

Chapter 3: Runtime: Influencing runtime behavior with environment variables

Part 1I: Language Reference

31

Chapter 4: Fortran 2003 and 2008 Status 33

4 Fortran 2003 and 2008 Status

4.1 Fortran 2003 status

GNU Fortran supports several Fortran 2003 features; an incomplete list can be found below.
See also the wiki page about Fortran 2003.

Procedure pointers including procedure-pointer components with PASS attribute.

Procedures which are bound to a derived type (type-bound procedures) including PASS,
PROCEDURE and GENERIC, and operators bound to a type.

Abstract interfaces and type extension with the possibility to override type-bound
procedures or to have deferred binding.

Polymorphic entities (“CLASS”) for derived types — including SAME_TYPE_AS, EXTENDS_
TYPE_OF and SELECT TYPE for scalars and arrays, including unlimited polymorphism.
Generic interface names, which have the same name as derived types, are now sup-
ported. This allows one to write constructor functions. Note that Fortran does not
support static constructor functions. For static variables, only default initialization or
structure-constructor initialization are available.

The ASSOCIATE construct.

Interoperability with C including enumerations,

In structure constructors the components with default values may be omitted.
Extensions to the ALLOCATE statement, allowing for a type-specification with type pa-
rameter and for allocation and initialization from a SOURCE= expression; ALLOCATE and
DEALLOCATE optionally return an error message string via ERRMSG=.

Reallocation on assignment: If an intrinsic assignment is used, an allocatable vari-
able on the left-hand side is automatically allocated (if unallocated) or reallocated (if
the shape is different). Currently, scalar deferred character length left-hand sides are
correctly handled but arrays are not yet fully implemented.

Transferring of allocations via MOVE_ALLOC.

The PRIVATE and PUBLIC attributes may be given individually to derived-type compo-
nents.

In pointer assignments, the lower bound may be specified and the remapping of elements
is supported.

For pointers an INTENT may be specified which affect the association status not the
value of the pointer target.

Intrinsics command_argument_count, get_command, get_command_argument, and get_
environment_variable.

Support for Unicode characters (ISO 10646) and UTF-8, including the SELECTED_CHAR_
KIND and NEW_LINE intrinsic functions.

Support for binary, octal and hexadecimal (BOZ) constants in the intrinsic functions
INT, REAL, CMPLX and DBLE.

Support for namelist variables with allocatable and pointer attribute and nonconstant
length type parameter.

http://gcc.gnu.org/wiki/Fortran2003

34

The GNU Fortran Compiler

Array constructors using square brackets. That is, [...] rather than (/.../). Type-
specification for array constructors like (/ some-type :: ... /).

Extensions to the specification and initialization expressions, including the support for
intrinsics with real and complex arguments.

Support for the asynchronous input/output syntax; however, the data transfer is cur-
rently always synchronously performed.

FLUSH statement.
I0MSG= specifier for I/O statements.

Support for the declaration of enumeration constants via the ENUM and ENUMERATOR
statements. Interoperability with gcc is guaranteed also for the case where the -
fshort-enums command line option is given.

TR 15581:
e ALLOCATABLE dummy arguments.
e ALLOCATABLE function results
e ALLOCATABLE components of derived types

The OPEN statement supports the ACCESS=’STREAM’ specifier, allowing I/O without
any record structure.

Namelist input/output for internal files.

Further I/0 extensions: Rounding during formatted output, using of a decimal comma
instead of a decimal point, setting whether a plus sign should appear for positive
numbers.

The PROTECTED statement and attribute.

The VALUE statement and attribute.

The VOLATILE statement and attribute.

The IMPORT statement, allowing to import host-associated derived types.

The intrinsic modules ISO_FORTRAN_ENVIRONMENT is supported, which contains param-
eters of the I/O units, storage sizes. Additionally, procedures for C interoperability are
available in the ISO_C_BINDING module.

USE statement with INTRINSIC and NON_INTRINSIC attribute; supported intrinsic mod-
ules: ISO_FORTRAN_ENV, ISO_C_BINDING, OMP_LIB and OMP_LIB_KINDS.

Renaming of operators in the USE statement.

4.2 Fortran 2008 status

The latest version of the Fortran standard is ISO/IEC 1539-1:2010, informally known as
Fortran 2008. The official version is available from International Organization for Stan-
dardization (ISO) or its national member organizations. The the final draft (FDIS) can

be

downloaded free of charge from http://www.nag.co.uk/sc22wgb/links.html. For-

tran is developed by the Working Group 5 of Sub-Committee 22 of the Joint Technical
Committee 1 of the International Organization for Standardization and the International
Electrotechnical Commission (IEC). This group is known as WGb.

The GNU Fortran compiler supports several of the new features of Fortran 2008; the wiki

has some information about the current Fortran 2008 implementation status. In particular,
the following is implemented.

http://www.nag.co.uk/sc22wg5/links.html
http://www.nag.co.uk/sc22wg5/
http://gcc.gnu.org/wiki/Fortran2008Status

Chapter 4: Fortran 2003 and 2008 Status 35

e The ‘-std=f2008’ option and support for the file extensions ‘.£08” and ‘.F08’.

e The OPEN statement now supports the NEWUNIT= option, which returns a unique file
unit, thus preventing inadvertent use of the same unit in different parts of the program.

e The g0 format descriptor and unlimited format items.

e The mathematical intrinsics ASINH, ACOSH, ATANH, ERF, ERFC, GAMMA, LOG_GAMMA,
BESSEL_JO, BESSEL_J1, BESSEL_JN, BESSEL_YO, BESSEL_Y1, BESSEL_YN, HYPOT, NORM2,
and ERFC_SCALED.

e Using complex arguments with TAN, SINH, COSH, TANH, ASIN, ACOS, and ATAN is now
possible; ATAN(Y,X) is now an alias for ATAN2(Y,X).

e Support of the PARITY intrinsic functions.

e The following bit intrinsics: LEADZ and TRAILZ for counting the number of leading and
trailing zero bits, POPCNT and POPPAR for counting the number of one bits and returning
the parity; BGE, BGT, BLE, and BLT for bitwise comparisons; DSHIFTL and DSHIFTR for
combined left and right shifts, MASKL and MASKR for simple left and right justified masks,
MERGE_BITS for a bitwise merge using a mask, SHIFTA, SHIFTL and SHIFTR for shift
operations, and the transformational bit intrinsics TALL, TANY and IPARITY.

e Support of the EXECUTE_COMMAND_LINE intrinsic subroutine.
e Support for the STORAGE_SIZE intrinsic inquiry function.

e The INT{8,16,32} and REAL{32,64,128} kind type parameters and the array-valued
named constants INTEGER_KINDS, LOGICAL_KINDS, REAL_KINDS and CHARACTER_KINDS
of the intrinsic module ISO_FORTRAN_ENV.

e The module procedures C_SIZEOF of the intrinsic module ISO_C_BINDINGS and
COMPILER_VERSION and COMPILER_OPTIONS of ISO_FORTRAN_ENV.

e Coarray support for serial programs with ‘~fcoarray=single’ flag and experimental
support for multiple images with the ‘~fcoarray=1ib’ flag.

e The DO CONCURRENT construct is supported.

e The BLOCK construct is supported.

e The STOP and the new ERROR STOP statements now support all constant expressions.
e Support for the CONTIGUOUS attribute.

e Support for ALLOCATE with MOLD.

e Support for the IMPURE attribute for procedures, which allows for ELEMENTAL procedures
without the restrictions of PURE.

e Null pointers (including NULL ()) and not-allocated variables can be used as actual ar-
gument to optional non-pointer, non-allocatable dummy arguments, denoting an absent
argument.

e Non-pointer variables with TARGET attribute can be used as actual argument to POINTER
dummies with INTENT(IN).

e Pointers including procedure pointers and those in a derived type (pointer components)
can now be initialized by a target instead of only by NULL.

e The EXIT statement (with construct-name) can be now be used to leave not only the
DO but also the ASSOCTIATE, BLOCK, IF, SELECT CASE and SELECT TYPE constructs.

e Internal procedures can now be used as actual argument.

36

The GNU Fortran Compiler

e Minor features: obsolesce diagnostics for ENTRY with ‘-std=£f2008’; a line may start

with a semicolon; for internal and module procedures END can be used instead of END
SUBROUTINE and END FUNCTION; SELECTED_REAL_KIND now also takes a RADIX argu-
ment; intrinsic types are supported for TYPE(intrinsic-type-spec); multiple type-bound
procedures can be declared in a single PROCEDURE statement; implied-shape arrays are
supported for named constants (PARAMETER).

4.3 Technical Specification 29113 Status

GNU Fortran supports some of the new features of the Technical Specification (TS) 29113
on Further Interoperability of Fortran with C. The wiki has some information about the
current TS 29113 implementation status. In particular, the following is implemented.

See also Section 7.1.6 [Further Interoperability of Fortran with C], page 58.
The ‘-std=£f2008ts’ option.
The OPTIONAL attribute is allowed for dummy arguments of BIND(C) procedures.
The RANK intrinsic is supported.

GNU Fortran’s implementation for variables with ASYNCHRONQUS attribute is compati-
ble with TS 29113.

Assumed types (TYPE(*).

Assumed-rank (DIMENSION(..)). However, the array descriptor of the TS is not yet
supported.

http://gcc.gnu.org/wiki/TS29113Status

Chapter 5: Compiler Characteristics 37

5 Compiler Characteristics

This chapter describes certain characteristics of the GNU Fortran compiler, that are not
specified by the Fortran standard, but which might in some way or another become visible
to the programmer.

5.1 KIND Type Parameters
The KIND type parameters supported by GNU Fortran for the primitive data types are:

INTEGER 1, 2, 4, 8%, 16%, default: 4 (1)
LOGICAL 1,2, 4, 8%, 16*, default: 4 (1)
REAL 4, 8, 10*, 16*, default: 4 (2

)
COMPLEX 4, 8, 10%, 16*, default: 4 (2)
CHARACTER

1, 4, default: 1

* = not available on all systems
(1) Unless -fdefault-integer-8 is used
(2) Unless -fdefault-real-8 is used

The KIND value matches the storage size in bytes, except for COMPLEX where the storage size
is twice as much (or both real and imaginary part are a real value of the given size). It is
recommended to use the SELECTED_CHAR_KIND, SELECTED_INT_KIND and SELECTED_REAL_
KIND intrinsics or the INT8, INT16, INT32, INT64, REAL32, REAL64, and REAL128 parameters
of the ISO_FORTRAN_ENV module instead of the concrete values. The available kind parame-
ters can be found in the constant arrays CHARACTER_KINDS, INTEGER_KINDS, LOGICAL_KINDS
and REAL_KINDS in the ISO_FORTRAN_ENV module (see Section 9.1 [[SO_FORTRAN_ENV],
page 217).

5.2 Internal representation of LOGICAL variables

The Fortran standard does not specify how variables of LOGICAL type are represented,
beyond requiring that LOGICAL variables of default kind have the same storage size as default
INTEGER and REAL variables. The GNU Fortran internal representation is as follows.

A LOGICAL(KIND=N) variable is represented as an INTEGER(KIND=N) variable, however,
with only two permissible values: 1 for .TRUE. and O for .FALSE.. Any other integer value
results in undefined behavior.

Note that for mixed-language programming using the ISO_C_BINDING feature, there
is a C_BOOL kind that can be used to create LOGICAL(KIND=C_BOOL) variables which are
interoperable with the C99 _Bool type. The C99 _Bool type has an internal representation
described in the C99 standard, which is identical to the above description, i.e. with 1 for
true and 0 for false being the only permissible values. Thus the internal representation of
LOGICAL variables in GNU Fortran is identical to C99 _Bool, except for a possible difference
in storage size depending on the kind.

38 The GNU Fortran Compiler

5.3 Thread-safety of the runtime library

GNU Fortran can be used in programs with multiple threads, e.g. by using OpenMP, by
calling OS thread handling functions via the ISO_C_BINDING facility, or by GNU Fortran
compiled library code being called from a multi-threaded program.

The GNU Fortran runtime library, (libgfortran), supports being called concurrently
from multiple threads with the following exceptions.

During library initialization, the C getenv function is used, which need not be thread-
safe. Similarly, the getenv function is used to implement the GET_ENVIRONMENT_VARIABLE
and GETENV intrinsics. It is the responsibility of the user to ensure that the environment is
not being updated concurrently when any of these actions are taking place.

The EXECUTE_COMMAND_LINE and SYSTEM intrinsics are implemented with the system
function, which need not be thread-safe. It is the responsibility of the user to ensure that
system is not called concurrently.

Finally, for platforms not supporting thread-safe POSIX functions, further functionality
might not be thread-safe. For details, please consult the documentation for your operating
system.

5.4 Data consistency and durability

This section contains a brief overview of data and metadata consistency and durability
issues when doing I/0.

With respect to durability, GNU Fortran makes no effort to ensure that data is commit-
ted to stable storage. If this is required, the GNU Fortran programmer can use the intrinsic
FNUM to retrieve the low level file descriptor corresponding to an open Fortran unit. Then,
using e.g. the ISO_C_BINDING feature, one can call the underlying system call to flush
dirty data to stable storage, such as fsync on POSIX, _commit on MingW, or fcntl(£fd,
F_FULLSYNC, 0) on Mac OS X. The following example shows how to call fsync:

! Declare the interface for POSIX fsync function
interface
function fsync (£fd) bind(c,name="fsync")
use iso_c_binding, only: c_int
integer(c_int), value :: fd
integer(c_int) :: fsync
end function fsync
end interface

! Variable declaration
integer :: ret

! Opening unit 10
open (10,file="foo")

! Perform I/0 on unit 10
oL

! Flush and sync
flush(10)
ret = fsync(fnum(10))

Chapter 5: Compiler Characteristics 39

! Handle possible error
if (ret /= 0) stop "Error calling FSYNC"

With respect to consistency, for regular files GNU Fortran uses buffered I/O in order
to improve performance. This buffer is flushed automatically when full and in some other
situations, e.g. when closing a unit. It can also be explicitly flushed with the FLUSH
statement. Also, the buffering can be turned off with the GFORTRAN_UNBUFFERED_ALL and
GFORTRAN_UNBUFFERED_PRECONNECTED environment variables. Special files, such as termi-
nals and pipes, are always unbuffered. Sometimes, however, further things may need to be
done in order to allow other processes to see data that GNU Fortran has written, as follows.

The Windows platform supports a relaxed metadata consistency model, where file meta-
data is written to the directory lazily. This means that, for instance, the dir command can
show a stale size for a file. One can force a directory metadata update by closing the unit,
or by calling _commit on the file descriptor. Note, though, that _commit will force all dirty
data to stable storage, which is often a very slow operation.

The Network File System (NFS) implements a relaxed consistency model called open-to-
close consistency. Closing a file forces dirty data and metadata to be flushed to the server,
and opening a file forces the client to contact the server in order to revalidate cached data.
fsync will also force a flush of dirty data and metadata to the server. Similar to open and
close, acquiring and releasing fcntl file locks, if the server supports them, will also force
cache validation and flushing dirty data and metadata.

Chapter 6: Extensions 41

6 Extensions

The two sections below detail the extensions to standard Fortran that are implemented in
GNU Fortran, as well as some of the popular or historically important extensions that are
not (or not yet) implemented. For the latter case, we explain the alternatives available to
GNU Fortran users, including replacement by standard-conforming code or GNU extensions.

6.1 Extensions implemented in GNU Fortran

GNU Fortran implements a number of extensions over standard Fortran. This chapter con-
tains information on their syntax and meaning. There are currently two categories of GNU
Fortran extensions, those that provide functionality beyond that provided by any standard,
and those that are supported by GNU Fortran purely for backward compatibility with
legacy compilers. By default, ‘-std=gnu’ allows the compiler to accept both types of exten-
sions, but to warn about the use of the latter. Specifying either ‘-std=f95’, ‘~std=£2003’
or ‘-std=£2008’ disables both types of extensions, and ‘-std=legacy’ allows both without
warning.

6.1.1 Old-style kind specifications

GNU Fortran allows old-style kind specifications in declarations. These look like:
TYPESPEC*size x,y,z

where TYPESPEC is a basic type (INTEGER, REAL, etc.), and where size is a byte count
corresponding to the storage size of a valid kind for that type. (For COMPLEX variables,
size is the total size of the real and imaginary parts.) The statement then declares x, y
and z to be of type TYPESPEC with the appropriate kind. This is equivalent to the standard-
conforming declaration

TYPESPEC(k) x,y,z

where k is the kind parameter suitable for the intended precision. As kind parameters are
implementation-dependent, use the KIND, SELECTED_INT_KIND and SELECTED_REAL_KIND
intrinsics to retrieve the correct value, for instance REAL*8 x can be replaced by:

INTEGER, PARAMETER :: dbl = KIND(1.0d0)
REAL (KIND=dbl) :: x

6.1.2 Old-style variable initialization

GNU Fortran allows old-style initialization of variables of the form:
INTEGER i/1/,3/2/
REAL x(2,2) /3%0.,1./

The syntax for the initializers is as for the DATA statement, but unlike in a DATA state-
ment, an initializer only applies to the variable immediately preceding the initialization. In
other words, something like INTEGER I,J/2,3/ is not valid. This style of initialization is
only allowed in declarations without double colons (: :); the double colons were introduced
in Fortran 90, which also introduced a standard syntax for initializing variables in type
declarations.

Examples of standard-conforming code equivalent to the above example are:

! Fortran 90
INTEGER :: i

=1, j=2
REAL :: x(2,2) =

RESHAPE((/0.,0.,0.,1./),SHAPE(x))

42 The GNU Fortran Compiler

! Fortran 77
INTEGER i, j
REAL x(2,2)
DATA i/1/, j/2/, x/3%0.,1./
Note that variables which are explicitly initialized in declarations or in DATA statements
automatically acquire the SAVE attribute.

6.1.3 Extensions to namelist

GNU Fortran fully supports the Fortran 95 standard for namelist I/O including array
qualifiers, substrings and fully qualified derived types. The output from a namelist write is
compatible with namelist read. The output has all names in upper case and indentation to
column 1 after the namelist name. Two extensions are permitted:

Old-style use of ‘$’ instead of ‘&’

$MYNML

X(:)%Y(2) = 1.0 2.0 3.0
CH(1:4) = "abcd"

$END

It should be noted that the default terminator is ‘/’ rather than ‘€END’.

Querying of the namelist when inputting from stdin. After at least one space, entering

*?’ sends to stdout the namelist name and the names of the variables in the namelist:
?

&mynml
X
xhy
ch

&end

Entering ‘=7’ outputs the namelist to stdout, as if WRITE(*,NML = mynml) had been
called:

=7

&MYNML

X(1)%Y=0.000000 , 1.000000 , 0.000000 s
X(2)%Y= 0.000000 , 2.000000 , 0.000000 s
X(3)%Y= 0.000000 , 3.000000 , 0.000000 s
CH=abcd, /

To aid this dialog, when input is from stdin, errors send their messages to stderr and
execution continues, even if IOSTAT is set.

PRINT namelist is permitted. This causes an error if ‘-std=£95’ is used.
PROGRAM test_print
REAL, dimension (4) :: x = (/1.0, 2.0, 3.0, 4.0/)
NAMELIST /mynml/ x
PRINT mynml
END PROGRAM test_print

Expanded namelist reads are permitted. This causes an error if ‘-std=£f95’ is used. In
the following example, the first element of the array will be given the value 0.00 and the
two succeeding elements will be given the values 1.00 and 2.00.

&MYNML
X(1,1) = 0.00 , 1.00 , 2.00
/

Chapter 6: Extensions 43

6.1.4 X format descriptor without count field

To support legacy codes, GNU Fortran permits the count field of the X edit descriptor in
FORMAT statements to be omitted. When omitted, the count is implicitly assumed to be
one.

PRINT 10, 2, 3
10 FORMAT (I1, X, I1)

6.1.5 Commas in FORMAT specifications

To support legacy codes, GNU Fortran allows the comma separator to be omitted immedi-
ately before and after character string edit descriptors in FORMAT statements.

PRINT 10, 2, 3
10 FORMAT (°F00="I1’ BAR=’I2)

6.1.6 Missing period in FORMAT specifications

To support legacy codes, GNU Fortran allows missing periods in format specifications if
and only if ‘-std=legacy’ is given on the command line. This is considered non-conforming
code and is discouraged.

REAL :: value
READ(*,10) value
10 FORMAT (°F4’)

6.1.7 I/0 item lists

To support legacy codes, GNU Fortran allows the input item list of the READ statement,
and the output item lists of the WRITE and PRINT statements, to start with a comma.

6.1.8 Q exponent-letter

GNU Fortran accepts real literal constants with an exponent-letter of Q, for example,
1.23Q45. The constant is interpreted as a REAL(16) entity on targets that support this
type. If the target does not support REAL(16) but has a REAL(10) type, then the real-
literal-constant will be interpreted as a REAL(10) entity. In the absence of REAL(16) and
REAL(10), an error will occur.

6.1.9 BOZ literal constants

Besides decimal constants, Fortran also supports binary (b), octal (o) and hexadecimal (z)
integer constants. The syntax is: ‘prefix quote digits quote’, were the prefix is either b,
o or z, quote is either > or " and the digits are for binary 0 or 1, for octal between 0 and
7, and for hexadecimal between 0 and F. (Example: b’01011101°.)

Up to Fortran 95, BOZ literals were only allowed to initialize integer variables in DATA
statements. Since Fortran 2003 BOZ literals are also allowed as argument of REAL, DBLE,
INT and CMPLX; the result is the same as if the integer BOZ literal had been converted by
TRANSFER to, respectively, real, double precision, integer or complex. As GNU Fortran
extension the intrinsic procedures FLOAT, DFLOAT, COMPLEX and DCMPLX are treated alike.

As an extension, GNU Fortran allows hexadecimal BOZ literal constants to be specified
using the X prefix, in addition to the standard Z prefix. The BOZ literal can also be specified
by adding a suffix to the string, for example, Z>ABC’> and ’ABC’Z are equivalent.

44 The GNU Fortran Compiler

Furthermore, GNU Fortran allows using BOZ literal constants outside DATA statements
and the four intrinsic functions allowed by Fortran 2003. In DATA statements, in direct
assignments, where the right-hand side only contains a BOZ literal constant, and for old-
style initializers of the form integer i /0’0173’/, the constant is transferred as if TRANSFER
had been used; for COMPLEX numbers, only the real part is initialized unless CMPLX is used.
In all other cases, the BOZ literal constant is converted to an INTEGER value with the largest
decimal representation. This value is then converted numerically to the type and kind of the
variable in question. (For instance, real :: r = b’0000001° + 1 initializes r with 2.0.) As
different compilers implement the extension differently, one should be careful when doing
bitwise initialization of non-integer variables.

Note that initializing an INTEGER variable with a statement such as DATA
i/Z’FFFFFFFF’/ will give an integer overflow error rather than the desired result
of —1 when i is a 32-bit integer on a system that supports 64-bit integers. The
‘~fno-range-check’ option can be used as a workaround for legacy code that initializes
integers in this manner.

6.1.10 Real array indices

As an extension, GNU Fortran allows the use of REAL expressions or variables as array
indices.

6.1.11 Unary operators

As an extension, GNU Fortran allows unary plus and unary minus operators to appear as
the second operand of binary arithmetic operators without the need for parenthesis.
X=Y* -Z

6.1.12 Implicitly convert LOGICAL and INTEGER values

As an extension for backwards compatibility with other compilers, GNU Fortran allows the
implicit conversion of LOGICAL values to INTEGER values and vice versa. When converting
from a LOGICAL to an INTEGER, .FALSE. is interpreted as zero, and .TRUE. is interpreted as
one. When converting from INTEGER to LOGICAL, the value zero is interpreted as .FALSE.
and any nonzero value is interpreted as .TRUE..

LOGICAL :: 1
1=1
INTEGER :: i
i = .TRUE.

However, there is no implicit conversion of INTEGER values in if-statements, nor of
LOGICAL or INTEGER values in I/O operations.

6.1.13 Hollerith constants support

GNU Fortran supports Hollerith constants in assignments, function arguments, and DATA
and ASSIGN statements. A Hollerith constant is written as a string of characters preceded
by an integer constant indicating the character count, and the letter H or h, and stored
in bytewise fashion in a numeric (INTEGER, REAL, or complex) or LOGICAL variable. The
constant will be padded or truncated to fit the size of the variable in which it is stored.

Examples of valid uses of Hollerith constants:

Chapter 6: Extensions 45

complex*16 x(2)
data x /16Habcdefghijklmnop, 16Hqrstuvwxyz012345/
x(1) = 16HABCDEFGHIJKLMNOP
call foo (4h abc)
Invalid Hollerith constants examples:

integer*4 a
a = 8H12345678 ! Valid, but the Hollerith constant will be truncated.
a = OH ! At least one character is needed.

In general, Hollerith constants were used to provide a rudimentary facility for handling
character strings in early Fortran compilers, prior to the introduction of CHARACTER variables
in Fortran 77; in those cases, the standard-compliant equivalent is to convert the program
to use proper character strings. On occasion, there may be a case where the intent is
specifically to initialize a numeric variable with a given byte sequence. In these cases, the
same result can be obtained by using the TRANSFER statement, as in this example.

INTEGER(KIND=4) :: a
a = TRANSFER ("abcd", a) ! equivalent to: a = 4Habcd

6.1.14 Cray pointers

Cray pointers are part of a non-standard extension that provides a C-like pointer in Fortran.
This is accomplished through a pair of variables: an integer "pointer" that holds a memory
address, and a "pointee" that is used to dereference the pointer.

Pointer /pointee pairs are declared in statements of the form:
pointer (<pointer> , <pointee>)
or,

pointer (<pointerl> , <pointeel>), (<pointer2> , <pointee2>), ...

The pointer is an integer that is intended to hold a memory address. The pointee may
be an array or scalar. A pointee can be an assumed size array—that is, the last dimension
may be left unspecified by using a * in place of a value—but a pointee cannot be an assumed
shape array. No space is allocated for the pointee.

The pointee may have its type declared before or after the pointer statement, and its
array specification (if any) may be declared before, during, or after the pointer statement.
The pointer may be declared as an integer prior to the pointer statement. However, some
machines have default integer sizes that are different than the size of a pointer, and so the
following code is not portable:

integer ipt
pointer (ipt, iarr)

If a pointer is declared with a kind that is too small, the compiler will issue a warning;
the resulting binary will probably not work correctly, because the memory addresses stored
in the pointers may be truncated. It is safer to omit the first line of the above example;
if explicit declaration of ipt’s type is omitted, then the compiler will ensure that ipt is an
integer variable large enough to hold a pointer.

Pointer arithmetic is valid with Cray pointers, but it is not the same as C pointer arith-
metic. Cray pointers are just ordinary integers, so the user is responsible for determining
how many bytes to add to a pointer in order to increment it. Consider the following example:

real target(10)
real pointee(10)
pointer (ipt, pointee)

46 The GNU Fortran Compiler

ipt
ipt

loc (target)
ipt + 1

The last statement does not set ipt to the address of target (1), as it would in C pointer
arithmetic. Adding 1 to ipt just adds one byte to the address stored in ipt.

Any expression involving the pointee will be translated to use the value stored in the
pointer as the base address.

To get the address of elements, this extension provides an intrinsic function LOC(). The
LOC() function is equivalent to the & operator in C, except the address is cast to an integer
type:

real ar(10)

pointer (ipt, arpte(10))

real arpte

ipt = loc(ar) ! Makes arpte is an alias for ar
arpte(1) = 1.0 ! Sets ar(1) to 1.0

The pointer can also be set by a call to the MALLOC intrinsic (see Section 8.161 [MALLOC]
page 160).

)

Cray pointees often are used to alias an existing variable. For example:
integer target(10)
integer iarr(10)
pointer (ipt, iarr)
ipt = loc(target)

As long as ipt remains unchanged, iarr is now an alias for target. The optimizer,
however, will not detect this aliasing, so it is unsafe to use iarr and target simultaneously.
Using a pointee in any way that violates the Fortran aliasing rules or assumptions is illegal.
It is the user’s responsibility to avoid doing this; the compiler works under the assumption
that no such aliasing occurs.

Cray pointers will work correctly when there is no aliasing (i.e., when they are used to
access a dynamically allocated block of memory), and also in any routine where a pointee
is used, but any variable with which it shares storage is not used. Code that violates these
rules may not run as the user intends. This is not a bug in the optimizer; any code that
violates the aliasing rules is illegal. (Note that this is not unique to GNU Fortran; any
Fortran compiler that supports Cray pointers will “incorrectly” optimize code with illegal
aliasing.)

There are a number of restrictions on the attributes that can be applied to Cray point-
ers and pointees. Pointees may not have the ALLOCATABLE, INTENT, OPTIONAL, DUMMY,
TARGET, INTRINSIC, or POINTER attributes. Pointers may not have the DIMENSION, POINTER,
TARGET, ALLOCATABLE, EXTERNAL, or INTRINSIC attributes, nor may they be function re-
sults. Pointees may not occur in more than one pointer statement. A pointee cannot be a
pointer. Pointees cannot occur in equivalence, common, or data statements.

A Cray pointer may also point to a function or a subroutine. For example, the following
excerpt is valid:
implicit none
external sub
pointer (subptr,subpte)
external subpte
subptr = loc(sub)
call subpte()
[...]

Chapter 6: Extensions 47

subroutine sub
[...]
end subroutine sub
A pointer may be modified during the course of a program, and this will change the
location to which the pointee refers. However, when pointees are passed as arguments, they
are treated as ordinary variables in the invoked function. Subsequent changes to the pointer
will not change the base address of the array that was passed.

6.1.15 CONVERT specifier

GNU Fortran allows the conversion of unformatted data between little- and big-endian
representation to facilitate moving of data between different systems. The conversion can
be indicated with the CONVERT specifier on the OPEN statement. See Section 3.11 [GFOR-
TRAN_CONVERT _UNIT], page 28, for an alternative way of specifying the data format
via an environment variable.

Valid values for CONVERT are:
CONVERT=’NATIVE’ Use the native format. This is the default.
CONVERT=’SWAP’ Swap between little- and big-endian.
CONVERT=’LITTLE_ENDIAN’ Use the little-endian representation for unformatted files.
CONVERT=’BIG_ENDIAN’ Use the big-endian representation for unformatted files.

Using the option could look like this:
open(file=’big.dat’ ,form="unformatted’,access=’sequential’, &
convert=’big_endian’)
The value of the conversion can be queried by using INQUIRE (CONVERT=ch). The values
returned are *BIG_ENDIAN’ and ’LITTLE_ENDIAN’.

CONVERT works between big- and little-endian for INTEGER values of all supported kinds
and for REAL on IEEE systems of kinds 4 and 8. Conversion between different “extended
double” types on different architectures such as m68k and x86_64, which GNU Fortran
supports as REAL(KIND=10) and REAL(KIND=16), will probably not work.

Note that the values specified via the GFORTRAN_CONVERT_UNIT environment vari-
able will override the CONVERT specifier in the open statement. This is to give control
over data formats to users who do not have the source code of their program available.

Using anything but the native representation for unformatted data carries a significant
speed overhead. If speed in this area matters to you, it is best if you use this only for data
that needs to be portable.

6.1.16 OpenMP

OpenMP (Open Multi-Processing) is an application programming interface (API) that sup-
ports multi-platform shared memory multiprocessing programming in C/C++ and Fortran
on many architectures, including Unix and Microsoft Windows platforms. It consists of a set
of compiler directives, library routines, and environment variables that influence run-time
behavior.

GNU Fortran strives to be compatible to the OpenMP Application Program Interface
v3.1.

http://www.openmp.org/mp-documents/spec31.pdf
http://www.openmp.org/mp-documents/spec31.pdf

48 The GNU Fortran Compiler

To enable the processing of the OpenMP directive !$omp in free-form source code; the
c$omp, *$omp and !$omp directives in fixed form; the !'$ conditional compilation sentinels in
free form; and the c$, *$ and !'$ sentinels in fixed form, gfortran needs to be invoked with
the ‘~fopenmp’. This also arranges for automatic linking of the GNU OpenMP runtime
library Section “libgomp” in GNU OpenMP runtime library.

The OpenMP Fortran runtime library routines are provided both in a form of a Fortran
90 module named omp_1ib and in a form of a Fortran include file named ‘omp_1ib.h’.

An example of a parallelized loop taken from Appendix A.1 of the OpenMP Application
Program Interface v2.5:

SUBROUTINE A1(N, A, B)
INTEGER I, N
REAL B(N), A(N)
'$OMP PARALLEL DO !I is private by default
DO I=2,N
B(I) = (A(I) + A(I-1)) / 2.0
ENDDO
'$0OMP END PARALLEL DO
END SUBROUTINE A1l

Please note:

e ‘—fopenmp’ implies ‘-frecursive’, i.e., all local arrays will be allocated on the stack.
When porting existing code to OpenMP, this may lead to surprising results, especially
to segmentation faults if the stacksize is limited.

e On glibc-based systems, OpenMP enabled applications cannot be statically linked due
to limitations of the underlying pthreads-implementation. It might be possible to get
a working solution if -W1,--whole-archive -lpthread -Wl,--no-whole-archive is
added to the command line. However, this is not supported by gcc and thus not
recommended.

6.1.17 Argument list functions VAL, %REF and %L0C

GNU Fortran supports argument list functions %VAL, %REF and %LOC statements, for back-
ward compatibility with g77. It is recommended that these should be used only for code
that is accessing facilities outside of GNU Fortran, such as operating system or windowing
facilities. It is best to constrain such uses to isolated portions of a program—portions that
deal specifically and exclusively with low-level, system-dependent facilities. Such portions
might well provide a portable interface for use by the program as a whole, but are them-
selves not portable, and should be thoroughly tested each time they are rebuilt using a new
compiler or version of a compiler.

%VAL passes a scalar argument by value, %REF passes it by reference and %LOC passes its
memory location. Since gfortran already passes scalar arguments by reference, %REF is in
effect a do-nothing. %L0OC has the same effect as a Fortran pointer.

An example of passing an argument by value to a C subroutine foo.:

¢
C prototype void foo_ (float x);
¢

external foo

real*4 x

x = 3.14159

call foo (%VAL (x))

Chapter 6: Extensions 49

end

For details refer to the g77 manual http://gcc.gnu.org/onlinedocs/gcc-3.4.6/
g77/index.html#Top.

Also, c_by_val.f and its partner c_by_val.c of the GNU Fortran testsuite are worth
a look.

6.2 Extensions not implemented in GNU Fortran

The long history of the Fortran language, its wide use and broad userbase, the large num-
ber of different compiler vendors and the lack of some features crucial to users in the first
standards have lead to the existence of a number of important extensions to the language.
While some of the most useful or popular extensions are supported by the GNU Fortran
compiler, not all existing extensions are supported. This section aims at listing these ex-
tensions and offering advice on how best make code that uses them running with the GNU
Fortran compiler.

6.2.1 STRUCTURE and RECORD

Record structures are a pre-Fortran-90 vendor extension to create user-defined aggregate
data types. GNU Fortran does not support record structures, only Fortran 90’s “derived
types”, which have a different syntax.

In many cases, record structures can easily be converted to derived types. To convert,
replace STRUCTURE /structure-name/ by TYPE type-name. Additionally, replace RECORD
/structure-name/ by TYPE(type-name). Finally, in the component access, replace the pe-
riod (.) by the percent sign (%).

Here is an example of code using the non portable record structure syntax:

! Declaring a structure named ‘‘item’’ and containing three fields:
! an integer ID, an description string and a floating-point price.
STRUCTURE /item/

INTEGER id

CHARACTER (LEN=200) description

REAL price
END STRUCTURE
| Define two variables, an single record of type ‘‘item’’
! named ‘‘pear’’, and an array of items named °‘store_catalog’’
RECORD /item/ pear, store_catalog(100)

| We can directly access the fields of both variables
pear.id = 92316

pear.description = "juicy D’Anjou pear"

pear.price = 0.15

store_catalog(7).id = 7831

store_catalog(7) .description = "milk bottle"
store_catalog(7) .price = 1.2

! We can also manipulate the whole structure

http://gcc.gnu.org/onlinedocs/gcc-3.4.6/g77/index.html#Top
http://gcc.gnu.org/onlinedocs/gcc-3.4.6/g77/index.html#Top

50 The GNU Fortran Compiler

store_catalog(12) = pear
print *, store_catalog(12)

This code can easily be rewritten in the Fortran 90 syntax as following:

I ““STRUCTURE /name/ ... END STRUCTURE’’ becomes
| “‘TYPE name ... END TYPE’’
TYPE item
INTEGER id
CHARACTER (LEN=200) description
REAL price
END TYPE

| ‘‘RECORD /name/ variable’’ becomes ¢ ‘TYPE(name) variable’’
TYPE(item) pear, store_catalog(100)

| Instead of using a dot (.) to access fields of a record, the
! standard syntax uses a percent sign (%)

pear’%id = 92316

pear’description = "juicy D’Anjou pear"

pear’price = 0.15

store_catalog(7)%id = 7831

store_catalog(7)%description = "milk bottle"
store_catalog(7)%price = 1.2

| Assignments of a whole variable do not change
store_catalog(12) = pear
print *, store_catalog(12)

6.2.2 ENCODE and DECODE statements

GNU Fortran does not support the ENCODE and DECODE statements. These statements are
best replaced by READ and WRITE statements involving internal files (CHARACTER variables
and arrays), which have been part of the Fortran standard since Fortran 77. For example,
replace a code fragment like

INTEGER*1 LINE(80)

REAL A, B, C
c ... Code that sets LINE

DECODE (80, 9000, LINE) A, B, C
9000 FORMAT (1X, 3(F10.5))

with the following:

CHARACTER (LEN=80) LINE

REAL A, B, C
c ... Code that sets LINE

READ (UNIT=LINE, FMT=9000) A, B, C
9000 FORMAT (1X, 3(F10.5))

Similarly, replace a code fragment like

INTEGER*1 LINE(80)
REAL A, B, C

c ... Code that sets A, B and C
ENCODE (80, 9000, LINE) A, B, C

Chapter 6: Extensions 51

9000 FORMAT (1X, ’OUTPUT IS °’, 3(F10.5))

with the following:

CHARACTER (LEN=80) LINE
REAL A, B, C
c ... Code that sets A, B and C
WRITE (UNIT=LINE, FMT=9000) A, B, C
9000 FORMAT (1X, °’O0UTPUT IS ’, 3(F10.5))

6.2.3 Variable FORMAT expressions

A variable FORMAT expression is format statement which includes angle brackets enclosing a
Fortran expression: FORMAT(I<N>). GNU Fortran does not support this legacy extension.
The effect of variable format expressions can be reproduced by using the more powerful
(and standard) combination of internal output and string formats. For example, replace a
code fragment like this:
WRITE(6,20) INT1
20 FORMAT(I<N+1>)
with the following:

c Variable declaration
CHARACTER (LEN=20) FMT

c Other code here...

WRITE(FMT,’ ("(I", I0, ")")’) N+1
WRITE(6,FMT) INT1

or with
c Variable declaration
CHARACTER (LEN=20) FMT
c
c Other code here...

WRITE(FMT,*) N+1
WRITE(6," (I" // ADJUSTL(FMT) // ")") INT1

6.2.4 Alternate complex function synta